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ABSTRACT 

In general, the higher order macroscopic traffic model consists of partial differential equations 

(PDEs) that are of hyperbolic type. Accordingly, the standard well-posed theory of the 

hyperbolic system and corresponding numerical solutions are applied straightforwardly. In 

the presence of in-homogeneities such as on-and off-ramps, the higher order model has a 

form of PDEs with stiff source terms (i.e. high inflows and outflows at on-and off-ramps). It 

has been reported that attempt to use the standard solutions for such PDEs with stiff source 

terms may result in incorrect propagation speeds of discontinuities. To this end, this paper is 

aimed to introduce a novel method, namely, wave propagation, to simulate the higher order 

macroscopic traffic model in the presence of in-homogeneities. The proposed method is of 

Godunov-type finite volume method which adopts Riemann problems to determine the cell 

interface fluxes at each time step. In this paper, the source terms are augmented in the 

Riemann solutions to determine the propagation waves arising in the Riemann problems. 

The performance of the wave propagation method in traffic flow simulations is investigated in 

comparison with the existing methods via numerical examples. It is found that the proposed 

method is more accurate than the others under the same mesh size. 

 

Keywords: higher order macroscopic model, Riemann solutions, wave propagation, stiff 

source terms. 

INTRODUCTION 

There are three types of modelling approach to describe the traffic operations: microscopic, 
mesoscopic and macroscopic. Microscopic models describe traffic flow at high level of detail 
such as the movement of individual vehicles, whereas macroscopic models represent traffic 
flow at low level of detail by aggregate traffic variables such as flow, mean speed and 
density. Mesoscopic models, on the other hand, deal with traffic flow through probabilistic 
terms. That is, traffic flow is described by the behaviour of a group of vehicles. This paper is 
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dedicated to macroscopic models with main focus on the analysis of numerical solutions. In 
principle, macroscopic traffic models are used to replicate the average traffic behavior in 
terms of aggregate variables such as (time-space) flow and speed. There are two distinct 
methods to develop a macroscopic traffic model. The first order method is related to a so-
called LWR-type models (Lighthill and Whitham; 1955, Richards, 1956) which are simple and 
allow one to represent a formation of shock wave but its assumption of a steady-state speed 
density relationship does not allow fluctuations around the equilibrium fundamental diagram. 
The steady-state speed density relationship is relaxed in the higher order models in which an 
additional dynamic equation for the mean speed or flow is proposed. Examples of higher 
order macroscopic models can be found in Hoogendoorn and Bovy (2001). Although the 
higher order models have been able to show some significant improvements over the first-
order models in replicating the transitions between traffic congested states and non-linear 
phenomena (Schonhof and Helbing, 2007), it is difficult to implement a relevant numerical 
solution for such models.  This paper focuses on the higher order macroscopic model which 
describes the dynamics of traffic flow on freeway in the presence of in-homogeneities in the 
following form: 

 ( ).
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In equation (1) 
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, where: 
( )er V V

G
t

-
= . r=r(x,t), q=q(x,t) 

and  V=V(x,t) denote, respectively, the density, flow and mean speed at location x and time t. 

By definition q=rV. Ve= Ve(r,V) denotes the equilibrium speed function and  denotes the 

relaxation time. ( ),g x t±
denotes the sources due to inflow (plus sign) and outflow (minus 

sign) at the on-and off-ramps, respectively. 
2E rV P= + , where P denotes the traffic 

pressure (Aw and Rascle, 2000), which reflects the anticipation of drivers to the downstream 
traffic situations. Different definitions of P and Ve lead to various higher order macroscopic 
models.  

 Setting ( )
e eV V r=  and 

2
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2
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edV
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= , results in the model of 

Payne (1971) . 

 Setting ( )
e eV V r=  and 0

V
P r

x
m
¶

= Q -
¶

, where  denotes the so-called viscosity 

coefficient, results in the model of Kerner and Konhauser (1994). 

 By setting  ( ),e eV V r V=  and P r= Q , where  is determined from the empirical 

relationship ( )
2r VaQ = , the model of Treiber et al. (1999) is obtained. Here, (r) is 

a density-dependent function, estimated from empirical data.  
 
It is straightforward to write equation (1) in the following conservation form: 
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, denotes the Jacobian 

matrix having two eigenvalues (characteristic speeds): 
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and two eigenvectors: 
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 (4) 

In general, 
2 1l l< and these characteristic speeds are always real except the model of 

Kerner and Konhauser (1994) so the traffic equation (1) is of hyperbolic type. Consequently, 

the standard well-posed theory of the system of hyperbolic partial differential equations and 

the corresponding numerical solutions can be applied.  

 

From equation (1) when the dissipative process (caused by the right hand side) is too fast 

compared to the conservative process (induced by the left hand side), the source term 

becomes a so-called stiff source term. This situation is fully observed in traffic flow due to the 

relatively high inflow from on-ramp or to the off-ramp. When the source term is stiff, the 

original traffic equation becomes an asymptotic reduced system (Chen et al., 1994).  

Numerical solution of traffic equation with stiff source term requires a careful numerical 

treatment of the source term so that the solution is well-balanced and robust on coarse mesh 

size (Leveque, 1998). This paper will concentrate on the treatment of the source term S(U) in 

the numerical solution and how this source term influences the accuracy of the numerical 

solution. The major contribution of this paper is to introduce a novel numerical solution, 

namely wave propagation, to the higher order traffic flow model in the presence of stiff 

source term (i.e. with high inflow from on-ramp or to off-ramp).  The method is proposed in 

Leveque (1997) for hydrology and will be first time applied for traffic flow modelling with on- 

and off-ramps in this paper. In principle, the wave propagation method is of Godunov-type 

finite volume method which adopts Riemann problems to determine the cell interface fluxes 

at each time step. The source terms are then augmented in the Riemann solutions to 

determine the propagation waves arising in the Riemann problems.  

STANDARD NUMERICAL SOLUTIONS 

 
Figure 1 – Finite volume method for higher order macroscopic models 

 
To simulate the traffic equation (1), the roadway is divided into many cells with equal length 

xD (see Figure 1) whereas the simulation horizon is divided into time interval kt k t= D with 

time step tD . The Riemann problems are characterized by the following initial conditions: 
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By definition, the cell average traffic variables are: ( )
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approximation solver for the Riemann problems (5), we obtain: 
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In equation (6), 1/ 2

k

iF + denotes the numerical fluxes at cell interface xi+1/2. Different numerical 

methods give rise to various functional forms of 1/ 2

k

iF +  (see for more details).   Step 1 

represents an approximation solution for PDEs without source terms, where as step 2 is 
actually an approximation solution for ordinary partial differential equations.  

 

The two steps method presented in equation (6) is adopted widely to simulate traffic flow 

models with source terms (Helbing and Treiber, 1999; Zhang, 2001; Jin and Zhang, 2003; 

Ngoduy et al., 2004a, 2004b; Zhang et al., 2008). However, it has been reported in Levecque 

and Yee (1990), Pember (1993), Chalabi and Qiu (2000 that the two steps method has a 

problem when the flux gradients and the source terms are cancelled out each other (i.e. 

F
S

x

¶
=

¶
) . It has been observed that this problem may result in incorrect propagation 

speeds of discontinuities, which may then cause erroneous traffic flow predictions, for 

example traffic jams that never occur in reality. To this end, the rest of this paper is devoted 

to the implementation of a distinct method, namely wave propagation, to accurately simulate 

traffic equation (1) in the presence of high inflow and outflow at on-and off-ramps. 

WAVE PROPAGATION SOLUTION 

3/ 2iA U-

-D 3/ 2iA U+

-D 1/ 2iA U-

-D 1/ 2iA U+

-D 1/ 2iA U-

+D 1/ 2iA U+

+D 3/ 2iA U-

+D 3/ 2iA U+

+D  

 

 

 

 

         1iU -            iU             1iU +  

 

 

 

 

 xi-3/2          xi-1/2      xi+1/2        xi+3/2 

 
Figure 2- Structure of the wave propagation solution. 

 
The wave propagation method is based on solving Riemann problems (5) for the wave 
structure. Then the flux splitting technique that generalizes the notation of flux difference 
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splitting from conservation law is introduced. Figure 2 illustrates the left-going and right-going 
flux splitting at cell interfaces that capture the net effect of all left- and right-going waves.  

 

Let 1/ 2

j

iW - denote the jth waves ( j JÎ ) at cell interface xi-1/2, which occur due to the jump in 

the traffic variables. Let us assume that 1

k k

i iU U+ - can be decomposed as:    

 1 1/ 2 1/ 2 1/ 2

1 1

,
J J

k k j j j

i i i i i

j j

U U W g+ + + +

= =

- = = Gå å  (7) 

where J denotes the number of waves (in this paper J=2) each of which is associated with a 

wave speed 
jl , which is determined in equation (3). 1/ 2

j

ig + is a coefficient, determined as: 
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In equation (7) 1/ 2

j

i+G denotes the eigenvector determined by 1/ 2

j

il + . In equation (8), 

( )1/ 2 1 1/ 2, ,j j k k k

i i i ir r Vl l+ + += where 1/ 2

k

iV + is determined by Roe approximation: 
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Let 1/ 2

j

iZ + denote the jth waves (j=1,2) at cell interface xi+1/2, which occur due to the jump in 

the fluxes including the net contribution of source terms. The jump in these fluxes can be 
decomposed as:   

 1 1/ 2 1/ 2 1/ 2

1 1

,
J J

k k k j j j

i i i i i i

j j

F F xS Z b+ + + +

= =

- - D = = Gå å  (10) 

By using the Rankine-Hugoniot condition across each wave at the cell interface xi+1/2 

( 1 1/ 2 1/ 2

1

J
k k k j j

i i i i i

j

F F xS Wl+ + +

=

- - D = å ) we can compute the wave coefficient 1/ 2

j

ib +  as: 
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l
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+
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 (11) 

 
It can be seen from equation (11) that the source terms g and G are now embedded in the 

wave solution at cell interface through the calculation of the wave coefficient 1/ 2

j

ib + .   

Now let 1/ 2

k

iU + denote the value of the Riemann solution along the interface xi+1/2, then 

Godunov’s method can be written as: 

 ( ) ( )1

1/ 2 1/ 2 ,k k k k

i i i i

t
U U f U f U

x

+

+ -

D é ù= - -ê úë ûD
 (12) 

Let 1/ 2

k

iA U+

-D  denote the net contribution of the right moving waves to the traffic evolution of 

cell i from the left interface xi-1/2, whereas 1/ 2

k

iA U-

+D  present the net contribution of the left 

moving waves to the traffic evolution of cell i from the right interface xi+1/2 (see Figure 2). Let 
us define: 
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equation (12) can be rewritten in the following form: 
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In equation (14), the source terms are embedded in the Riemann solutions through equation 
(10) and equation (11) when determining the right and left moving wave contribution 

1/ 2

k

iA U+

-D and 1/ 2

k

iA U-

+D , respectively.  The right and left moving wave contribution are 

determined as: 
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J J
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It is worth noticing from equation (3) that the first characteristic speed
1 0l > , so equation 

(15) is determined only from the sign of the second characteristic speed
2l : 
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 (16) 

Equations (14) and (16) complete the wave propagation solution for the traffic flow model (1) 
in the presence of on- and off-ramps. Numerical tests will be carried out in the next section to 
investigate the performance of the proposed numerical solution against the standard two 
steps solution. 

NUMERICAL STUDY 

        Traffic direction  

 
 KM0        KM7.0   KM10.0 

 

 

 

 
 

Figure 3- Layout of a freeway with an on-ramp 
 

In this section we investigate the performance of the wave propagation method for simulation 
of a 10km-freeway with an on-ramp which is located at KM7.0 (Figure 3). The model of 
Payne (1971) is chosen for the study. The open boundary condition is adopted for our 
simulation with the entry flow=600 veh/h, entry speed=100 km/h, ramp flow=1200 veh/h. To 
test the numerical convergence of the wave propagation solution, we use different mesh 
sizes for the same boundary and initial conditions, such as [25m,0.5sec], [50m,1sec], 
[100m,2sec], [200m,4sec]. Let us assume that the smallest mesh size represents the 

convergent solution, which is obtained in the limit ( )lim 0, 0x tD ® D ® . The so-called 

Euclidian root mean square error (ERMSE) norm is used to illustrate the accuracy of the 
solution: 
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 ( ) ( )

2 2

1 1

1 1
( ) ( ) , ( ) ( ) ,

I I
r sim exact V sim exact
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i i

e k r k r k e k V k V k
I I= =
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where ( ), ( )sim sim

i ir k V k are density and speed obtained at cell I and time instant k from 

different mesh sizes. ( ), ( )exact exact

i ir k V k are density and speed obtained at cell I and time 

instant k from the smallest mesh size. I denotes the total number of cells. 
 
Simulation results of the proposed numerical solution are described in Figure 4 and Figure 5. 
Figure 4 illustrates the density and speed profiles reproduced from different mesh sizes. It is 
obvious from Figure 4 that the large mesh size, the large smoothing effects with respect to 
the upfront jam. However, the ERMSE is bounded and converges for different mesh sizes 
(Figure 5). In order to study the accuracy of the proposed solution, we have also simulated 
the same freeway with the same model, inputs and model parameters using the Harten, van 
Leer, Lax and Einfeldt (HLLE) two steps scheme proposed in Ngoduy et al. (2004a) for traffic 
equations. The ERMSE produced by HLLE method is shown in Figure 6. It is clear from 
Figure 5 and Figure 6 as well as Table 1 that the proposed numerical method is more 
accurate than the two steps HLLE scheme in our example. Further experiments with other 
two steps numerical method are needed to support the findings. 
 
Table 1- Euclidian root mean square errors for different mesh sizes 

 Mesh size HLLE method Wave propagation method 

t=300 t=600 t=900 t=1200 t=300 t=600 t=900 t=1200 

D
e
n
s
it
y
 

(v
e
h
/k

m
) 50m, 1sec 3.2 3.6 3.7 3.9 2.2 2.2 2.2 2.5 

100m, 2sec 6.6 7.3 7.7 7.9 4.5 4.4 4.5 5.2 

200m, 4sec 10.5 11.9 12.4 13.0 8.8 7.7 7.4 8.5 

S
p
e
e

d
 

(k
m

/h
) 50m, 1sec 5.2 4.8 4.8 5.0 2.5 2.2 2.7 3.3 

100m, 2sec 10.0 9.8 9.9 10.2 5.0 3.3 5.4 6.4 

200m, 4sec 15.7 15.7 15.7 16.2 10.6 6.4 7.9 9.4 

CONCLUDING REMARKS 

In general, the higher order macroscopic traffic flow model for freeways with on-and off-ramp 
is a system of (hyperbolic) partial differential equations with stiff source terms when the 
inflow/outflow at on-and off-ramp is relatively high. Consequently, the dissipative process 
caused by the right hand side is too fast compared to the conservative process caused by 
the left hand side. The problem with stiff source terms requires a careful numerical treatment 
of the source term so that the solution is well-balanced and robust on coarse mesh size. This 
paper has presented a robust numerical solution, namely wave propagation, for a class of 
higher macroscopic traffic flow models in the presence of on-and off-ramp. The wave 
propagation solution is based on solving the Riemann problems at cell interfaces where the 
source terms are augmented into the jump of the fluxes using the Rankine-Hugoniot 
condition across each wave. Therefore, the proposed solution is a one step numerical 
approximation of the traffic equations with source terms, which overcome the drawback of 
the two step method when the source terms are stiff as reported in literature of computational 
physics. Numerical tests have indicated that the wave propagation method is robust with 
coarse mesh sizes and the numerical convergence is proven by through the computation of 
the Euclidian root mean square errors. It has also been shown that the proposed numerical 
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solution is more accurate than a standard two steps solution given the same mesh sizes in 
our example. However, more extensive experiments with other two steps numerical method 
are needed to support the findings. 
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Figure 4- Convergence test with different mesh sizes for density and speed by wave propagation method 
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Figure 5- Euclidian root mean square errors of density and speed by wave propagation method. 
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Figure 6- Euclidian root mean square errors of density and speed by two step HLLE method. 
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