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Abstract 

In the face of growing concerns about greenhouse gas emissions, there is increasing interest in 
forecasting the likely demand for alternative fuel vehicles. This paper presents an analysis carried 
out on stated choice data collected in California, looking at respondent’s preferences in a joint 
vehicle type choice and fuel type choice experiment. Our study recognises the fact that this choice 
process potentially involves high correlations that an analyst may not be able to adequately 
represent in the modelled utility components. Importantly, we further hypothesise that the standard 
Nested Logit model is incapable of capturing the full extent of correlation patterns in such a multi-
dimensional choice process, and that a Cross-Nested Logit structure may be more appropriate. Our 
empirical analysis and a brief forecasting exercise produce evidence to support these suspicions. The 
findings from this paper are not just of interest in the context of the demand for alternative fuel 
vehicles but are also relevant for the analysis of multi-dimensional choice processes in general. 

Introduction 

There is increasing interest in the potential demand for alternative fuel vehicles, given not only 
growing environmental concerns, but also recent volatility in oil prices. A number of approaches for 
alternative fuels have been put forward, including using a mix between ethanol and traditional fuel, 
a greater reliance on natural gas, and various types of partially or fully electric vehicles. The 
preferences for different types of fuel are difficult to predict, not least because of the strong 
relationship between fuel type and other attributes such as performance, annual costs as well as 
incentives (e.g. tax breaks). At the same time, there is a very strong link between fuel type and 
vehicle type, with certain types of fuel only really being appropriate for specific vehicle types. 
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With the growing focus on these vehicles as a possible way of reducing greenhouse gas emissions, it 
should come as no surprise that there has long been an interest in modelling the potential consumer 
response to the introduction of such vehicles. Examples include Bunch et al. (1993), Train (1993), 
Golob et al. (1995), Kavalece (1996), Tomkins et al. (1998), Hensher & Greene (2001), Greene (2001), 
Batley and Toner (2003), Batley et al. (2004), Adler et al. (2004), and Spissu et al. (2009) to name but 
a few. 

In this paper, we discuss work based on the 2008-09 California Vehicle Survey (CVS), aimed at 
providing input data for the California (light-duty) Conventional and Alternative Fuel Response 
Simulator (CALCARS) model. The 2008-09 CVS collected both stated and revealed preference data 
for vehicle ownership and vehicle choice to forecast the penetration and use of both conventional 
and alternative fuel vehicles.  

In the present paper, we focus on the stated choice survey component of this work. This involved 
the design of a highly complex survey tool, which included seven fuel types, fifteen vehicle types, 
and up to eleven level-of-service attributes, such as cost, fuel consumption, fuel availability, 
refuelling time and acceleration. To reduce the survey complexity, each choice situation made use of 
only four alternatives, where this included a reference vehicle and three other vehicles assigned on 
the basis of a weighting approach. An internet-based survey was used to collect the data, enabling 
the collection of a very large sample. 

The main contribution of the work described here comes in the use of a Cross-Nested Logit (CNL) 
structure. Earlier parts of the empirical work revealed the existence of significant levels of 
correlation between alternatives sharing the same fuel type as well as between alternatives sharing 
the same vehicle type. As we discuss in detail in the methodology section, the use of multi-level 
Nested Logit (NL) structures was not appropriate in this context, and the use of the CNL model was 
shown to lead to significant gains in model performance as well as the realism of forecasts. 

The remainder of this paper is organised as follows. We first describe the survey work carried out for 
this analysis, before discussing modelling methodology. This is followed by the presentation of the 
empirical results and a brief forecasting example. Finally, we present the conclusions of the work. 

Survey work 

Survey data were collected using a two-phase, multi-method approach. The first phase involved a 
revealed preference (RP) recruitment survey that was conducted over the telephone. The second 
phase included the stated choice survey with eight vehicle choice exercises.  

In the RP survey, respondents were asked to indicate the type of vehicle they are most likely to 
purchase next for their household; including information about the vehicle type, fuel type, expected 
fuel efficiency, purchase price, vehicle age, and estimated number of miles the vehicle would be 
driven annually.  

After completing the revealed preference (RP) survey over the telephone, the respondents were 
given the option of completing the stated choice (SC) survey either via a mail-back paper 
questionnaire or via an online questionnaire. In both cases, the survey was tailored to the specific 
individual, with data from the RP surveys being used to construct a set of eight stated choice 
exercises for the SC survey.  

Each stated choice exercise presented respondents with four hypothetical vehicles as alternatives. 
The first vehicle, or the reference vehicle, was presented as the new or used vehicle the respondent 
planned to purchase next for their household. The attributes that describe the reference vehicle 
were consistent with what the respondent reported in the RP survey in terms of vehicle type, fuel 
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type and age, with the remaining attributes varying across choice sets. The next three alternatives 
were presented as vehicles of different sizes, fuel types and ages. The four vehicles in each exercise 
were described by a set of ten to twelve attributes, depending on the fuel type presented. 
Respondents were asked to select the vehicle they would most prefer to purchase based on the 
attributes presented in each alternative. The values of each attribute varied according to an 
experimental design (discussed later), requiring respondents to trade off attributes against each 
other. Error! Reference source not found. presents an example of one of the eight stated choice 
exercises of a hypothetical respondent. 

The first two attributes for each alternative were vehicle type and fuel type. A total of fifteen vehicle 
types and seven fuel types were selected for the exercises. The vehicle type was fixed to the 
response given in the RP survey for the reference vehicle. For the remaining three alternatives, 
vehicle type was drawn from one of the following fifteen types:  

1. Subcompact car  
2. Compact car 
3. Mid-size car 
4. Large car 
5. Sport car or “two door high performance subcompact car” 
6. Small cross-utility car or “small wagons with flexible seating” 
7. Small cross-utility SUV 
8. Mid-size cross-utility SUV 
9. Compact SUV 
10. Mid-size SUV 
11. Large SUV 
12. Compact van 
13. Large van 
14. Compact pick-up truck 
15. Standard pick-up truck 

While it was possible any vehicle could be selected for the three alternate vehicles, the selection of 
those vehicles was done using weighted draws based on the respondent’s reference vehicle type. 
Weighted draws were used because it is expected that respondents will have relatively strong 
preferences for at least a broad category of vehicle (e.g. small or large), and as a result presenting a 
respondent with a choice between a reference subcompact car and a large van makes little sense. In 
that situation, vehicle type would dominate the choice process and little or no information could be 
gained for the sensitivities to other attributes. On the other hand, it was also not seen as 
appropriate to completely restrict the different combinations of vehicle types presented to a 
respondent. As a result, a set of weights were developed for each reference vehicle type. With these 
weights, all vehicle types have a non-zero probability of being included in an exercise, but the 
probability is higher for those vehicles that are more similar to the reference vehicle type. An 
especially high weight of approximately 50 percent was used for the reference vehicle type, which 
ensured that, at least for one pair of alternatives, the relative preference was not influenced by 
vehicle type. The vehicle types for the three alternative vehicles were drawn without replacement 
from the list of 15 vehicle types, meaning that, while the reference vehicle was allowed to repeat in 
one other alternative, allowing respondents to trade off attributes other than vehicle type, no other 
vehicle types were allowed to repeat across alternatives within a single exercise. 

For the reference vehicle, fuel type was fixed to the respondent’s RP response. The remaining fuel 
types were draw from the following list: 
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1. Standard Gasoline 
2. Flex Fuel/E85 
3. Clean Diesel 
4. Compressed Natural Gas 
5. Hybrid-electric 
6. Plug-in Hybrid-electric 

7. Full Electric 

The selection of which fuel type to show for the three alternate vehicles was done entirely 
randomly, i.e. not using any weights, thus guaranteeing that all possible combinations were 
represented roughly evenly. As with vehicle types, fuel types were drawn without replacement, 
meaning that while the reference vehicle fuel type was allowed to repeat in one of the three 
alternate vehicles, allowing respondents to trade off attributes other than fuel type, no other fuel 
types were allowed to repeat across alternatives within a single exercise. 

The remaining vehicle attributes were dependent on the vehicle and fuel type. While values for 
vehicle type and fuel type were selected using weighted and random draws as described above, the 
values for the remaining attributes varied according to an orthogonal experimental design. The 
orthogonal design is described in more detail later on.  

Many of the vehicle attributes vary around a base value. In the case of purchase price, maintenance 
cost, miles per gallon equivalent, fuel cost per gallon equivalent, and acceleration, a table with base 
values was used, representing average values for all vehicles of a particular vehicle type, fuel type 
and vintage. 

The remaining attributes included in the survey were as follows: 

 The vehicle age was automatically set to new for plug-in hybrid electric and full electric 
vehicles, with variations around the reference vehicle age for other vehicles 

 The purchase price of the vehicle varied around a base value. For the reference vehicle, the 
base value is the response given in the RP survey. For the three remaining alternatives, the 
base value was dependent on a “list price” determined from the combination of vehicle 
type, fuel type, and vintage, where this was adjusted by the ratio between the indicated 
price of the reference vehicle in the RP survey and the list price for that vehicle, thus 
accounting for the possibility that a respondent was considering a higher than average or 
lower than average price for the reference vehicle. Variations across choice sets are then 
based on the experimental design. 

 There were six purchase incentive levels shown in the survey, with the exception of 
gasoline-powered vehicles, where no incentives were used. Incentives included carpool lane 
access, free parking, tax credits, reduced tolls and reduced purchase price. Variations across 
choice sets are then based on the experimental design. 

 A base maintenance cost per mile for each vehicle was assumed based on the vehicle type, 
fuel type, and vehicle age. The maintenance cost per mile was multiplied by the reported 
annual VMT to calculate an annual maintenance cost. Variations across choice sets are then 
based on the experimental design. 

 A base value for miles per gallon equivalent was assumed based on the vehicle type, vehicle 
age, and fuel type. Variations across choice sets are then based on the experimental design.  

 The annual fuel cost was calculated using the fuel cost in gasoline gallon equivalents, which 
was a design attribute, the vehicle efficiency in miles per gallon equivalent, and the annual 
miles reported in the RP survey. The variation across choices was based on variations in the 
fuel cost in gasoline gallon equivalents, as given in the experimental design. 
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 The fuel availability, refueling time, and vehicle range attributes only applied to full electric 
and compressed natural gas vehicles, where variations across choice sets for applicable 
vehicles are then based on the experimental design. 

 The acceleration attribute was presented as the time it takes to accelerate from zero to 60 
miles per hour in seconds. The acceleration of each vehicle was assumed based on the 
vehicle type, fuel type and vehicle age, and varied according to the experimental design. 

The experimental design used for this SC survey was based on an underlying orthogonal design. 
While several types of designs were considered at the onset, including arguably more advanced 
efficient designs, it was concluded that, given the complexity of the SC scenarios, an orthogonal 
design was the most appropriate for this particular application. While efficient designs can be 
preferable in some situations, the generation of an efficient design requires prior parameter values 
for all coefficients, as well as a priori decisions in relation to model structure and utility specification, 
including interactions with socio-demographic variables. While this already causes significant 
problems in the case of studies looking at the choice between hypothetical options, further 
problems arise in the present study as it looks at the choice of vehicle types and fuel types. Here, the 
preferences can be expected to vary across respondents to such an extent – some respondents will 
strongly prefer compact cars, while others will strongly prefer large SUVs – that it becomes difficult 
to obtain reliable prior parameter estimates. Additionally, vehicle type and fuel type would have to 
be included directly in the design, leading to the requirement to generate a very large number of 
different designs for different combinations of vehicle types and fuel types. This was not necessary 
with the approach used in this study, where vehicle type and fuel type were added to the design in a 
second stage, after the generation of the base design.  

This base design is an orthogonal design of 144 rows, split into 18 blocks of 8 choices. Orthogonal 
blocking was used to avoid any correlation between the attributes and the blocks (e.g. avoiding the 
situation where one respondent gets all the high price options). The design contains the levels for 
ten attributes (the attributes other than vehicle type and fuel type) and four alternatives. The 
vehicle types and fuel types drawn according to the approach described above were used as inputs 
for calculating the base values for the levels in this underlying design. In the actual survey, each 
respondent was presented with one block of eight choice situations. Care was taken to ensure that 
the 18 different blocks were presented the same number of times and that there was no correlation 
between sample subgroups and blocks. The choice situations presented to the respondent were 
constructed on the basis of the set of vehicle type/fuel type combinations drawn for that 
respondent, and the block of 8 choice situations used from the experimental design for that 
respondent. The order in which the 8 choice situations from a given block were presented to a 
respondent was randomized across respondents. 

Modelling methodology 

As already alluded to in earlier parts of the paper, the SC data collected in this project was analysed 
with the help of discrete choice models belonging to the family of random utility models. For a 
thorough introduction to such models, see Train (2003). This section of the paper covers two main 
parts. We first discuss the specification of the utility function, which was identical for all models 
estimated. This is followed by a discussion of model structure. At this stage, it is also worth 
mentioning that the models used in the present paper exclude respondents from multi-car 
households. 

Utility specification 

An extensive specification search was conducted, with the outcome that the following terms were 
included in the final specification of the utility function: 
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 Constants for the first three SC alternatives, along with constants for fuel type and vehicle 
type inertia 

 Vehicle type specific constants, with subcompact car being the base 

 Fuel type specific constants, with standard gasoline being the base 

 A constants for vehicles aged 1 or 2 years, and a constant for vehicles aged 3 years or more, 
with new vehicles being the base 

 Four incentive constants, with no incentive being the base 

 Marginal utility coefficients associated with vehicle price ($1000s), fuel costs ($1000s), 
maintenance costs ($1000s) 

 A marginal utility coefficient interacting with vehicle price ($1000s) and the income group, 
where seven equally sized income groups were used, and where this linear relationship was 
justified on the basis of earlier results using income group specific cost coefficients 

 Marginal utility coefficients associated with the miles per gallon equivalent (MPGE), range 
(miles), acceleration (seconds taken to 60mph) 

 Constants associated with the option of plugging in electric vehicles at work and at other 
locations, and the availability of compressed natural gas at 1 out of 20 stations, with the 
respective bases being home plug-in only, and availability at 1 in 50 stations 

 Constants associated with interaction terms for large households and medium-sized 
vehicles, large households and large-sized vehicles, alternative fuel vehicles and medium-
sized vehicles, and alternative fuel vehicles and large-sized vehicles 

This specification led to the use of 44 individual parameters. Note that efforts to include refuelling 
time in the models were unsuccessful. 

Model structure 

Although a large number of attributes are used to describe the various alternatives in the SC survey, 
two of them stand out as main product characteristics, namely the vehicle type and the fuel type. 
Given the nature of the choice scenarios, there are clear grounds to suspect a heightened degree of 
correlation between two alternatives sharing the same vehicle type or two alternatives sharing the 
same fuel type. This is even more so the case for two options that are of the same vehicle type and 
the same fuel type, but vary along some other dimension. To some extent, these correlations can be 
explained by the inclusion of alternative specific constants, but the degree of variation across 
respondents in their preference for the different vehicle types and fuel types is potentially so high 
that a large share of the correlation remains unmodelled. However, the use of a random coefficients 
approach to model the heterogeneity in the vehicle type and fuel type constants across respondents 
is not an option, given the high number of random terms this would lead to. On the other hand, not 
allowing for the effects of this unobserved correlation will likely lead to unrepresentative 
substitution patterns. Indeed, assume that a respondent is interested in purchasing a compact 
gasoline car and that for some reason, this vehicle becomes unavailable. This respondent is arguably 
then more likely to switch to a differently-sized gasoline car (say a sub-compact), then to switch to a 
vehicle that is of a different fuel type and a different vehicle type. Additionally, there is the 
possibility that the respondent may more closely evaluate a switch to a differently fuelled compact 
car (e.g. a hybrid compact) given the similarity in vehicle type. With the most basic modelling 
approach, a Multinomial Logit (MNL) model, such substitution patterns cannot be represented, and 
there will be a proportional shift in probability towards all other vehicle type and fuel type 
combinations. 

The typical approach to dealing with such an issue is to estimate a Nested Logit (NL) model. For the 
sake of illustration, let us assume we’re in a situation where a respondent has six vehicles to choose 
from: 
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A. Compact gasoline car 
B. Compact hybrid-electric car 
C. Compact gasoline car 
D. Compact gasoline SUV 
E. Compact flex fuel SUV 
F. Compact hybrid-electric car 

In this scenario, vehicles A, B, and C share the same vehicle type, as do vehicles D, E, and F. Vehicles 
A, C, and D share the same fuel type, as do vehicles B and F. Finally, vehicles A and C share the same 
vehicle type and the same fuel type. This provides ample source for correlation between 
alternatives. Various possible NL structures arise, as illustrated in Figure 2. In the first structure, we 
use a nesting by vehicle type approach, hence accounting for the correlation between options that 
share the same type of vehicle. As an example, if vehicle A was to become unavailable (or less 
attractive say due to a price increase), a respondent previously interested in this vehicle may be 
more likely to shift his/her interest to vehicle B or C, than to vehicles D, E, or F. The second figure 
shows the corresponding two-level NL structure using nesting by fuel type. Here, we allow for 
heightened correlation between vehicles A, C, and D, and between vehicles B and F. It is a likely 
outcome that both structures reveal heightened substitution patterns between alternatives sharing 
the same vehicle type, respectively vehicles sharing the same fuel type. This leads to a requirement 
for a structure that can jointly accommodate the two. A possible approach in this context comes in 
the use of a three-level NL structure, such as shown in the third example in Figure 2. This model 
nests first by vehicle type, and then by fuel type. It can immediately be seen that another option, not 
shown here, is to nest first by fuel type, and then by vehicle type. In the model shown in Figure 2, we 
still allow for correlation between the different compact cars, and for correlation between the 
different compact SUVs. In addition, we allow for even higher correlation between the two gasoline 
cars, i.e. options A and B. However, given the ordering of the nesting levels, the model is unable to 
account for the correlation between two options sharing the same fuel type but being of different 
vehicle type. As an example, we would expect options B and F to be closer substitutes for one 
another, but the model treats their errors as completely independent. The issue here is that when 
using a multi-level NL model for multi-dimensional choice processes, the full correlation can only be 
accommodated along the highest dimension of nesting in the tree, an issue that was to our 
knowledge first discussed by Hess & Polak (2006) in an air travel behaviour context. 

The solution put forward by Hess & Polak (2006) is to use a CNL structure (cf. Vovsha, 1997), as 
illustrated for the present scenario in Figure 3. Here, we make use of two separate vehicle type nests 
and three separate fuel type nests, with each alternative falling into one vehicle type nest and one 
fuel type nest1. In the resulting structure, we have correlation between those alternatives sharing 
the same vehicle type (i.e. A, B, C, and D, E, F), and vehicles sharing the same fuel type (i.e. A, C, D, 
and B, F), with even higher correlation for those alternatives sharing the same vehicle type as well as 
the same fuel type (i.e. A and C). 

With the above approach of characterising alternatives along two dimensions, we obtain 105 
combinations of vehicle types and fuel types. With the survey making use of four separate SC 
alternatives, and each alternative potentially taking on one of those 105 combinations, the model 

                                                           
1
 On a technical aside, the CNL specification works by allocating an alternative by different proportions into 

different nests, collapsing back to a NL model when all allocation parameters are equal to 1, i.e. an alternative 
belongs into one nest one. In the present context, the allocation parameters were all fixed to a value of 1/2, 
meaning that an alternative belongs to one vehicle type nest and one fuel type nest. The estimation of actual 
values for the two non-zero allocation parameters for each alternative would have been very difficult due to 
the high degree of non-linearity and would arguably not have provided any further benefits from an 
interpretation perspective. 
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implementation actually made use of four sets of 105 alternatives, i.e. a total of 420 alternatives, of 
which exactly four were available in each choice situation 

Model estimation 

All model estimation and forecasting work reported in this paper was carried out using BIOGEME 
(Bierlaire, 2005), which is easily capable of dealing with such a large CNL structure. One further point 
needs addressing. The data used in this survey contains multiple observations for each respondent, 
potentially leading to correlations amongst choices for the same respondent. In the present work, 
this was not recognised in the modelling work for two reasons. The use of a random coefficients 
approach was not practical for computational reasons (the estimated models already took several 
hours without this added complication) and the use of the Jacknife approach (see e.g. Ortúzar, 1997) 
is not supported by BIOGEME, the only software well versed at estimating the complex model 
structure used in this paper. From this perspective, some of the estimates with a lower degree of 
significance should be treated with caution, given the possible underestimation of standard errors 
resulting from a cross-sectional estimation on repeated choice data. 

Empirical results 

The estimation results for the different discrete choice models are summarised in Table 1 for the 
main results and Table 2 for the nesting parameters for the NL and CNL models. The first observation 
we can make is that the NL model using nesting by fuel type gives us an improvement in model fit 
over the MNL model by 13.96 units in log-likelihood (LL), which is highly significant, coming at the 
cost of just six additional parameters. These additional parameters are nesting parameters which we 
will return to below. Similarly, the NL model using nesting by vehicle type gives us an improvement 
in LL over the MNL by 20.8 units, which, at the cost of 10 additional parameters, is again highly 
significant, as is the 37.97 unit improvement for the CNL model, at the cost of 15 additional 
parameters. Finally, the same is the case for the improvements offered by the CNL model over the 
NL model using nesting by vehicle type (17.16 units in LL with 5 additional parameters). A likelihood 
ratio test against the NL model using nesting by fuel type cannot be used due to the extra constraint 
on one of the nesting parameters in the CNL model, but the adj. ρ2 measure shows that this 
improvement is similarly significant at usual levels of confidence. 

Looking at the actual estimation results in Table 1, we observe, with a few exceptions, very similar 
parameter estimates across the four models, where the real differences between the models will 
become apparent later on, in the forecasting exercise. Going through the various estimates in turn, 
the values for the three constants suggest some allegiance to the reference alternative, along with a 
small amount of reading left to right impact. Further evidence of inertia is given by the two following 
estimates, showing that respondents are highly likely to choose a vehicle of their initially intended 
vehicle type and to a slightly lesser extent also fuel type. Without attempting to read too much into 
the various vehicle type and fuel type constants, the large negative values for the CNG and full 
electric vehicles do stand out, suggesting that additional incentives/improvements are required to 
increase the attractiveness of such vehicle given the low baseline preference. There is clear evidence 
of decreasing attractiveness with increasing age, while the various incentives have a positive impact 
on utility. The different cost components all lead to reductions in utility, though the vehicle price 
sensitivity is reduced as income increases. Better acceleration, longer range, better fuel efficiency 
and improved fuel availability all have positive impacts on utility, while large households show the 
expected preference for larger vehicles, and the attractiveness of alternative fuel vehicles reduces 
with vehicle size. 

We next turn our attention to the nesting parameters, which explain the correlation between 
alternatives grouped together in a nest, where these parameters, shown in Table 2, are constrained 
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to be between 0 and 1, with lower values meaning higher correlation. The base value of 1 equates to 
an absence of correlation (as in a MNL model) and for this reason, the t-ratios are calculated with 
respect to a base value of 1 rather than 0. Looking first at the model using nesting by fuel type, we 
observe that the nesting parameter for full electric vehicles has collapsed to a value of 1, indicating 
no heightened correlation between different full electric vehicles. In addition, the values for the 
nesting parameters for three other fuel types, namely Flex Fuel/E85, Clean Diesel, and Compressed 
Natural Gas, are close to 1 and not significantly different from 1, suggesting that only low levels of 
correlation arise in these contexts. However, high correlation is observed between different gasoline 
cars, and also between different hybrid-electric cars, suggesting in each case the presence of 
heightened substitution patterns and greater fuel type allegiance. In the model using nesting by 
vehicle type, a number of nesting parameters once again collapse to a value of 1, while high 
correlation is for example observed in the Small cross-utility SUV nest and the Compact pick-up truck 
nest. Overall, the picture in the CNL model is the combination of the NL results, with the exception 
that we now observe high correlation in the Flex Fuel/E85 nest, and that the nesting parameter for 
the Compressed Natural Gas, already close to 1 in the NL model, has now collapsed to a value of 1. 

Forecasting example 

As a final illustration of the differences between the various models estimated in this paper, we now 
conduct a brief forecasting example. Clearly, rescaling of the model outputs and correction of the 
constants would be required before undertaking any forecasting for the purposes of guiding policy 
makers (cf. Louviere et al., 2000), but the aim of this example is purely illustrative. 

Our forecasting example uses a single respondent with all 105 combinations of fuel type and vehicle 
type available. We further assume that this respondent currently owns a subcompact gasoline car, 
has an annual mileage of 13,500, and comes from a household with average income and four or 
fewer members. Finally, we assume that this respondent is solely interested in new cars. Our 
forecasting exercise starts by working out the probabilities for the 105 combinations of vehicle type 
and fuel type, with the four different models estimated in this paper. Next, we assume that following 
a government policy intervention, there is a reduction in the cost of Plug-in Hybrid Electric vehicles 
(fuel type 6) by $4,000, on condition that they also fall into the Subcompact car, Compact car or Mid-
size car categories (vehicle types 1, 2, and 3).  

Table 3 presents the changes in probabilities that arise as a result of this change in the attribute for 
these three vehicles. In the MNL model, we observe an equal increase in the probabilities for the 
three concerned vehicles, where this is drawn proportionally from all remaining vehicles as an effect 
of the independently distributed errors and the resulting absence of unmodelled correlation in this 
model. In the model using nesting by fuel type, we observe a bigger increase in the probability for 
the three vehicles than in the MNL model, but, with more of this being drawn from the remaining 
Plug-in Hybrid Electric vehicles than other fuel types, the overall increase in the probability for Plug-
in Hybrid Electric options, across vehicle type, is far less marked. Both of these effects are consistent 
with intuition. However, the changes in this model draw proportionally from all other non Plug-in 
Hybrid Eletric vehicles, independently of the fuel type, which may again not be completely realistic. 

In the model using nesting by vehicle type, we observe a bigger draw away from those options with 
the same vehicle type but with different fuel types (i.e. all non “Plug-in Hybrid Electric” subcompact, 
compact and mid-size cars). However, we also observe that the actual changes are different across 
the first three vehicle types. This is an effect of the different levels of correlation in these nests, with 
higher correlation leading to higher competition. With the nesting parameter (cf. Table 2) being 
lowest in the mid-size car nest, followed by the compact car nest and the subcompact car nest, the 
changes are also largest in that order. This model correctly recognises that a larger share of the draw 
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will come from other options in the same vehicle type categories, such that the increase in the 
overall share for the three vehicle types is less marked than in the first two models. However, the 
model doesn’t recognise the fact that a bigger draw will also come from other Plug-in Hybrid Electric 
vehicles. Indeed, for a given vehicle type, all the different fuel types are affected in the same way, 
including in the case of Plug-in Hybrid Electric. This overstates the overall increase for the probability 
of that fuel type, especially when compared to the model using nesting by fuel type. Finally, while 
due to aggregation, the overall changes (i.e. when grossing up across categories) are similar in the 
CNL and MNL models, the model arguably gives a more intuitively meaningful representation of the 
changes in probabilities of individual vehicle type and fuel type combinations, with bigger reductions 
in probabilities for those alternatives that either are of the “Plug-in Hybrid Electric” fuel type or are 
of the “Subcompact car”, “Compact car” or “Mid-size car” vehicle type.  

Conclusions  

This paper presents the findings of a modelling analysis looking at the choice of vehicle type and fuel 
type, captured through a stated choice survey conducted in California. In this experiment, 
respondents were faced with a number of scenarios that presented them with a choice between 
four vehicles, of varying vehicle type and fuel type. 

The main aim of the present paper was to investigate the prevalence of correlation along these two 
dimensions of choice, i.e. the influence of unmodelled components on the choice process, where 
these are specific to given vehicle types and fuel types, and potentially lead to heightened 
substitution patterns between options of the same vehicle type or the same fuel type. 

Our theoretical discussions show how the standard approach for dealing with such correlation, 
namely a Nested Logit model, may not be appropriate, as it is unable to capture the full extent of 
correlation along both the vehicle type and the fuel type dimension. Instead we suggest the use of a 
Cross Nested Logit approach, and show how this model offers better performance in estimation as 
well as producing substitution patterns that are more in line with a priori expectations. 

The authors recognise that, especially in the context of large scale forecasting systems, the use of 
these model structures may not be possible at present, meaning that practitioners should seek to as 
far as possible incorporate any such correlations in the modelled utility components of more basic 
models such as MNL. The use of advanced nesting structures in applied work does however remain 
an important avenue for future work. 

In closing, it should also be mentioned that, in the present paper, we have solely investigated the 
correlation between alternatives sharing the same vehicle type, respectively the same fuel type. It 
should be said that there are possibly also correlations between vehicles of different but similar 
type, such as for example compact and sub-compact cars, and the incorporation of such cross-type 
correlation is an important area for future work. 
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Table 1: Estimation results for different discrete choice models 

 
 

MNL NL (fuel type) NL (vehicle type) CNL 

 
LL -7,654.51 -7,640.55 -7,633.69 -7,616.54 

 
par 44 50 54 59 

 
adj. ρ

2 
0.265 0.265 0.266 0.267 

 
         

 
 

est. t-rat. (0) est. t-rat. (0) est. t-rat. (0) est. t-rat. (0) 

Constants 

Vehicle A constant 0.848 13.55 0.506 7.37 0.66 10.57 0.411 5.49 

Vehicle B constant 0.157 3.5 0.155 3.64 0.145 3.57 0.145 3.78 

Vehicle C constant 0.0357 0.78 0.0416 0.95 0.0258 0.63 0.026 0.67 

Vehicle Type Inertia 0.993 21.77 0.935 20.2 1.18 22.76 1.1 18.4 

Fuel Type Inertia 0.217 3.01 0.597 6.83 0.181 2.87 0.47 4.74 

Vehicle type 

Subcompact car 0 - 0 - 0 - 0 - 

Compact car -0.131 -1.4 -0.13 -1.46 -0.1 -1.06 -0.106 -1.16 

Mid-size car 0.284 2.98 0.269 2.97 0.28 2.94 0.269 2.87 

Large car 0.0186 0.14 0.048 0.39 -0.0864 -0.66 -0.0353 -0.25 

Sport car 0.0749 0.64 0.11 0.98 0.0115 0.1 0.0357 0.31 

Small cross-utility car 0.449 4.19 0.418 4.13 0.427 4 0.409 3.93 

Small cross-utility SUV 0.44 3.55 0.444 3.83 0.382 3.17 0.399 2.92 

Mid-size cross-utility SUV 0.29 2.1 0.298 2.28 0.207 1.55 0.23 1.62 

Compact SUV 0.64 4.61 0.624 4.77 0.548 4.04 0.567 3.75 

Mid-size SUV 0.588 4.19 0.57 4.32 0.476 3.43 0.493 3.37 

Large SUV 0.825 4.98 0.804 5.22 0.645 3.95 0.67 4.3 

Compact van 0.212 1.46 0.214 1.59 0.134 0.94 0.164 1.17 

Large van -0.264 -1.41 -0.213 -1.22 -0.315 -1.75 -0.247 -1.39 

Compact pick-up truck 0.144 1.17 0.157 1.33 0.112 0.92 0.127 1.22 

Standard pick-up truck 0.227 1.69 0.245 1.96 0.0953 0.71 0.149 1.01 

Fuel type 

Standard Gasoline 0 - 0 - 0 - 0 - 

Flex Fuel/E85 0.132 1.53 0.129 1.51 0.108 1.42 0.149 2.24 

Clean Diesel 0.178 1.39 0.141 1.13 0.167 1.48 0.137 1.19 

Compressed Natural Gas -2.25 -2.16 -2.31 -2.22 -1.77 -1.98 -1.84 -1.99 

Hybrid-electric 0.0881 1.02 0.0752 0.89 0.0879 1.17 0.0843 1.14 

Plug-in Hybrid-electric 0.419 5.86 0.398 5.69 0.358 5.74 0.352 5.81 

Full Electric -2.78 -3.64 -2.89 -3.79 -2.27 -3.45 -2.39 -3.49 

Age 
1 or 2 years old -0.193 -3.06 -0.177 -2.97 -0.171 -3.07 -0.158 -3.04 

3 or more years old -0.406 -7.59 -0.376 -7.47 -0.385 -8.14 -0.365 -8.77 

Incentives 

HOV lane use 0.0611 1.02 0.0709 1.22 0.0434 0.82 0.0472 0.87 

Free parking 0.041 0.69 0.0415 0.71 0.0374 0.71 0.0326 0.6 

$1,000 tax credit 0.186 3.11 0.181 3.15 0.162 3.06 0.156 3.02 

$1,000 reduced purchase 
price 0.0644 1.07 0.0632 1.08 0.0502 0.93 0.0514 0.96 

Costs 

Vehicle price -0.0746 -14.27 -0.0704 -14.03 -0.0687 -14.15 -0.0656 -14.83 

Vehicle price * income cat 0.00675 6.47 0.00657 6.73 0.00614 6.46 0.00611 6.99 

Fuel costs -0.0788 -9 -0.0777 -9.31 -0.0712 -9.08 -0.0702 -9.33 

Maintenance costs -0.0584 -3.13 -0.0552 -3.16 -0.0523 -3.2 -0.0506 -3.17 

Performance, 
efficiency, and 

fuel 
availability 

MPGE 0.0169 5.7 0.0174 5.96 0.0142 5.3 0.0149 5.56 

Range 0.279 1.45 0.288 1.5 0.203 1.24 0.21 1.23 

Acceleration (seconds to 
60mph) -0.04 -5.24 -0.0387 -5.42 -0.0366 -5.49 -0.0346 -5.81 

Plug-in at work and other 
locations (EV) 0.133 1.03 0.13 1.01 0.133 1.21 0.131 1.17 

1 in 20 Stations (CNG) 0.327 2.21 0.322 2.18 0.304 2.36 0.312 2.28 

Other 

Large HH - Medium vehicles 0.397 2.97 0.401 3.19 0.389 2.94 0.377 2.94 

Large HH - Large vehicles 0.718 4.28 0.674 4.28 0.701 4.17 0.645 3.97 

Alt Fuel - Medium vehicles -0.0154 -0.21 -0.0418 -0.58 -0.0112 -0.16 -0.053 -0.53 

Alt Fuel - Large vehicles -0.277 -2.48 -0.296 -2.77 -0.292 -2.8 -0.314 -3.07 
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Table 2: Estimation results (part 2) 

  
NL (fuel type) NL (vehicle type) CNL 

  
est. t-rat. (1) est. t-rat. (1) est. t-rat. (1) 

Fuel type 

Standard Gasoline 0.67 -6.29 - - 0.39 -3.60 

Flex Fuel/E85 0.76 -0.39 - - 0.08 -85.01 

Clean Diesel 0.81 -1.10 - - 0.79 -0.71 

Compressed Natural Gas 0.89 -0.17 - - 1.00 - 

Hybrid-electric 0.58 -2.51 - - 0.50 -2.17 

Plug-in Hybrid-electric 0.72 -3.90 - - 0.58 -3.04 

Full Electric 1.00 - - - 1.00 - 

Vehicle 
type 

Subcompact car - - 0.87 -1.37 0.76 -1.27 

Compact car - - 0.71 -5.49 0.54 -6.27 

Mid-size car - - 0.70 -6.03 0.46 -5.19 

Large car - - 1.00 - 1.00 - 

Sport car - - 1.00 - 1.00 - 

Small cross-utility car - - 0.76 -1.73 0.65 -1.64 

Small cross-utility SUV - - 0.65 -3.67 0.47 -4.18 

Mid-size cross-utility SUV - - 0.75 -1.49 0.68 -0.73 

Compact SUV - - 0.67 -1.59 0.13 -1.66 

Mid-size SUV - - 0.78 -1.75 0.57 -1.59 

Large SUV - - 1.00 - 1.00 - 

Compact van - - 1.00 - 1.00 - 

Large van - - 0.61 -1.88 0.38 -1.37 

Compact pick-up truck - - 0.64 -2.58 0.34 -3.14 

Standard pick-up truck - - 1.00 - 1.00 - 
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Table 3: Forecasting example 

 

 

MNL 
  

NL (fuel type) 

                     

  
Fuel type 

    
Fuel type 

 

  
1 2 3 4 5 6 7 Total 

   
1 2 3 4 5 6 7 Total 

V
e

h
ic

le
 t

yp
e

 

1 -1.26% -1.26% -1.26% -1.26% -1.26% 17.83% -1.26% 10.29% 
 

V
e

h
ic

le
 t

yp
e

 

1 -1.19% -1.19% -1.19% -1.19% -1.19% 20.63% -1.19% 13.51% 

2 -1.26% -1.26% -1.26% -1.26% -1.26% 17.83% -1.26% 10.29% 
 

2 -1.19% -1.19% -1.19% -1.19% -1.19% 20.63% -1.19% 13.51% 

3 -1.26% -1.26% -1.26% -1.26% -1.26% 17.83% -1.26% 10.29% 
 

3 -1.19% -1.19% -1.19% -1.19% -1.19% 20.63% -1.19% 13.51% 

4 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

4 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

5 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

5 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

6 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

6 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

7 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

7 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

8 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

8 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

9 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

9 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

10 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

10 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

11 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

11 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

12 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

12 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

13 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

13 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

14 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

14 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

15 -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -1.26% -8.80% 
 

15 -1.19% -1.19% -1.19% -1.19% -1.19% -3.94% -1.19% -11.06% 

 
Total -18.86% -18.86% -18.86% -18.86% -18.86% 38.42% -18.86% 

   
Total -17.80% -17.80% -17.80% -17.80% -17.80% 14.58% -17.80% 

 

                     

 
NL (vehicle type) 

  

CNL 

                     

  
Fuel type 

    
Fuel type 

 

  
1 2 3 4 5 6 7 Total 

   
1 2 3 4 5 6 7 Total 

V
e

h
ic

le
 t

yp
e 

1 -1.76% -1.76% -1.76% -1.76% -1.76% 18.60% -1.76% 8.02% 
 

V
e

h
ic

le
 t

yp
e 

1 -1.54% -1.50% -1.59% -1.44% -1.57% 20.08% -1.47% 10.97% 

2 -2.43% -2.43% -2.43% -2.43% -2.43% 22.80% -2.43% 8.21% 
 

2 -2.82% -3.25% -2.28% -1.40% -2.54% 25.41% -1.49% 11.64% 

3 -2.71% -2.71% -2.71% -2.71% -2.71% 22.96% -2.71% 6.70% 
 

3 -3.93% -4.87% -2.92% -1.64% -3.50% 27.66% -1.53% 9.28% 

4 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

4 -1.15% -1.15% -1.15% -1.15% -1.15% -2.24% -1.15% -9.13% 

5 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

5 -1.15% -1.15% -1.15% -1.15% -1.15% -2.65% -1.15% -9.53% 

6 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

6 -1.15% -1.15% -1.15% -1.15% -1.15% -3.61% -1.15% -10.49% 

7 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

7 -1.15% -1.15% -1.15% -1.15% -1.15% -3.52% -1.15% -10.40% 

8 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

8 -1.15% -1.15% -1.15% -1.15% -1.15% -2.73% -1.15% -9.62% 

9 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

9 -1.15% -1.15% -1.15% -1.15% -1.15% -6.77% -1.15% -13.65% 

10 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

10 -1.15% -1.15% -1.15% -1.15% -1.15% -3.12% -1.15% -10.01% 

11 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

11 -1.15% -1.15% -1.15% -1.15% -1.15% -2.17% -1.15% -9.06% 

12 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

12 -1.15% -1.15% -1.15% -1.15% -1.15% -2.23% -1.15% -9.12% 

13 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

13 -1.15% -1.15% -1.15% -1.15% -1.15% -3.12% -1.15% -10.01% 

14 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

14 -1.15% -1.15% -1.15% -1.15% -1.15% -3.71% -1.15% -10.60% 

15 -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -1.28% -8.95% 
 

15 -1.15% -1.15% -1.15% -1.15% -1.15% -2.09% -1.15% -8.98% 

 
Total -22.25% -22.25% -22.25% -22.25% -22.25% 49.00% -22.25% 

   
Total -22.07% -23.40% -20.56% -18.25% -21.39% 35.21% -18.25% 
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Figure 1: Example Stated choice Exercise 
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Figure 2: Different possible NL structures 
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Figure 3: CNL structure 

 


