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Abstract 

 

A transportation-land use modelling framework UrbanSim is applied. It includes a system of 

models, which simulate the distribution of population, jobs, real estate development and real estate 

prices. The study focuses on the Household Location Choice Model, which is calibrated at spatial 

units of different geographical levels in order to find an appropriate one. The capacity to predict the 

future geographical distribution of population is seen as a criterion for the choice of a spatial unit. 

Thus, residential location choice is predicted for past years with the same model specification at the 

level of blocks, zones, and municipalities. Two groups of variables are taken into account: location 

attributes (real estate prices, residential vacancy, and employment accessibility) and household 

attributes (income and car-ownership status). In comparison with the block-based model, the zone-

based and commune-based models not only demonstrate better prediction capacity, but also produce 

output comparable with evenly split population growth.  
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1. Introduction 

 

The increasing popularity of transportation-land use modelling frameworks is explained by their 

capacity to analyse and simulate urban development with a reasonably high level of representation 

of a complex reality of an urban area with interactions between land use, transportation, population 

and employment. The possibility to predict future development trends make these tools the 

important instruments for decision-makers and researchers in transportation and urban planning.  

 

In the study, we apply a transportation-land use modelling framework UrbanSim, which has been 

under development since the late 1990s at the University of Washington (Waddell, 2002; Waddell 

et al., 2003). The popularity of this open-source framework among researchers and practitioners in 

different countries of the world is increasing (e.g. de Palma et al., 2005).  

 

UrbanSim includes a system of models, which are used to simulate the distribution of population, 

jobs, real estate development, real estate prices and other parameters in future years on a yearly 

basis. Our focus is the Household Location Choice Model (HLCM), with which we simulate the 

geographical distribution of households across the area. The methodology of the HLCM in 

UrbanSim is a multinomial logit.  

 

A brief overview of the literature on individual household location choices using discrete choice 

frameworks can be found in de Palma et al. (2007). The early sources on this modelling effort date 

to the 1970s. The theory of discrete choice analysis can be found in Ben-Akiva and Lerman (1985) 

and Train (2003). 

 

UrbanSim has a capability to operate at a level of fine geographical detail, either gridcell 

(traditionally 150 metres by 150 metres) or land parcel (UrbanSim project, 2009). In the overview 

of Hunt et al. (2005), which analyses the selected contemporary frameworks representing the state-



of-the-art in transportation-land use modeling, it is noted that UrbanSim is the most disaggregate of 

the frameworks reviewed.  

 

The problematic aspect of this potential is that UrbanSim needs a very detailed data for each small 

spatial unit. In particular, UrbanSim requires a record for each household and each job, whereas 

both should be located in particular gridcell or parcel
1
, which in its turn is also represented as a 

record with multiple attributes including the number of residential units and other land use and 

development characteristics. It is clear that not each city or region possesses such disaggregate data. 

Duthie et al. (2007) discussing the data needs of UrbanSim in the US context note that disaggregate 

data may take months or even a few years to refine to an acceptable level of reliability. At the same 

time, a powerful modelling potential of UrbanSim offers a strong incentive to apply its tools. The 

dilemma is discussed in detail in Pattersson et al. (2010), where in the prototype UrbanSim 

applications created for Brussels and Lyon, aggregate data were used. While in Brussels gridcells 

were created and available aggregate data were disaggregated to them, in Lyon available zone data 

were applied directly, i.e. each zone corresponded to one “gridcell”. The zone version of UrbanSim 

would better suit the Lyon approach. The need for modelling at this geographical level is 

recognized by the UrbanSim development team (see UrbanSim project, 2009), and currently the 

zone version has been developing and testing. An example of a model of residential location choice 

at a commune level is those developed for the Paris Region (de Palma et al., 2005, de Palma et al., 

2007).  

 

In this study, we continue the zone approach started for Lyon in Pattersson et al. (2010). We 

analyse the Lyon Urban Area, which is the second biggest in France by population, with 1.7 million 

inhabitants in 2005. The current stage can be seen as a transition from the prototype model to the 

predictive one. The aim of the paper is to find which “zonal” level is appropriate for the HLCM in 

the Lyon UrbanSim application: ILOTs
2
 (blocks), IRISes

3
 (zones used for statistics and traffic 

analysis), or communes (municipalities). The motivation of this geographically-specific model 

calibration was unsatisfactory prediction results obtained at the level of ILOTs.  

 

We focus on the question of the reasonableness of simulation results (see Waddell et al., 2007) 

given the existence of historical data for comparison. This back-casting is an important stage before 

simulating future development. To evaluate the reasonableness of simulation results, Waddell 

(2002) uses two benchmarks, namely the overall correlation between simulated and observed values 

and the differences between simulated and observed change (in respect to the HLCM it is 

population growth during the simulation period) by zone. In our study, beside this, the evenly split 

population growth is used as an alternative to the HLCM. The output of the HLCM is compared 

with the alternative method, while the measure of prediction capacity is the deviation of simulated 

population from actual population in spatial units. The criterion for the choice of an appropriate 

spatial unit is twofold: the output at this level should be not only better than those for other 

geographical levels, but also better than the output of the alternative method.  

 

The rest of the paper is organised as follows. The next section describes the Lyon UrbanSim 

application. In the third section, the HLCM is specified and estimated starting from the level of 

ILOTs and continuing at the levels of IRISes and communes. The fourth section deals with the 

model simulation exercises with the three geographical units. The penultimate section describes an 

                                                 
1 In fact, in the parcel version of UrbanSim households and jobs have to be located in buildings, which are situated in 

land parcels. However, buildings are not directly used in the Lyon application due to the lack of data.  
2 Unité géographique de base pour la statistique et la diffusion du recensement (base geographical unit for statistics and 

census). 
3 Les îlots regroupés pour l'information statistique  (ILOTs united for statistical information). 



alternative model of population distribution with evenly split growth, while the final section 

concludes.  

 

2. The Lyon UrbanSim application 

 

We exploit UrbanSim version 4.2.2 with graphical user interface. In UrbanSim, the analysed 

territory geographically consists of two levels: the zones of the transportation model at the upper 

level and gridcells or land parcels at the lower level. In our study, we apply the framework 

originally created for gridcells. Thus, each household belongs to a particular gridcell.  

 

The modelling is started with estimation of the HLCM model parameters for the base year using the 

existing location of households and applying a random utility theory, which assumes that a 

household selects an alternative with the highest utility for him. Every simulation year, new and 

relocating households are created and placed with a multonomial logit. In our UrbanSim 

application, the alternative locations are either ILOTs or IRISes or communes with available 

residential units.  

 

Data on population are available due to the last general census conducted in France in 1999 and the 

last demographic estimation for the Lyon Urban Area executed in 2005. Thus, our base year is 

1999, the simulation period is the six subsequent years, and the year for comparison between 

simulated result and actual population is 2005. Figure 1 demonstrates population density in 

thousand of inhabitants per square kilometre in the base year. The highest concentration of 

population (as well as employment) is observed in the central part of the region, in the cities of 

Lyon and Villeurbanne, whose common boundary is shown. Population density decreases in the 

belt formed around the central part, whose boundary is also shown. Lyon, Villeurbanne and the 

urbanised belt around them with the total 1999 population of 1.1 million inhabitants are named the 

Greater Lyon. In the available synthetic population based on “Enquête Ménages Déplacements 

Lyon 2006”
4
, households are distributed among 743 IRISes in the Lyon Urban Area.  

 

Geographically, communes consist of IRISes, which, in their turn, consist of ILOTs, though in the 

fringe of the Lyon Urban Area many non-urbanised communes contain only one IRIS or even only 

one ILOT. In our application, each of ILOTs, IRISes and communes is analysed as one “gridcell”, 

which is located in the centroid of the respective geographical unit and has a size of 100 metres by 

100 metres. This size was chosen, because the shortest distance between the centroids of ILOTs is a 

bit higher than this distance. As such, the centroids of zones are considered as centroids of gridcells. 

With this, an irregular network of gridcells was created with the same number of gridcells as the 

number of zones. The distribution of areas and other attributes of the three geographical units is 

presented in Table 1. For ILOTs, we limit the study area by the boundary of the Greater Lyon, 

because outside it ILOTs in most cases coincide with IRISes.  

 

Each record of the households table represents one household. For each household, there are data on 

the gridcell in which it is located; number of people; number of cars; and income group. Income 

refers to 2006. There are three income groups: poor (lowest 20% income), medium (medium 60%), 

and rich (highest 20%).  

 

The data on population of IRISes are aggregated to 304 communes
5
 in the Lyon Urban Area. For 

the Greater Lyon, on the contrary, the data are disaggregated to ILOTs in the way as follows. The 

available data contains population in ILOTs. In each IRIS, we randomly distribute households 

among ILOTs keeping the ratio of the ILOT population to the IRIS population. As a result, 

                                                 
4 Household Relocation Survey Lyon 2006.  
5 For Lyon, nine arrondissements are used, while Villeurbanne is considered as one commune.  



households in the Greater Lyon are distributed among 5,296 ILOTs, while the difference between 

the disaggregated population and the actual population in ILOT is 6 people in the worst case.   

 

0 5 102.5 Kilometers

±

Boundary of Lyon and Villeurbanne

Boundary of the Greater Lyon

Population density,
thousand of inhabitants
per square kilometer

<0.5

0.5 - 1.0

1.0 - 2.5

2.5 - 5.0

>5.0

Population density 1999

          Communes

Source: INSEE

 
Figure 1. Population density 1999 in communes 

 

 

Table 1. Description of the three spatial units 

Attribute ILOT IRIS Commune 

Territory covered The Greater Lyon The Lyon Urban Area The Lyon Urban Area 

Total number of  

spatial units 
5,296 743 304 

Number of  

spatial units  

with dwellings 

4,662 742 304 

Area, km
2
: 

Minimum 

Maximum 

Mean 

Std. dev. 

 

   0.00002 

14.14738 

   0.09272 

   0.54107 

 

  0.01280 

39.99089 

  4.47694 

  6.36776 

 

  0.40235 

39.99089 

10.94199 

  6.52716 

Population 1999: 

Minimum 

Maximum 

Mean 

Std. dev. 

 

       0 

7,951 

   210 

   422 

 

       1 

7,960 

2,124 

1,288 

 

          96 

 116,653 

     5,184 

   12,033 

 

As exogenous data, UrbanSim needs control totals for population to simulate its spatial distribution 

in future years. According to INSEE Rhône-Alpes (2007), 38% of current inhabitants in the Lyon 



Urban Area changed their accommodation during the previous five years. Though for them we 

know the percentage of immigrants from outside the Lyon Urban Area, there is no data on 

emigration. Thus, we use the reported figure assuming that the annual relocation rate, i.e. the 

probability that households will move from their current location, is 7.6%.  

 

Average real estate price per square metre are calculated separately for ILOTs, IRISes, and 

communes. The initial data on individual observations of 4,308 apartment and housing sales for the 

period of 1997-2008 (from Perval) are recalculated to 1999 using price indices based on the 

hedonic price model from Kryvobokov (2009). At the next stage the prices in points are interpolated 

to raster
6
 and zonal statistics is calculated with ArcGIS Spatial Analyst tools for the layers of 

respective spatial units. 

 

Due to the lack of data on real estate development in simulated years we assume that the housing 

stock is not changing during the 6-year period, though we admit that this point is not realistic and 

thus an important path-dependent component of UrbanSim is ignored. Focusing on the HLCM, in 

this study we also do not update neither real estate prices nor travel times; thus, our independent 

variables are not endogenous.  

 

Transportation model is external in UrbanSim. Travel times used in the HLCM are generated with a 

four-step transportation model from MOSART
7
 based on GIS and transport modelling software 

Visum from PTV applying the NAVTEQ road database, see Crozet et al. (2008). Travel times by 

car are estimated for the a.m. peak in a week-day. They are calculated for IRISes and communes. 

The final goal is to build a transportation-land use model which will be linked to MOSART.  

 

3. Model estimation 

 

The HLCM is estimated with a 10% random selection of households. Using actual households and 

their actual location from survey data would be a better sampling strategy, but the only available 

data was synthesised households. The information about recent movers was not available either.  

For each location decision, UrbanSim randomly samples 29 alternatives in addition to one more for 

actual location. This number of alternatives is kept in our application.  

 

Selecting the variables for the HLCM, we account for two principles. First, these are the 

fundamentals of urban theory developed in the Alonso-Muth model (Alonso, 1964; Muth, 1969) 

and mirrored in the variables of employment accessibility, real estate prices and income groups of 

population.  

 

Second, we should avoid the use of the “within walking distance” concept, which exists in 

UrbanSim, and be careful with scale variables. The reason of the former issue is that our 

interpretation of spatial units of different size and shape as “gridcells” leads to systematic error: the 

majority of our “gridcells” have few if any adjacent neighbours and few neighbours in the nearness. 

The latter issue is connected with the other type of distortion: all the spatial units are represented as 

if having the same size, but bigger zones can contain larger populations despite of their lower 

densities. This is also the reason why average real estate price per square metre in a spatial unit is 

used in our application instead of total improvement value for different real estate types in gridcells 

proposed in UrbanSim.  

 

                                                 
6 Applying the Inverse Distance Weighted method with 12 neighbours, power 2, and cell size of 10 metres.  
7 MOdélisation et Simulation de l'Accessibilité aux Réseaux et aux Territoires (Modelling and Simulation of 

Accessibility to Networks and Territories) 



Whereas comprehensive models of residential location choice count their variables in the dozens 

(Palma et al., 2005; Waddell et al., 2007), our parsimonious model specified for the aim of this 

study, includes a few variables. The same specification of the HLCM is applied at the three 

geographical levels (Tables 2).  In the initial specification, not reported here, average real estate 

price in a spatial unit used as a one variable had a significant negative coefficient. To understand 

how real estate prices are perceived by different income groups, we use the first three variables 

accounting for an interaction between average real estate price and income group of a particular 

household. The fourth variable checks the influence of residential vacancy rate. Among residential 

units, 10.4% are vacant in the Lyon Urban Area, whereas for the Greater Lyon this figure is a bit 

higher: 11.0%. We assume that the Lyon Urban Area is non-monocentric, but instead of focusing on 

the accessibility to the CBD and several subcentres, we apply the index of employment accessibility 

calculated for each geographical unit as a sum of all the ratios of employment in IRISes or 

communes to the square root of travel times to them. For ILOTs, travel times are calculated at the 

level of IRISes. For IRISes and communes, travel times are estimated for the same level 

respectively. In the last two variables, the index of employment access interacts with car-ownership 

status of household.  

 

Table 2. Model estimation 

Number Variable 
Coefficient (t-value) 

ILOT IRIS Commune 

1 Log of average real estate price  

if high income household 

0.505 

(8.59) 

0.526 

(9.66) 

0.247 

(3.94) 

2 Log of average real estate price  

if middle income household 

0.138 

(5.36) 

0.127 

(4.93) 

-0.284 

(-9.01) 

3 Log of average real estate price  

if low income household 

-0.338 

(-9.96) 

-0.638 

(-18.59) 

-0.973 

(-20.56) 

4 Log of residential vacancy rate 0.016 

(4.24) 

-0.144 

(-18.62) 

0.165 

(17.31) 

5 Log of index of employment access  

if household has a car 

-0.599 

(-32.53) 

-0.310 

(-23.67) 

0.434 

(29.54) 

6 Log of index of employment access  

if household does not have a car 

0.969 

(28.93) 

1.491 

(53.64) 

2.227 

(68.97) 

Model parameters 

Null log-likelihood -168400.085 -225244.297 -225244.297 

Log-likelihood -167289.676 -222899.831 -220769.638 

Likelihood ratio test
8
 2220.818 4688.932 8949.318 

Number of observations 49512 66225 66225 

Number of location choices 4662 742 304 

 

While for ILOTs and IRISes rich households and to lesser degree middle income households can 

afford locations with more expensive accommodation, at the level of communes middle income 

households have a negative utility of real estate price. At all the three levels, the coefficient is 

negative and very significant for poor households.  

 

Residential vacancy demonstrates instability in its sign: being positive and significant for ILOTs, it 

becomes negative with higher significance at the level of IRISes and again changes its sign but 

remains highly significant when estimated for communes. One possible explanation of its positive 

sign can be the following: in the city of Lyon, there are a big number of small ILOTs as well as a 

small number of arrondissements (analysed as communes) with higher vacancy rates due to high 

real estate prices. 

                                                 
8 Chi-Square critical value is 22.458 at the 0.001 level of significance. 



 

The two variables of interaction between an employment accessibility index and the car ownership 

status of a household are highly significant. All the models highlight that employment accessibility 

has high utility for households without a car, whereas its influence is negative for car-owning 

households at the spatial levels lower than commune.  

 

4. Model simulation 

 

Figures 2-4 represent the deviation of predicted population from actual population in 2005 for the 

three geographical levels. The number of spatial units in each interval is shown in parentheses. To 

avoid distortions in deviation caused by low-populated spatial units, the differences not higher than 

10 people are considered as zero. 

 

At the level of ILOTs (Figure 2), the general tendency is the same as it was in the prototype: 

population is over-predicted in the central part of the area and under-predicted in the fringe. A 

remarkable difference exists between the simulation results for ILOTs (Figure 2) and IRISes 

(Figure 3): the latter model predicts population distribution much better. Moreover, the tendency 

mentioned for ILOTs is not observed at the level of IRISes. The extreme values of under-prediction 

to the north-east from Lyon and in the south of the city (Figure 3) refer to sparsely populated areas 

occupied by university campus and green space in the former case and by industrial area in the 

latter case. Modelling at the level of communes smoothes the differences to greater degree (Figure 

4). For example, in the arrondissements of Lyon deviations varies from -10% in the 7
th

 to +4% in 

the 4
th

 and the 9
th

, while in the 1
st
 and the 3

rd
 it is equal to zero.   

 

While in the IRIS-based and commune-based models there are no unplaced households, in the 

model with ILOTs for Grand Lyon, 75188 people (6% of population 2005) are unplaced. The 

analysis of simulated results is presented in Table 3, where the parameters of comparison are the 

correlation coefficient between simulated and observed population in spatial units, the percentages 

of deviation from actual population and Moran’s I calculated for population difference and 

deviation. For the intervals of deviation, percentage of population and percentage of spatial units (in 

parentheses) are shown. Moran’s I as a measure of spatial autocorrelation is calculated with the row 

standardised weight matrix of inverse squared distances.  

 

Correlation of simulated to observed values is very high with the highest value for communes. In all 

the cases the correlation coefficient is higher than was reported by Waddell (2002) for Eugene-

Springfield (0.811 for cells and 0.929 for zones). We admit however that correlation measuring 

dependence between values is not the best benchmark when we simulate population distribution 

using actual value only for total population: we do not calculate simulated population in territorial 

units as an explicit function of actual population in the same units.  

 

Table 3 demonstrates that the IRIS-based and the commune-based models have much better 

prediction parameters in comparison with the ILOT-based simulation. In particular, 96% of IRISes 

and communes containing 99% of total population have predictions that deviate within 20% from 

actual population, while only 51% of ILOTs containing half of total population is within that 

deviation interval. At the same time, the result for ILOTs has low spatial autocorrelation, which is 

not the case at the upper geographical levels.  
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Figure 2. Deviations in Grand Lyon, ILOTs 
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Figure 3. Deviations in the Lyon Urban Area, IRISes 
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Figure 4. Deviations in the Lyon Urban Area, communes 

 

Table 3. Analysis of simulated population 2005 

Parameter 

ILOT 

IRIS Commune 
ILOT 

Aggregation 

to IRIS 

Aggregation 

to commune 

Correlation 

coefficient 
0.972 0.946 0.995 0.990 0.999 

Within ±5% 

of actual 

population* 

19 (36) 27 (25) 13 (24) 60 (57) 63 (54) 

Within ±10% 

of actual 

population* 

31 (41) 44 (41) 67 (52) 87 (83) 93 (82) 

Within ±20% 

of actual 

population* 

50 (51) 83 (79) 97 (86) 99 (96) >99 (96) 

Moran’s I for 

difference 
0.04 0.30 0.12 0.19 0.12 

Moran’s I for 

deviation 
0.03 0.24 0.24 0.16 0.17 

* Percentage of population and percentage of spatial units (in parentheses) are presented 

 

Beside the simulation results obtained at the three geographical levels, Table 3 also analyses 

population simulated at the level of ILOTs and aggregated to IRISes and communes in the Greater 

Lyon. With aggregation, prediction gradually improves, though it is not as good as if started from 

the upper levels. Spatial autocorrelation increases with aggregation, but for communes it is lower 



than that for IRISes. Nevertheless, the total number of communes in the Greater Lyon is only 63 

that is probably not enough for a proper calculation of Moran’s I. 

 

Difference between simulated and actual population 2005 by spatial units (which is the same 

measure as difference between simulated and observed change) is shown in Figure 5 with the same 

intervals as in Waddell (2002) fro his zones. While in general all the three distributions are not bad 

(note that the intervals are not equal), the best one comparable with that for Waddell’s zones is 

observed for ILOTs. This is not surprising regarding smaller population at that level.  
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Figure 5. Difference between simulated and actual population 2005 by spatial unit 

 

5. Evenly split population growth 

 

As an alternative estimation of population 2005, it is calculated in each spatial unit as an even 

increase using the average growth rate for the period of 1999-2005 (Table 4). For the intervals of 

deviation, percentage of population and percentage of spatial units (in parentheses) are shown. The 

6-year growth rate for Grand Lyon is 10.407%, while for the Lyon Urban Area is 10.680%. For the 

ILOT-based model, the evenly split population growth predicts population distribution much better 

than the HLCM. Among the three geographical levels, spatial autocorrelation in Table 4 is the 

lowest for ILOTs, similarly the HLCM results. Though correlation coefficient is not the best 

measure in this study, we can observe that for IRISes and communes it is practically the same as for 

the HLCM, while for ILOTs it is higher for the alternative method.  

 

For the HLCMs for IRISes and communes, prediction is comparable with the evenly split 

population increase: percentages of population and percentages of spatial units within the intervals 

of deviation are practically the same, though sometimes marginally lower for the HLCM. 

Difference between simulated and actual population 2005 by spatial units portrayed by Figure 6 is 

in line with Figure 5, the only significant difference is better distribution for ILOTs for evenly split 

growth. Spatial distribution of the deviation from actual population is very similar for the two 

alternative models of population distribution. Figure 7 demonstrating the evenly split growth for 

communes, has in most cases the same locations of extreme values as Figure 4. It means that the 

communes, for which it was problematic to predict population with the HLCM, are found 

problematic in this respect for the alternative model too. Note that both models ignore real estate 

development during the simulation period.  

 



 

Table 4. Analysis of population 2005 estimated as evenly split growth 

Parameters ILOT IRIS Commune 

Correlation coefficient 0.993 0.991 0.999 

Within ±5% of actual 

population* 
66 (82) 60 (57) 63 (53) 

Within ±10% of actual 

population* 
88 (93) 88 (84) 94 (84) 

Within ±20% of actual 

population* 
96 (97) 99 (97) >99 (97) 

Moran’s I for 

difference 
0.01 0.18 0.08 

Moran’s I for 

deviation 
0.04 0.16 0.18 

* Percentage of population and percentage of spatial units (in parentheses) are presented 
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Figure 6. Difference between evenly split growth and actual population 2005 by spatial unit 
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Figure 7. Deviations for evenly split growth, the Lyon Urban Area, communes 

 

6. Conclusion and perspective 

 

With larger spatial units the predictability of the HLCM gradually improves. We see two main 

explanations of this. First, a natural property of a multinomial logit is that it works better with 

smaller number of alternatives. Second, there are data errors and prediction errors at the lower 

geographical level, which are compensated at the upper levels. Data errors include also the errors of 

disaggregation of synthetic population from the level of IRISes to ILOTs. In this context we can 

repeat one of the conclusions from Pattersson et al. (2010) that only a limited amount of 

disaggregate information can be drawn from aggregate data. Aggregation of simulated population 

from ILOTs to upper levels demonstrates how the predictions errors are compensated a posteriori. 

When the model is exploited at the upper levels, the distortion from the heterogeneity of sizes of 

spatial units becomes smoothed to some extend, especially at the level of communes.  

 

We should note however that spatial autocorrelation is the lowest at the ILOT level for both the 

HLCM and the alternative estimation with an evenly split population growth, whereas at the upper 

levels Moran’s I is much higher. Differences between simulated and actual population by spatial 

units are also better distributed for ILOTs. These indicators highlight the fact that some information 

is inevitably lost when applying upper geographical levels.  

 

The prediction parameters of the estimation with an evenly split population increase can be seen as 

a target for the HLCM. According to the analysis, only at the levels of IRISes and communes, the 

HLCM provides a result, which is in general not worse than an evenly split growth. Thus, the 

twofold criterion for the choice of an appropriate spatial unit is not satisfied for ILOTs and is close 

to being satisfied for IRISes and communes. The best prediction of population distribution is 

obtained at the level of communes.  

 



In future study of household location choice in the Lyon Urban Area with multinomial logit, it 

seems logical to continue at the geographical level of communes. It might be easier to obtain and 

prepare new data at this level avoiding the errors of disaggregation. Our perspective is creation of a 

more comprehensive model of household location choice with many variables at the selected 

geographical level, which should better satisfy the chosen criterion.  
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