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ABSTRACT 
 
When the number of alternatives in a choice-set is huge, sampling is unavoidable. In 1978 Daniel 
McFadden showed that consistent estimation under sampling of alternatives is possible if the true 
model is Logit; that is, if the errors of the random utilities are independent and identically 
distributed (iid) Extreme Value. However, the iid assumption might be easily broken in models 
with large choice-sets. For example, in residential location, dwelling-units are expected to be 
correlated depending on proximity. This paper extends McFadden’s result to MEV models, a 
class of closed-form discrete choice models that allows for different degrees of correlation 
between alternatives. A methodology to achieve consistency, asymptotic normality and relative 
efficiency is proposed and deployed for all MEV models and then illustrated using Monte Carlo 
experimentation and real data for the Nested Logit model, an important member of the MEV 
class. Experiments show that the proposed methodology is practical, that it is substantially better 
than an uncorrected model, and that it yields acceptable results, even for small sample sizes. The 
paper finishes with a synthesis and an analysis of the impact, limitations and potential extensions 
of this research. 
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1 Introduction 
The computational burden and the impossibility of identifying or measuring the attributes 
of a huge number of alternatives in spatial choice models, makes it necessary to only 
consider a subset of the choice-set in practical applications. McFadden (1978) 
demonstrated that if the model underlying the choice process is Logit, the problem of 
sampling of alternatives and estimation can be addressed by adding a corrective constant 
to the systematic utility of each alternative. 

The Logit model requires the assumption that the error terms of the random utilities 
are uncorrelated among alternatives. This assumption may be invalid for some spatial 
choice models. In residential location, the error terms may be correlated according to 
proximity or nested according to different decision levels. Equivalently, in route choice 
modeling, routes that share sets of common links may be perceived as more similar than 
other routes that are complete substitutes, breaking from the Logit assumption. 

Ignoring a non-Logit structure in spatial choice modeling may significantly impact 
the quality of such models. For example, if the underlying model is a Nested Logit with 
nests defined by geographical areas, a location subsidy will trigger more intra-area than 
inter-area household relocation. This effect would be impossible to capture with a Logit 
model, resulting in misleading guidance for urban policy analysis. This suggests 
extending McFadden’s result on sampling of alternatives in Logit models to a more 
general class of models that allows correlation among the error terms of the utilities. 

Building on an idea originated by Ben-Akiva (2009), in this paper, we extend 
McFadden’s results to the Multivariate Extreme Value (MEV) models, a class of closed-
form discrete choice models that allows for certain degrees of correlation among 
alternatives. We also use Monte Carlo experimentation and real data to show the impact 
of the application of this novel method in the estimation of Nested Logit models while 
sampling alternatives. 

The paper is structured as follows. The next section describes McFadden’s results on 
sampling of alternatives in Logit models. Next, the proposed extension to MEV models is 
presented. The following sections describe the formulation of the proposed methodology 
for the Nested and the Cross-Nested Logit models, the main members of the MEV 
family. Then, the effects of the proposed methodology are analyzed using a Monte Carlo 
experiment and real data on residential location choice from Lisbon, Portugal. The final 
section summarizes the main conclusions, implications, and potential extensions of this 
research. 

2 Estimation and Sampling of Alternatives in Logit Models 
Consider that the random utility Uin, which a household n retrieves from alternative i, can 
be written as the sum of a systematic part V and a random error term ε, as shown in Eq. 
(1) 
 ( ) ininininin xVVU εβε +=+= *, , (1) 

where the systematic utility depends on variables x and parameters β* . 
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Then, if ε is independent and identically distributed (iid) Extreme Value (0,µ), the 
probability that n will choose alternative i will correspond to the Logit model shown in 
Eq. (2) 

 ( )
∑
∈
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Cj

V

V

n
e

e
iP µ
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, (2) 

where Cn is the choice-set of Jn elements from which household n chooses an alternative. 
The scale µ in Eq. (2) is not identifiable and usually normalized to equal 1. 

Consider that, of the true choice-set Cn, only a subset Dn with nJ
~

 elements is sampled 

by the researcher. For estimation purposes, Dn must include (and therefore depends on) 
the chosen alternative i because, otherwise, the quasi-log-likelihood of the model may 
become unbounded, making the estimation of the model parameters impossible. 

Term ( )nDi,π  the joint probability that household n would chose alternative i and 

that the researcher would construct the set Dn. Using the Bayes theorem, this joint 
probability can be rewritten as shown in Eq. (3) 
 ( ) ( ) ( ) ( ) ( )nnnnn DDiiPiDDi ππππ ||, == , (3) 

where ( )nDi |π  is the conditional probability of choosing alternative i, given that the set 

Dn was constructed, and ( )iDn |π  is the conditional probability of constructing the set Dn, 

given that alternative i was chosen. 
Since the events of choosing each one of the alternatives in Cn are mutually exclusive 

and totally exhaustive, we can use the Total Probability theorem (see, e.g., Bertsekas and 
Tsitsiklis, 2002) to write the probability ( )nDπ  of constructing the set Dn as shown in Eq. 

(4) 
 ( ) ( ) ( ) ( ) ( )∑∑

∈∈

==
nn Dj

nn
Cj

nnn jPjDjPjDD || πππ , (4) 

where the second equality holds because ( ) nn DjjD ∉∀= 0|π . 

Substituting Eq. (4) and the Logit choice probability ( )iPn  shown in Eq. (2) into Eq. 

(3), Eq. (5) is obtained by canceling and re-arranging terms. 
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The expression ( )jDn |lnπ  is termed the sampling correction. 

Eq. (5) indicates that the conditional probability of choosing alternative i, given that a 
particular choice-set Dn was constructed, depends only on the alternatives in Dn. This 
results from the cancellation of the denominators when dividing the probabilities of two 
alternatives in the Logit model, which is known as the Independence of Irrelevant 
Alternatives (IIA) property. Note that although IIA is a convenient mathematical 
property, it results from the assumption that the error structure is iid, a statement that may 
be unrealistic in spatial choice models. 
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McFadden (1978) demonstrated that if ( ) 0| >jDnπ  and known for all j in Dn, and if 

the true model is Logit with choice-set Cn, it is possible to obtain consistent estimators of 
the model parameters *β  by maximizing the following quasi-log-likelihood function: 

 
( ) ( )
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n

nnjn
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e

e
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,|ln,

,|ln,

, ln
πβ

πβ

. (6) 

McFadden´s procedure falls into the type of estimators identified by White (1982), 
which achieve the consistent estimation of the model parameters in spite of being 
misspecified. 

Eq. (6) can be simplified if the sampling correction ( )iDn |lnπ  is the same for all 

alternatives. In that case, the sampling correction will cancel out in Eq. (6) and can be 
ignored. The effects of using other sampling protocols are studied by Manski and 
McFadden (1981), Ben-Akiva and Lerman (1985), Watanatada and Ben-Akiva (1979) 
and Frejinger et al. (2009). 

Diverse applications of McFadden’s results on sampling of alternatives for Logit 
models can be found in the literature. Some examples are Parsons and Kealy (1992) and 
Sermons and Koppelman (2001). In turn, the extension of McFadden’s results to non-
Logit models is a problem for which few little progress have been made in the last 30 
years. Some advances have been done for choice-based samples; cases where the full 
choice-set is available to the researcher, but the observations are instead sampled 
depending on the choices. First, Manski and Lerman (1977) proposed a consistent but 
inefficient estimator for non-Logit models. This estimator was also used by Cosslett 
(1981) and by Imbens and Lancaster (1994). Later, Garrow et al. (2005) proposed an 
efficient estimator for a particular case of the Nested Logit model. Lastly, Bierlaire et al. 
(2008) proposed an alternative estimator that is applicable to MEV models with choice 
based samples and does not require knowledge of the sampling protocol. 

Additionally, some analyses have been done regarding the impact of sampling of 
alternatives in Logit Mixture models. For example, McConnel and Tseng (2000), and 
Nerella and Bhat (2004), used Monte Carlo experimentation to study the problem of 
sampling of alternatives in random coefficients Logit models and found that sampling 
causes only small  changes to parameter estimates. In turn, Chen et al. (2005) used Monte 
Carlo experimentation to show that, for Logit Mixture models that capture correlation 
among alternatives, the effects of sampling might be severe. Finally, Domanski (2009), 
citing an unpublished paper attributed to Haefen and Jacobsen, claims that the use of the 
expectation-maximization algorithm (see, e.g., Train, 2009) might result in the consistent 
estimation of model parameters while sampling of alternatives in random coefficients 
Logit Mixture model. 

Regarding the problem of sampling of alternatives for the Nested Logit, several 
authors have directly applied McFadden’s results for Logit without any modification. 
Examples of these type of applications include Berkovec and Rust (1985), Train et al. 
(1987), Hansen (1987), and Rivera and Tiglao (2005). As it will be shown later, this 
approach may significantly impact the estimators of the model parameters. Finally, to the 
best of my knowledge, the only attempt to deal with the problem of sampling of 
alternatives in the Nested Logit model corresponds to the work of Lee and Wadell 
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(2010). These authors use a method based on an idea originally suggested by Ben-Akiva 
(2009), which we further develop in the next section. 

3 A Novel Method for MEV Models 
In this section, we present a novel methodology to address the problem of sampling of 
alternatives and estimation for Multivariate Extreme Value (MEV) models, based on an 
idea originated by Ben-Akiva (2009).  

The genesis of MEV models goes back to 1973, when Ben-Akiva proposed the 
Nested Logit model. Afterwards, McFadden (1978) showed that the Logit, the Nested 
Logit and other models belonged to a more general class of closed-form choice models 
that can handle diverse correlation structures among alternatives in the choice-set. 
McFadden originally denominated this class of models as Generalized Extreme Value 
(GEV) models. Since the error terms for this class of models follow a MEV distribution, 
the models themselves are termed here as MEV.  

The joint distribution of the error terms of the utilities in MEV models has the 
following cumulative density function 

 ( ) ( )γεε

εε ;,,,,
Jn1n eeG

Jn1n eF
−−−= K

K , (7) 

where G is a generating function that is specific to each member of the MEV family, and 
γ is a set of distribution parameters. If G complies with certain requirements (McFadden, 
1978) the choice model implied by Eq. (7) will be consistent with the random utility 
maximization theory. Later, Ben-Akiva and Lerman (1985) show that the MEV choice 
probability can be written in a Logit form as shown in Eq. (8) 
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Given the Logit form of the MEV model, it might look as if the problem of sampling 
of alternatives can be easily extended to MEV by following the same process of analysis 
deployed before for Logit, as shown in Eq. (3)-(5). That procedure results in the 
following expression for the conditional probability of choosing alternative i, given that 
set Dn was constructed: 
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Then, the same demonstration developed by McFadden (1978) for Logit, can be 
claimed to show that the maximization of the following quasi-log-likelihood function 
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leads to consistent estimators of the model parameters.  
However, it can be immediately noted that Eq. (9) is not practical. Even though the 

denominator of the choice probability depends only on Dn, the argument of the term 

inGln  still depends on the full choice-set Cn. Ben-Akiva (2009) suggests that this problem 
might be solved if Gin is replaced by an estimator that depends only on the subset Dn.  

In this paper, we formalize the idea proposed by Ben-Akiva (2009), analyze the 
conditions required for its success, study the asymptotic properties of the estimators 
resulting from it, determine the correct expansion factors required in some relevant 
examples, and study the properties of the estimators using Monte Carlo experimentation 
and real data.  

The results on consistency, asymptotic normality and efficiency can be summarized 
in the following theorem: 

  
Theorem: Given N observations, a choice-set Cn of cardinality Jn, and a subset Dn of 

cardinality nJ
~

. If  

a) ( ) ( ) nnnn DjjDDjjD ∉∀=∈∀> 0| and  0| ππ ,  

b) the choice model is MEV and 
( )

in

Jnn

V

VV

in e

eeG
G

∂
∂= γ;,...,1

, 

c) ( )( )niin CBfG =  where f is continuous and twice-differentiable, 

d) ( )ni DB̂  is a consistent (in nJ
~

) and unbiased estimator of ( )ni CB , and 

e) ( ) nnin JKBVar
~ˆ =  with Kn scalar; 

then, the maximization of the quasi-log-likelihood function  

 ( )
( ) ( )( ) ( )

( ) ( )( ) ( )∑
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∑
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1
, ln|ˆln

πβ

πβ

π  (10) 

yields, under general regularity conditions, consistent estimators (in N) of the model 

parameters β* , as nJ
~

 increases with N at any rate. If nJ
~

 increases faster than N , the 

estimators of the model parameters will be consistent, asymptotically normal, and as 
efficient as the estimators obtained from the maximization of a quasi-log-likelihood 
shown in Eq. (9). Finally, if Jn is finite and the protocol is sampling without replacement, 

nJ
~

 needs to increase only up to nn JJ =~
 in order to achieve consistency and relative 

efficiency. 
 

Proof. Given that inB̂  is a consistent estimator of inB , as nJ
~

 increases, the Slutsky 

theorem guarantees that ( )( )ni DBf ˆln  will also be a consistent estimator of inGln , because 
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the log and f are continuous. Equivalently, since ( )nDi |π  is continuous in inGln , the 

Slutsky theorem guarantees that ( )nDi |π̂  will be a consistent estimator of ( )nDi |π . 

Finally, McFadden’s consistency results for Logit, shown in Eq. (6), guarantees that the 
maximization of the quasi-log-likelihood shown in Eq. (10) will result in the consistent 
estimation of the model parameters as N increases. 

Note that the claim of McFadden’s consistency result is established as N increases, 

but the consistency of inB̂ , ( )( )ni DBf ˆln  and ( )nDi |π̂  is established as nJ
~

 increases. To 

rely legitimately on the Slutsky theorem, it is indispensable to determine a concordance 

between nJ
~

 and N. This concordance can be established by analyzing the asymptotic 

properties of the estimators. 
The asymptotic distribution of the estimators of the model parameters that result from 

the maximization of the quasi-log-likelihood shown in Eq (10) can be derived using the 
two-stage approach employed by Train (2009, pp. 247-257) to analyze the asymptotic 
properties of simulation-based estimators. In a first stage, we will analyze the asymptotic 
distribution of the sample average of the score, which is defined as the gradient of the 
quasi-log-likelihood shown in Eq. (10). In a second stage we will use those results to 
derive the asymptotic distribution of the estimators of the model parameters. 

Consider that the choice-sets C and D, of cardinalities J and J
~

 respectively, do not 
vary across observations, and that there is a single term nGln  that needs to be 

approximated for each observation n. Then, instead of Bin, the term considered in this 
case should be Bn. These assumptions are not essential, and can be easily generalized, but 
help in substantially to reduce notation burden. With the same purpose, we will refer to 
the whole set of model parameters β and µ, just as β. 

Under this setting, the sample average of the score evaluated using the estimator nB̂  

will correspond to: 
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To study the asymptotic distribution of ( )βĝ  in the vicinity of the true values β* , 
consider the following re-arrangement of terms 

( ) ( ) ( )( ) ( )[ ] ( ) ( )( )[ ]
444 3444 21444 3444 21321

321

*ˆ*ˆ**ˆ**ˆ
AAA

gEgggEgg ββββββ −+−+= . 

The first term ( )*1 βgA =  is the statistic that is being approximated by ( )*ˆ βg , where 
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The second term ( )( ) ( )**ˆ2 ββ ggEA −=  corresponds to the bias of the estimator of 

( )*βg . The third term A3 corresponds to the noise of the approximation, which is the 

difference between a particular realization of ( )*ˆ βg , and its expected value. 

Consider the noise term A3, which can be rewritten as follows: 
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where each dn is the deviation of ( )*ˆ βg  from its expectation for observation n. Note that 
each dn depends on a particular draw of alternatives to construct the set D. This means 
that there is a distribution of values of dn depending on all possible draws of alternatives 
in D. The distribution of dn has zero mean because the expectation is subtracted in the 
creation of dn. Also, note that the variance of dn should decrease with the cardinality of D 

because ( )*ˆ βg  should become closer to its expected value as J
~

 increases. To account 

for this effect, the variance of dn can be expressed as JSn

~
, where Sn is the variance 

when 1
~ =J . Then, relying on the generalized version of the central limit theorem (see, 

e.g., Train, 2009, pp.246), the noise A3 will have the following limiting distribution: 

( )JAN d ~
,0Normal3 S→ , 

where S is the population mean of Sn. Consequently, the asymptotic distribution of the 
noise A3 will be  

( )NJA
a ~

,0Normal~3 S . 

It is interesting to note what occurs with the noise A3 when N increases but J
~

 is 

fixed. In this case, 3AN  will have a limiting distribution, but will not vanish as N 

increases. In turn, the asymptotic variance of the noise A3 will decrease as N increases, 

even if J
~

 is fixed. Note also that when the protocol is sampling without replacement and 

J is finite, J
~

 needs to increase only up to J, since from that point ( ) ( )( ) ( )βββ ggEg == ˆˆ  
because any resorting of the alternatives in the choice-set C will have no impact on the 
choice probabilities. 

Consider the bias term A2. This bias exists because the method described in Eq. (10) 

considers an unbiased estimator nB̂  of nB , but the calculation of ( )βĝ  involves a series 

of nonlinear transformations of nB̂ . The bias can be studied by taking a second order 

Taylor’s approximation of ( )βĝ  around nn BB =ˆ . Noting that ( ) ( )ββ nnn gBg =,ˆ , it 

follows that 
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Then, taking expectations (over possible realizations of the set D), recalling that nB̂  is an 

unbiased estimator of nB , and considering that the discrepancy on has zero mean, this 

Taylor’s approximation can be rewritten as 

( )( ) ( ) ( ) ( )( )ββββ n
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n
nn BVar
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g
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ˆ
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ˆ
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Note that the ( )( )βnBVar ˆ  should decrease as J
~

 increases because then nB̂  will 

become progressively closer to nB . Assuming that this relationship can be captured by 

the expression ( )( ) JKBVar nn

~ˆ =β , where Kn is a scalar, the bias A2 can be rewritten as 

( )( ) ( ) ( )( ) ( )[ ]
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where Z is the sample average of 
2
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gK

∂
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The bias A2 will vanish as N increases, if and only if  J
~

 increases also with N. 
Otherwise, ( )βĝ  will be an inconsistent estimator of ( )βg . Instead, an even stronger 
assumption is required to achieve asymptotic normality. To understand why, consider the 
bias A2 normalized for sample size N  

Z
J

N
AN ~2 = . 

This term will vanish as N increases, if and only if J
~

 increases faster than N . 
Otherwise, the estimator ( )βĝ  will have neither a limiting nor an asymptotic distribution.  

Equivalent to what occurred with the noise A3, note that when the protocol is 

sampling without replacement and J is finite, J
~

 needs to increase only up to J, since 
from that point ( )( ) ( )ββ ggE =ˆ  because any resorting of the alternatives in the choice-set 
C will have no impact on the choice probabilities. 

In summary, it was shown that if J
~

 increases with N at any rate, ( ) ( )ββ gg p→ˆ  

and when  J
~

 increases faster than N , ( )βĝ  will be asymptotically Normal. Given that 

( ) ( )ββ gg p→ˆ , the limiting and asymptotic distributions of ( )βĝ  will be the same as 

those of ( )βg .  

To study the asymptotic properties of ( )βg , label W the population variance of 

( )*βng . Then, assuming that ( )βg  equals zero in the population, by the central limit 

theorem, the limiting distribution of ( )βg  corresponds to 

( )( ) ( )W,0Normal0* →− dgN β , 
and the asymptotic distribution corresponds to 

( ) ( )Ng W,0Normal~*
a

β . 

It is then possible to combine the results for the components of ( )βĝ  in order to study 

the asymptotic distribution of the estimators β̂  of the model parameters β. This can be 

achieved by taking a first-order Taylor’s expansion of ( )β̂ĝ  around the true values β*  
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( ) ( ) [ ] noRgg +−+= *ˆˆ*ˆˆˆ ββββ , 

where β∂∂= gR ˆˆ . Then, note that the estimators β̂  of the model parameters β are 

defined by the condition ( ) 0ˆˆ =βg , because dividing Eq. (10) by N does not impact the 
solution of the problem. Assuming that and the discrepancy on disappears asymptotically, 
it follows that the limiting distribution of the estimators is 

 ( ) ( ) ( ) ( )( )321
11 ˆ*ˆˆ*ˆ AAARNgRNN ++−=−=− −− βββ . (11) 

As established before, if J
~

 increases faster than N  the terms A2 and A3 will vanish. 
Under this condition, the term A1 in Eq. (11) becomes asymptotically equal to ( )βg , 

which has a limiting distribution of ( )( ) ( )W,0Normal0* →− dgN β . Note that 

R→pR̂ , where ( )RE ˆ=R . This implies that the limiting distribution of the estimators 
of the model parameters becomes 

 ( ) ( )11,0Normal*ˆ −−→− WRRdN ββ , (12) 
and their asymptotic distribution will be 

 ( ) ( )NN
a

ΩWRR *,Normal*,Normal~ˆ 11 βββ =−− , (13) 

where 11 −−= WRRΩ , 
( )










∂
∂=

β
βπ D

Var n |*ln
W  and 

( )









∂∂
∂=

'
|*ln2

ββ
βπ D

E nR . 

Ω is usually defined as the “robust” or “sandwich” variance-covariance matrix of the 
estimators of the model parameters (see, e.g., Train, 2009, pp. 201). Berndt et al. (1974) 
proposed an estimator of Ω that is known as the BHHH matrix and is used, for example, 
by the discrete-choice estimation software Biogeme (Bierlaire, 2003). To deploy the 
BHHH matrix for this case, note that R is the Hessian of the model shown in Eq. (9). A 
consistent estimator of R is its sample analog, which can be constructed from the Hessian 
of the quasi-log-likelihood shown in Eq. (10). Equivalently, the variance-covariance 
matrix of the score of the model shown in Eq. (10), evaluated at the estimated values 

( )β̂Ŵ , is a consistent estimator of W. Given that ( ) 0ˆˆ =βg , ( )β̂Ŵ  can be calculated as 
the outer product of the scores of the model shown in Eq. (10). In summary, the BHHH 
estimator for the variance-covariance matrix of the estimators of the model parameters 
resulting from the maximization of the quasi-log-likelihood function shown in Eq. (10), 
corresponds to the following expression: 

( ) ( ) ( ) ( ) 1
2

1

1
2

'

|ˆˆln

'

|ˆˆln|ˆˆln

'

|ˆˆlnˆ
−

=

−










∂∂
∂










∂
∂

∂
∂










∂∂
∂=Ω ∑ ββ

βπ
β
βπ

β
βπ

ββ
βπ DDDD N

n

nn . 

These results imply that the estimators obtained by the maximization of Eq. (10) will 
have the same asymptotic variance-covariance matrix as the estimators that would be 
obtained by using Eq. (9); that is, if the full choice-set C is available for the calculation of 
the expansion of the term nGln . Then, it can be affirmed that estimators obtained by 

maximizing Eq. (10) are efficient among all possible approximations of the model 
described in Eq. (9). Q.E.D. 

It is interesting to note that the estimators obtained by maximizing Eq. (9) are not 
globally efficient because Eq. (9) is not the true log-likelihood and therefore the 
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Crammer-Rao lower bound is not attained. This also implies that the estimators obtained 
by using McFadden’s (1978) method for Logit are also inefficient. McFadden (1978) did 
not study the asymptotic distribution of his estimators. However, following the same line 
of analysis deployed in this section, it can be shown that the asymptotic distribution of 
McFadden’s (1978) estimators will be equal to Eq. (13), using instead Eq. (6) to calculate 
the terms R and W. 

Additionally, the fact that the estimators obtained with the method deployed in Eq. 

(10) will not be consistent unless J
~

 increases with N, implies that, in practice, we should 

test the stability of the estimators of the model parameters as a function of J
~

. If the 

estimators for different values of J
~

 are statistically equal, we can be sure that the finite 

sample (of alternatives) bias is negligible. Otherwise, J
~

 should be increased until 
attaining stability. This is equivalent to the need for testing for the stability of Logit 
Mixture’s estimators as a function of the number of draws, in the simulated maximum-
likelihood framework (Walker, 2001). 

The practical implementation of the method to achieve consistency and asymptotic 
normality under sampling of alternatives in MEV models depends on the specific MEV 
model and the sampling protocol being considered. In the next two sections, we analyze 
this implementation in detail for the Nested and the Cross-Nested Logit models, 
respectively. Then, for illustrative purposes, in Section 6, we develop a Monte Carlo 
experiment where the performance of the method is analyzed under different 
circumstances. Finally, in Section 7, the methodology is applied to a Nested Logit of 
residential location choice that was estimated using real data from Lisbon, Portugal. 

4 Formulation of the Method for Nested Logit 
The Nested Logit model is a closed-form discrete choice model that allows for the 
correlation among random components of the utilities of alternatives that belong to 
mutually exclusive and totally exhaustive subsets (or nests) of the full choice-set. In this 
model, the marginal choice probabilities are written as the product of the conditional 
probability of choosing each alternative (given that the respective nest is chosen) and the 
marginal probability of choosing the respective nest. The utility of a nest is defined as the 
expected maximum utility of choosing the alternatives that belong to that nest, what is 
known as the inclusive value (Ben-Akiva and Lerman, 1985). 

McFadden (1978) showed that the Nested Logit model can be alternatively 
formulated as a member of the MEV family. The generating function G for a Nested 
Logit model with M nests is 

 
( )

m

nim

inm

n

ln

M

m Ci

V

Cl

V eeG
µ
µ

µγ ∑ ∑
= ∈

∈ 












=






1

; , (14) 

where m(i) is the nest to which i belongs, γ is the set of scales µm of the nests, and Cm(i)n  
is the set of alternatives that belong to the nest m(i). In this case, inGln  corresponds to the 

expression shown in Eq. (15). 
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Then, if a sample Dm(i)n, is drawn from the true choice-set Cm(i)n, the only term that 
would be affected (and therefore needs to be approximated) is the sum of the 
exponentials of the systematic utilities, the argument of the logsum. The sum of the 
exponentials will be denoted as 

( )

( )
∑

∈

=
nim

jnim

Cj

V
in eB

µ . 

One way of approximating Bin is by constructing an expanded sum of the 
exponentials of the utilities of the alternatives in Dm(i)n. Then, the challenge would be to 
determine the expansion factors wjn required to obtain an unbiased and consistent 
estimator of the sum of the exponentials.  

To obtain an unbiased estimator, the expansion factors have to comply with the 
conditions shown in Eq. (16), where the first expectation is taken over all values of x, and 
the second expectation is taken over x and all potential sets Dm(i)n. 

 ( ) ( ) ( )

( )

( )

( )













−
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==− ∑∑
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jnim
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jnDx

Cj

V
xinin ewEeEBEBE µµ

,0ˆ  (16) 

Note that each ( ) jnim V
e

µ  can be seen as a random variable with mean ( )nimη , the mean of 

the empirical distribution of ( ) nim Veµ . In this case the first component of Eq. (16) becomes 

( ) ( )

( )
( ) ( )nimnim

Cj

V
in JeEBE

nim

jnim ηµ =













= ∑

∈

. 

The expansion factors wjn required to obtain an unbiased estimator of Bin shall depend 
on the sampling protocol. For analytical purposes we will consider first that the protocol 
is sampling without replacement and then that it is sampling with replacement. Finally, 
we will show that the expansion factors wjn required in both cases can be summarized in a 
single expression. 

Consider first that the protocol is sampling without  replacement by nest. Then, using 
the following indicator function 

( )
( )



 ∈

=∈ wo

Dj nim
Dj nim /0

if1
1  

it is possible to rewrite ( )inBE ˆ  in Eq. (16) as follows: 

( ) ( )
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
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Then, by the Law of Total Expectations (also known as the Law of Iterated 
Expectations), which is equivalent to the total probability theorem used in Eq. (4), 

( )
( )

( )

( )
( ) 





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
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( )
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( ) ( )
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where ( )
( )

( ) ( )nimDj
V

nim

jnimeE ηµ =∈1|  results from the fact that the distribution of ( ) nim Veµ  

determines the sampling of Dm(i)n, but the causality does not go in the other direction.  
Given this result, one way for Eq. (16) to equal zero is by having  

( )
( )

nimDjjn Ew ∈= 11
, 

where 
( )

( )
nimDjE ∈1  is the probability of drawing alternative j, because the protocol in this 

case is sampling without replacement. 
Consider now that the protocol is sampling with  replacement by nest. Then it is 

necessary to define the set ( )nimD
~

 and the indicator function jnn~ . The former is a set that 

includes all the repetitions of the alternatives sampled, and the latter corresponds to the 

number of times alternative j is repeated in the set ( )nimD
~

. Then inB̂  can be rewritten as 

follows 
( )

( )

( )

( )
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==
nim

jnim

nim
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, and therefore 
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Finally, since 
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,~~~ˆ
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jnim

Dj

V

jn
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V
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V
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the expansion factors required to obtain an unbiased estimation of the sum of the 
exponentials, for the case of sampling with replacement, are equal to  

( )jnjnjn nEnw ~~= . 

The expansion factors required when the protocol is with or without replacement can 
be summarized in a single expression by noting that, when the protocol is sampling 

without replacement, jnn~ =1 if j is in Dm(i)n, and 
( )

( )
nimDj

E ~1 ∈  is also the expected number of 

times alternative j would be drawn to construct the set Dm(i)n. Then, the general 
expression for the expansion factors required to obtain an unbiased estimator of inB  can 
be denoted as shown in Eq. (17). 

 ( )jn

jn
jn

nE

n
w ~

~
=  (17) 

The next step is to prove that the expansion factors shown in Eq. (17) will lead to 

consistent estimators of inB  as ( )nimJ
~

 increases. This results directly from any weak Law 

of Large Numbers. Actually, consistency would be granted even if no expansion factors 

were considered at all. As ( )nimJ
~

 increases, even an estimator of Bin that only considers 

the simple sum of the exponentials of the alternatives in Dm(i)n will eventually be as near 
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to Bin as desired, as ( )nimJ
~

 increases. The difference is that the expansion factors shown in 

Eq. (17) will converge faster, leading to better finite sample properties. In addition, using 
Eq. (17) is what allows obtaining an unbiased estimator, condition required in the 
derivation of the results on efficiency and asymptotic normality. 

5 Formulation of the Method for Cross-Nested Logit 
The Cross-Nested Logit model is a closed-form discrete choice model that allows for 
correlation among the random components of the utilities of all alternatives in the choice-
set. Similar to the Nested Logit, the Cross-Nested Logit considers a set of nests m. 
However, in the Cross-Nested Logit model the nests are totally exhaustive but not 
mutually exclusive in the coverage of the alternatives in the choice-set. The correlation 
structure is defined by a non-negative weight αjm representing the degree of belonging of 
alternative  j to the nest m. Examples of applications of the Cross-Nested Logit model and 
variations of it are the works of Small (1987), Vovsha (1997), Vovsha and Bekhor 
(1998), Bierlaire (2001), and Papola (2004).  

The Cross-Nested Logit model can be formulated as a member of the MEV family. In 
general, with M nests, the generating function G that results in the Cross-Nested Logit 
model is 

m

n

inm

n

ln

M

m Ci

V
jmCl

V eeG
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µ
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
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


1

; , 

where m are the nests, γ corresponds to the set of scales µm of the nests, and αjm are the 
weights. Then, the term inGln  corresponds to the following expression: 
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Just as it occurred with the Nested Logit, if a sample Dn is drawn from the true 
choice-set Cn, the only term affected will be the sum of the exponentials, which is now 
weighed by the terms αjm. Then, consistency, relative efficiency, and asymptotic 
normality can be achieved for the Cross-Nested Logit while sampling of alternatives, 
using the following estimator: 

∑∑
∈∈

=≈=
n

jm

n

jm

Cj

V
jmin

Dj

V
jmjnin eBewB

µµ ααˆ . 

The same derivation used in Eq. (16)-(17) can be used to show that the expansion factors 
wjn required in this case are also those shown in Eq. (17). 

6 Monte Carlo Experiment 

6.1 Model Setting 

A Monte Carlo experiment was performed to analyze and illustrate the properties of the 
proposed method in achieving consistency in the case of sampling of alternatives in MEV 
models. The setting of this experiment is summarized by Figure 1. The true or underlying 
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model is a Nested Logit with 1,005 alternatives, among which the first 5 belong to one 
nest ( 51 =J ) and the other 1,000 to a second nest ( 000,12 =J ). The systematic utilities 
Vin depend upon two variables, x1 and x2, which were constructed iid Uniform (-1,1) for 
the N=2,000 observations. The true parameters of the model are 1=µ , 

21 =µ , 32 =µ , 1
21

== xx ββ . 

 
Figure 1 Monte Carlo Experiment: Nesting Structure. 1,005 Alternatives 

N=2,000 51 =J 5
~

1 =J ; 000,12 =J 500 and 5
~

2 =J  

 
The methodology used to implement the Nested Logit model shown in Figure 1 for 

Monte Carlo experimentation was performed in several steps. First, the choice probability 
was calculated replacing the true values of the parameters in Eq. (8). Then, these choice 
probabilities were used to build a discrete cumulative density function by alternative. 
Afterwards, a random number Uniform (0,1) was generated for each observation. Finally, 
the chosen alternative was determined as the inverse of the cumulative density function, 
evaluated for each random number. 

The sampling protocol used to draw alternatives from the choice-set in this 
experiment was stratified importance sampling without replacement by nest. First, the 
chosen alternative for each observation was included. Then non-chosen alternatives were 

randomly sampled, without replacement by nest, to make a total of 5
~

1 =J  for the first 

nest, and 5
~

2 =J  and 500
~

2 =J  for the second nest. 

Given this sampling protocol, the conditional probability of constructing a particular 
set Dn for observation n, given that alternative i was chosen, corresponds to 
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where m’≠m(i) is the nest to which i does not belong and the expression on parenthesis 
corresponds to the binomial coefficient.  

It can be shown that 
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and therefore, the conditional probability of constructing the set Dn, given that alternative 
i was chosen, corresponds to 
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Given that the second term in Eq. (18) does not vary across alternatives, it will cancel 
out when taking the log to calculate the sampling correction ( )iDn |lnπ . Then, the 

estimator of the conditional probability of choosing alternative i, given that the set Dn 
was constructed, will correspond to Eq. (19) 
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The final step corresponds to the specification of the expansion factors wjn. This task 
is substantially different depending on whether the set Dn (used for the sampling 
correction) is or is not also used for the expansion of the sum of the exponentials. 

Consider first that the set Dn is also used for the expansion of the sum of the 
exponentials. Then, given that the sampling protocol is without replacement, the 
numerator in Eq. (17) will equal 1. ( )jnnE ~ , the expected number of times alternative j 

might be sampled to construct the set Dn, remains to be calculated. Given that the 
protocol is without replacement, ( )jnnE ~  corresponds to the probability of sampling 

alterative j.  

( )jnnE ~  can be calculated using the Law of Total Expectations. The idea is to divide 

the space into mutually exclusive and totally exhaustive events with known probabilities 
of occurrence, and for which the conditional expectation of jnn~  is also known. Consider 

the following events: 
A1: The chosen alternative is j 
A2: The chosen alternative is not j, but it is within those in the nest m(j) 
A3: The chosen alternative does not belong to the nest m(j). 
The events A1, A2 and A3 are totally exhaustive and mutually exclusive because only 

one alternative is chosen and the nests in the Nested Logit model are mutually exclusive 
and totally exhaustive. The probabilities of these three events depend on the choice 
probabilities: 
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( ) ( )jPAP n=1  : The probability of choosing alternative j. 
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lPAP 2  : The probability of choosing other alternatives in m(j), which 
is equal to the sum of their choice probabilities. 
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n lPAP 13  : The probability of choosing an alternative outside m(j), 
which is equal to 1 minus the probability of the nest m(j). 

The conditional expectations of jnn~  given the events A1, A2 and A3 are also known:   
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sampled from the nest m(j). 
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3 =  
: Because if the chosen alternative is in not in m(j), ( )jmJ

~
 out 

of ( )jmJ  alternatives remain to be sampled from the nest m(j). 

Then, by the Law of Total Expectations, the expected number of times alternative j 
might be drawn will correspond to 

( ) ( ) ( ) ( ) ( ) ( ) ( )332211 |~|~|~~ APAnEAPAnEAPAnEnE jnjnjnjn ++= . 

By replacing terms, Eq. (20) is finally obtained. 
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The expression shown in Eq. (20) for the denominators of the expansion factors 
depends on the choice probabilities, which are unknown beforehand in an application 
with real data. In section 6.3, we analyze alternatives to achieve this goal in practice.  

Consider now the case when a set Dn is used for the sampling correction ( )iDn |lnπ , 

and a different set nD
~

 is drawn to construct the expansion of the sum of the exponentials. 
We term this alternative procedure re-sampling. In this case, the conditional probability 

of choosing alternative i, given that the sets Dn and nD
~

 were drawn, will correspond to 
Eq. (21). 

 ( )
( ) ( )( ) ( )

( )

( ) ( )( ) ( )

( )
∑
∈

++

++

=

n

jm

jm
njnjn

im

im
ninin

Dj

J

J
DBfxV

J

J
DBfxV

nn

e

e
DDi

~ln
~ˆln,

~ln
~ˆln,

~
,|ˆ

β

β

π  (21) 

As stated before, the set Dn must include the chosen alternative. Otherwise, the quasi-
log-likelihood of the model may become unbounded, making impossible the estimation 
of the model parameters. In turn, the set nD

~  used for the expansion of the sum of the 
exponentials in Eq. (21) does not need to include the chosen alternative, as long as Dn 
does it. This small difference is relevant because, if the sampling protocol used to build 
the set nD

~  does not require drawing the chosen alternative forcedly, there is no need for 

knowing the choice probabilities beforehand to calculate the expansion factors wjn.  
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The implementation of the expansion method in practice when nD
~  does not require 

drawing the chosen alternative forcedly becomes then considerably simpler. Consider for 
example that the sampling protocol used to build the set nD

~  was importance sampling 

without replacement by nest. Under this setting, the denominators of the expansion 
factors, the equivalent to Eq. (20), would simply be the ratio shown in Eq. (22), where  

( )jmJ
~~  corresponds to the cardinality of nD

~ . 

 ( ) ( )

( )jm

jm

jn J

J
nE

~~
~ =  (22) 

6.2 Assessment of the Methods with and without Re-sampling 

Given this Monte Carlo experiment, the sampling protocol described and the expansion 
proposed, five models were estimated and the results are shown in Table 1. The first (No 
Sampling in Table 1) corresponds to the true model, where no sampling was applied. This 
model is estimated as a benchmark for the best possible estimators that could be expected 
for this particular experiment. 

Table 1 Monte Carlo Experiment: Sampling in MEV with and without Re-Sampling 

No Sampling Full 
inGln  Unexpanded 

Expanded 

True Prob. 

Expanded 

Re-Sampling Experiments 

est. s.e est. s.e est. s.e est. s.e est. s.e 

1x
β

 1.009 0.04681 0.9906 0.06112 2.570 0.1612 0.9102 0.06020 0.9301 0.06705 

2xβ
 1.062 0.04933 1.027 0.06253 2.630 0.1649 0.9276 0.06124 0.9558 0.06818 

1µ  2.055 0.2076 2.111 0.2289 0.2655 0.006477 2.211 0.2688 1.976 0.2913 

2µ  2.824 0.1125 2.881 0.1291 1.130 0.07562 3.313 0.1786 2.853 0.1567 

( )β̂L  -10,312.09 -1,942.70 -2,036.24 -1,968.59 -2,030.30 

( )0L  -13,825.49 -4,605.17 -4,605.17 -4,605.17 -4,605.17 

5
~

5
~

2

1

=

=

J

J

 

2ρ  0.2544 0.5790 0.5587 0.5734 0.5583 

1x
β

 1.009 0.04681 1.005 0.04678 0.7534 0.04708 1.005 0.04679 1.004 0.04679 

2xβ
 1.062 0.04933 1.055 0.04915 0.7913 0.04950 1.056 0.04918 1.055 0.04917 

1µ  2.055 0.2076 2.065 0.2088 2.730 0.3086 2.063 0.2088 2.065 0.2091 

2µ  2.824 0.1125 2.832 0.1130 3.785 0.2186 2.831 0.1131 2.834 0.1133 

( )β̂L  -10,312.09 -9,115.24 -9,117.40 -9,115.91 -9,115.37 

( )0L  -13,825.49 -12,449.12 -12,449.12 -12,449.12 -12,449.12 

500
~

5
~

2

1

=

=

J

J

 

2ρ  0.2544 0.2681 0.2679 0.2681 0.2675 

N=2,000. 51 =J , 5
~~~

11 == JJ ; 000,12 =J 500 and 5
~~~

22 == JJ  

 
The second model (Full inGln  in Table 1) corresponds to the application of sampling 

of alternatives and the corresponding sampling correction, but using the full choice-set to 



 19 

evaluate the term inGln , as shown in Eq. (9). Even though this model is impractical 

because it requires knowledge of the full choice-set, it was estimated to show that Eq. (9) 
is correct, and to quantify and to differentiate the effects of sampling of alternatives, 
when having a reduced choice-set, from its effects in the approximation of inGln .  

The third model estimated (Unexpanded in Table 1) considers that a set Dn was 
sampled from the full choice-set Cn, that the corresponding sampling correction was 
applied, and that the same set Dn was used to construct the term inGln , without any 
expansion term. This model acts as a benchmark because it corresponds to what has been 
used to date by the researchers to estimate Nested Logit models under sampling of 
alternatives (see, e.g., Berkovec and Rust, 1985; Train et al.,1987; Hansen, 1987; and 
Rivera and Tiglao, 2005). 

The fourth model estimated (Expanded True Prob. in Table 1) corresponds to the 
method proposed for cases where the same set Dn is used for the sampling correction and 
for the expansion of inGln  using Eq. (20). The calculation of Eq. (20) involves 
knowledge of the choice probabilities, which are unknown beforehand in a real 
application. However, in this Monte Carlo experiment the true choice probabilities are 
available beforehand and are therefore used to show the performance of the method 
proposed for the expansion of the sum of the exponentials. 

The last model estimated (Expanded Re-sampling in Table 1) corresponds to the 
method proposed for cases where a set Dn is used for the sampling correction, and a 

different set nD
~

 (constructed independently from the chosen alternative) is used for the 

expansion of inGln  using Eq. (22). For fair comparison with other models, the number of 

alternatives considered in the set nD
~

 is the same as that used for the set Dn; that is, 

nn JJ
~~~ = . 

The first result that should be noted in Table 1 is that, as expected, all estimated 
parameters for the No Sampling and Full inGln  models are statistically equal (with 95% 

confidence) to the true values. Regarding Full inGln , note that, as the sample size 

increases, the standard error of the estimators is reduced as a result of the increment in 

the number of cases ( )1
~ −JN . In other words, efficiency increased as more information 

became available. 

Regarding the model Unexpanded, note that for 5
~

2 =J , the model estimates are very 
far from the true values. Remarkably, one of the scale parameters is even below one, 
which makes this result inconsistent with utility maximization (Ben-Akiva and Lerman, 
1985). The bias in this model is reduced substantially for 500

~
2 =J . This occurs because 

the Unexpanded formulation collapses to the true model as the sample size increases. 

However, even for 500
~

2 =J , the estimators are still statistically different (with 95% 
confidence) from the true values. 

In the case of the Expanded True Prob. method, all estimates in Table 1 are 
remarkably better than those of the Unexpanded model and statistically equal (with 95% 
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confidence) to the true ones with 95% confidence, even for 5
~

2 =J . For the bias, note that 

it is not negligible for 5
~

2 =J , but for 500
~

2 =J , it is significantly reduced. 

Figure 2 shows the evolution of the estimators as 2

~
J  is increased for the model 

Expanded True Prob. As 2

~
J approaches J2, the estimators of the model collapse to those 

of the No Sampling model. Remarkably, the estimators quickly stabilize for 2

~
J  below 

100 and are never far from the true values. As shown in Table 1, even for a sample size 

as small as  5
~

2 =J , all the estimators are statistically equal (with 95% confidence) to the 
true values.  

0.85

0.90

0.95

1.00

1.05

0 100 200 300 400 500 600 700
0.90

0.95

1.00

1.05

1.10

0 100 200 300 400 500 600 700

2.00

2.05

2.10

2.15

2.20

2.25

2.30

2.35

2.40

2.45

2.50

0 100 200 300 400 500 600 700
2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

3.25

3.30

0 100 200 300 400 500 600 700

2

~
J

2

~
J 2

~
J

2

~
J

1

ˆ
xβ 2

ˆ
xβ

1µ̂ 2µ̂

-1.009 -1.062

-2.824-2.055

 

Figure 2 Monte Carlo Experiment: Estimators as 2

~
J  Increases. Expanded True Prob. 

 
Figure 2 is also useful for analyzing the small sample bias. First, note that the 

parameter that has the poorest convergence behavior (larger variance and slope) is 2µ̂ , 
the scale of the second nest. It can be hypothesized that this occurs because sampling is 
performed only from the second nest in this experiment. Figure 2 also shows that both 

scales 1µ̂  and 2µ̂  are biased upward and that the model parameters β̂  are biased 
downward. The experiments analyzed did not allow proposing hypotheses to explain this 
result. Further analysis of the finite sample properties of this estimator, and potential 
ways to improve them, are left for future research. 

Finally, the last column in Table 1 shows that the results for the Expanded Re-
Sampling method are statistically equal (with 95% confidence) to those obtained by using 
the Expanded True Prob. method, and also statistically equal (with 95% confidence) to 
the true values. This implies that if re-sampling to perform the expansion of the sum of 
the exponentials is possible, it should be preferred because it avoids approximating the 
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choice probabilities. In the next section, we analyze the performance of different 
procedures that can be used in practice when re-sampling is not possible. 

6.3 Expansion in Practice when Re-sampling is not Possible 

When re-sampling is not possible the results of the method for sampling of alternatives in 
MEV shown in Table 1, require knowledge of the choice probabilities, which are not 
available in an application with real data. To avoid this problem, three methods used to 
approximate the choice probabilities are examined and the results are summarized in 
Table 2.  

Table 2 Monte Carlo Experiment: Different Estimators of Choice Probabilities 

Expanded 

True Prob. 

Expanded 

All or Nothing 

Expanded 

Population Shares 

Expanded 

Iterative Prob. Experiments 

est. s.e est. s.e est. s.e est. s.e 

1x
β

 0.9102 0.06020 0.7440 0.05335 1.133 0.06906 0.9444 0.06528 

2xβ
 0.9276 0.06124 0.7565 0.05417 1.158 0.07020 0.9630 0.06641 

1µ  2.211 0.2688 2.787 0.3327 1.685 0.2151 2.031 0.2734 

2µ  3.313 0.1786 4.328 0.2817 2.714 0.1251 3.210 0.1808 

( )β̂L  -1,968.59 -1,864.44 -1,982.65 -1,991.85 

( )0L  -4,605.17 -4,605.17 -4,605.17 -4,605.17 

5
~

5
~

2

1

=

=

J

J

 

2ρ  0.5734 0.5960 0.5703 0.568 

1x
β

 1.005 0.04679 1.005 0.04673 1.007 0.04681 1.005 0.04679 

2xβ
 1.056 0.04918 1.055 0.04912 1.058 0.04920 1.056 0.04918 

1µ  2.063 0.2088 2.066 0.2088 2.059 0.2083 2.063 0.2088 

2µ  2.831 0.1131 2.833 0.1131 2.825 0.1125 2.831 0.1130 

( )β̂L  -9,115.91 -9,114.88 -9,115.92 -9,115.92 

( )0L  -12,449.12 -12,449.12 -12,449.12 -12,449.12 

500
~

5
~

2

1

=

=

J

J

 

2ρ  0.2681 0.2682 0.2681 0.2681 

N=2,000. 51 =J , 5
~

1 =J ; 000,12 =J 500 and 5
~

2 =J  

 
One alternative is to approximate the probability of the chosen alternative to equal 1, 

and the probability of the non-chosen alternatives to equal zero. This model is termed 
Expanded All or Nothing in Table 2. Replacing these assumptions in Eq. (20), the 
expansion factors used in this case will correspond to the following: 

 1=jnw  if j is the chosen alternative 

( )

( )
 

1
~

1

−
−

=
jm

jm
jn

J

J
w  if j is not chosen, but another alternative in m(j) is chosen 
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( )

( )
 ~

jm

jm
jn

J

J
w =  if j is not chosen, and no other alternative in m(j) is chosen. 

The expansion factors that result in this case are equivalent to those used by Frejinger 
et al. (2009) to approximate the denominator of a Logit model with sampling of 
alternatives, and to those used by Lee and Waddell (2010) to expand a Nested Logit 
model under sampling of alternatives. That is, although it is not mentioned by those 
authors, they implicitly approximated the probability of the chosen alternative to 1, and 
the probability of the non-chosen alternatives to 0. 

A second possibility to approximate the choice probabilities needed for the 
calculation of the expansion factors is to use the population shares of each alternative. 
Although the true population shares are not available in a real application, good 
approximations of them are clearly plausible from different sources (Census data for 
spatial choice models or flow counts in route choice modeling). This method is termed 
Expanded Population Shares in Table 2. Replacing the population shares in Eq. (20), the 
expansion factors implied by this procedure are the following: 

jWj  ealternativ of share population =  

( )

( ) ( )

( )

( ) ( )

n

Cl
l

jm

jm

jl
Cl

l
jm

jm
j

CjNn
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J

J
W

J
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W
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njmnjm
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∈∀=∀









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


−+
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+

=

∑∑
∈

≠
∈

;,,1

1
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1

1
~

1
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Finally, an iterative method can be proposed. This method starts with an estimation of 
the population shares of each alternative, and then estimates the choice probabilities for 
each observation, iteratively, until convergence. This method is termed Expanded 
Iterative Prob. in Table 2 and can be summarized as follows. 

Step 0: 
k=0 

jWj  ealternativ of share population =  

( )

( ) ( ) ( )
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Step 1: 

Estimate the model using  k
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w  to obtain β̂  and ( )
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Step 3: 
k=k+1 
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Go to Step 1 until convergence.  
Convergence can be stated in terms of the estimated parameters of the model, the 

expansion factors, or the choice probabilities. For the applications of the iterative 
procedure in this research, the following stopping criterion was used: 

( ) ( ) ( )JjPjP k
n

k
njn 101ˆˆmax 1

, ≤− + . 

The three methods proposed to approximate the choice probability when re-sampling 
is not possible were used in the estimation of the problem of sampling of alternatives for 
the Nested Logit model described in Figure 1. Table 2 shows the results of the three 
methodologies, compared to the results obtained with the Expanded True Prob. method. 

Consider the case of the Expanded All or Nothing and the Expanded Population 

Shares procedures. Table 2 shows that for 5
~

2 =J , the estimators of both methods are 
statistically different (with 95% confidence) to the true ones. Although, comparing these 
results with those of the Unexpanded method reported in Table 1, it should be noted that 

the new estimators have a smaller bias. For 500
~

2 =J , the Expanded All or Nothing and 
the Expanded Population Shares estimators are statistically equal (with 95% confidence) 
to those obtained by using the Expanded True Prob. method, and also statistically equal 
(with 95% confidence) to the true values.  

Finally, for the Expanded Iterative Prob. method, Table 2 shows that for 5
~

2 =J  and 

500
~

2 =J  the estimates are statistically equal (with 95% confidence) to those obtained 
using the Expanded True Prob. method, and also statistically equal (with 95% 
confidence) to the true values. This implies that, when re-sampling is not possible, the 
iterative procedure proposed to approximate the choice probabilities should be preferred 
to expand the sum of the exponentials. 

6.4 Additional Experiments 

In this section, we present four additional experiments to illustrate the performance of the 
proposed method for addressing sampling of alternatives in MEV models, under different 
circumstances. 

The first three experiments explore the effect of the distribution of the data. These 
experiments consider the same structure described in Figure 1. The only difference is that 
the distributions of attributes x1 and x2 vary across observations. Under this setting, the 
estimators of the model parameters were obtained for 100 repetitions using the Expanded 

True Prob. method and for different values of 2
~
J . Table 3 reports the bias, mean squared 

error (MSE) and t-test against the true value of the scale of the second nest 2µ̂  for each 
experiment. 

The first experiment is termed Uniform Mixture. For the first 1,000 observations, x1 
was drawn from an iid Uniform (-1,1) distribution and x2 from an iid Uniform (-1.5,1.5) 
distribution. For the second half of the observations, x1 was drawn from an iid Uniform 
(0,2) distribution and x2 from an iid Uniform (-3,1) distribution. The results of this model 
are shown in the first column (after the labels) of Table 3. It can be noted that the sample 
size required to obtain an estimator of 2µ̂  statistically equal (with 95% confidence) to its 
true value is larger than 25 alternatives in this case. This value is larger than that obtained 
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for the experiment reported in Table 1 and confirms that the threshold required for 
attaining valid estimates of the model parameters depends on the data. 

The second experiment is termed Varying 2

~
J . This experiment considers the same 

structure and distribution of the data used in the Uniform Mixture experiment. The only 
difference is that the number of drawn alternatives varies across individuals following a 
Discrete Uniform distribution with limits 

   [ ]22

~
2,2

~
JJ .  

Then, for example, for 2

~
J =10 in Table 3, the number of alternatives considered for each 

of the 2,000 observations can be any integer between 5 and 20, with equal probability. 
The results of this experiment are shown in the second column of Table 3. Although this 
experiment is not directly comparable with the Uniform Mixture setting, it can be 
affirmed that the fact that, in both cases, sample sizes around 25 were large enough to 
obtain an estimator of the scale of the second nest that was statistically equal (with 95% 
confidence) to its true value, is evidence that varying the sample size across observations 
causes only minor impacts in the estimation procedure. 

Table 3  Monte Carlo Experiment: Additional Experiments on Sampling in MEV 

2µ̂  Uniform Mixture Varying 2

~
J  Normal Uniform 

2

~
J  Bias MSE t-test true Bias MSE t-test true Bias MSE t-test true 

10 0.4878 0.2624 3.125 0.4502 0.2317 2.641 1.359 1.989 3.616 

25 0.2760 0.09404 2.065 0.2623 0.08881 1.854 1.063 1.223 3.493 

50 0.1512 0.03729 1.259 0.1465 0.03799 1.139 0.7938 0.6914 3.206 

100 0.07260 0.01733 0.6612 0.07413 0.02034 0.6085 0.5505 0.3516 2.498 

250 0.01492 0.01156 0.1402 0.01941 0.01369 0.1682 0.2968 0.1228 1.592 

500 -0.006329 0.01105 -0.06033 0.0002020 0.01305 0.001768 0.1473 0.04756 0.9155 

N=2,000. 51 =J , 000,12 =J 5
~

1 =J ; Average and variance from 100 repetitions. Expanded True Prob. 

 
The third experiment is termed Normal Uniform. In this case x1 is iid Normal (0,1) for 

the first 1,000 observations and Normal (1,2) for the rest. In turn x2 iid Uniform (1,3) for 
the first 1,000 observations and Uniform (0,4) for the rest. The results of this experiment 
are shown in the third column of Table 3. This experiment shows that the sample size 
required to attain estimators that are statistically equal (with 95% confidence) to the true 
values is now between 100 and 250. This result is further evidence that the performance 
of the method can be significantly affected by the distribution of the data. 

The fourth experiment sheds light on whether or not the sample size required to attain 
a desirable bias can be stated as a percentage of the cardinality of the true choice-set. The 
experiment described in Figure 1 was modified only regarding the number of alternatives 
in the second nest, which is 1,000,000 in this case. The distribution of x1 and x2 are again 
iid Uniform (-1,1) for the N=2,000 observations. The model is described in Figure 3 and 
the results are reported in Table 4.  
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Figure 3 Monte Carlo Experiment: Nesting Structure. 1,00,005 Alternatives 

 

Table 4  Monte Carlo Experiment: Sampling in MEV. 1,000,005 Alternatives  

Unexpanded 
Expanded 

True Prob. Experiments True 
Values 

Est. s.e est. s.e 

1x
β

 1 2.947 0.3594 0.9403 0.07193 

2xβ
 1 2.820 0.3412 0.9118 0.06894 

1µ  2 0.1427 0.003651 1.877 0.5237 

2µ  3 1.073 0.1322 3.372 0.2203 

( )β̂L   -1,348.82 -1,341.87 

( )0L   -3,670.51 -3,670.51 

5
~

5
~

2

1

=

=

J

J

 

2ρ   0.6336 0.6355 

1x
β

 1 1.887 0.4404 1.014 0.05930 

2xβ
 1 1.784 0.4162 0.9629 0.05586 

1µ  2 0.1896 0.02426 1.836 0.455 

2µ  3 1.645 0.3837 3.054 0.162 

( )β̂L   -9,253.96 -9,241.78 

( )0L   -12,710.46 -12,710.46 

500
~

5
~

2

1

=

=

J

J

 

2ρ   0.2723 0.2732 

N=2,000. 51 =J , 5
~~~

11 == JJ ; 000,000,12 =J 500 and 5
~~~

22 == JJ  

µ1 =2 µ2 =3 

1 … 5 6 … … 1,000,004 

µ=1  

( )
ininin xxxV

21
11, +=β
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In this case the true model is not estimatable with commercial software because the 
computational costs are unbearable. In turn, it is possible to simulate independently the 
choices for each observation, then to sample a small number of alternatives from the true 
choice-set, and store that subset of information, for subsequent estimation. Using this 
procedure, samples of 5 and 500 alternatives were drawn from the second nest. 

Table 4 contrasts the estimators that are obtained using the Unexpanded and 
Expanded True Prob. methods. Similar to what occurred in the experiments reported in 
Table 1, the estimators of the Expanded True Prob. method are also statistically equal 
(with 95% confidence) to their true values, even for a sample size as small as 5. 
However, comparing Table 1 with Table 4, it can be noted that the confidence is smaller 
in the case where the true choice-set has 1,000,005 alternatives.  

Given that the quality of the estimators obtained with samples of 5 and 500 are 
qualitatively equal when the cardinality of the true choice-set is 1,005 or 1,000,005, it can 
be affirmed that there is evidence that the sample size required to obtain acceptable 
estimators is independent of the true cardinality of the choice-set.  

7 Application to Real Data 
The final step corresponds to the demonstration of the method proposed for sampling of 
alternatives and estimation in MEV models using real data. The case study corresponds to 
a residential location choice model situated in the Portuguese municipalities of Lisbon, 
Odivelas and Amadora, which are located at the center of the Lisbon Metropolitan Area 
(LMA).  

The data to estimate the model was constructed using the combination of two sources. 
The first source was a small convenience online survey (SOTUR) conducted in 2009 by 
Martinez et al. (2010) in the LMA. The second source corresponds to a snapshot of the 
dwellings that were advertised for sale in February 2007 within the municipalities of 
Lisbon, Odivelas and Amadora (Martinez and Viegas, 2009). The details on the 
construction of the database by matching both sources can be found in Guevara (2010).  

The database is compounded of 11,501 alternatives, from which only 63 correspond 
to chosen dwellings. The main descriptive statistics of the database are shown in Table 5. 
Regarding dwelling attributes, Table 5 shows that dwellings from the Lisbon 
municipality tend to be more expensive and older than those from Odivelas and 
Amadora, although the differences are not statistically significant (with 95% confidence). 
Also, the dwellings from both regions have approximately equal area. Finally, dwellings 
from Lisbon are significantly closer, in average, to the workplace of the head-of-the-
households of the sample. Table 5 also shows the distribution of household location, 
classified by income. It should be noted that 51 out of 63 households reside in Lisbon 
municipality and that the larger share of households in the sample have an income that is 
between 2,000 and 5,000 Euros per month (€/M). 

Using the database described in Table 5 we considered a Nested Logit model 
allowing for correlation between alternatives on a geographic base. The structure used is 
shown in Figure 4. We considered one nest for the 3,483 alternatives that belong to the 
Municipalities of Odivelas and Amadora, and the other 8,018 alternatives from the 
Municipality of Lisbon, were considered to belong to the root of this Nested Logit model. 
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The nesting structure used is simple principally because of the small number of 
observations available. More interesting structures, such as multilevel nests by area, were 
impossible to estimate. However, the nesting structure considered does serve well its 
main purpose of demonstrating the methodology for sampling of alternatives and 
estimation developed in this research. Furthermore, despite its simplicity, the nesting 
structure is concordant with what is observed in the city. The municipalities of Odivelas 
and Amadora are approximately what Rayle (2008) defined (using a factor-analysis 
approach) as the “Inner Periphery” of the central LMA, a sector that has marked 
differences with the Lisbon’s Municipality.  

Table 5 Summary of Lisbon’s Residential Location Choice Database for Estimation 

Average Dwelling Attributes 

(Standard Deviation) 
Household Location 

Municipality Price 

100,000 
[€] 

Distance to 
Workplace 

[Km] 

Area 

[m2] 

Age 

[Years] 

Total 
Dwellings 

Available 
Income 

<2,000 
[€/M] 

Income 

2,000-
5,000 
[€/M] 

Income 

>5,000 
[€/M] 

Tot. 

Lisbon 
2.356 

(1.354) 

4.508 

(2.389) 

99.30 

(41.77) 

39.93 

(36.21) 
8,018 16 28 7 51 

Odivelas 
and 

Amadora 

1.680 

(0.8365) 

10.581 

(1.253) 

98.44 

(32.59) 

32.17 

(31.68) 
3,483 5 7 0 12 

Total 
2.151 

(1.260) 

6.347 

(3.499) 

99.01 

(39.22) 

37.58 

(35.08) 
11,501 21 35 7 63 

€/M: Euros per month. Standard errors in parenthesis. 

 

 
Figure 4 Nesting Structure of Lisbon’s Nested Logit Residential Location Choice Model 

 
Under this setting, a Nested Logit model was estimated with the assumption that the 
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control-function (2SCF) method (Hausman, 1978; Heckman, 1978), as it is described in 
detail by Guevara (2010). 

The results of this model are reported in the second column of Table 6 and are 
repeated in Table 7. It should be noted that the signs of the coefficients of the models are 

as expected. The coefficient of dwelling area (5β̂ ) is positive, meaning that households 

prefer larger dwellings. The contrary occurs with dwelling price ( 1̂β ), age ( 6β̂ ), and 

distance to workplace of the head-of-the-household ( 4β̂ ), which are perceived negatively. 

Also, the impact of dwelling price decreases with household income since 0ˆ,ˆ
32 >ββ , but 

is negative for all stratum since 321
ˆˆˆ βββ ++  <0 for all cases. Finally, it should be noted 

that the scale of the nest is statistically different (with 95% confidence) from 1, what 
implies that the null hypothesis that the choice model is a Logit, is rejected. 

Table 6 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model 

 Sampling 5 + 5 Alternatives 

No Sampling Unexpanded  
Expanded  

Iterative Prob. Variables 

β̂  
s.e β̂  

s.e β̂  
s.e 

1. Dwelling price (in 100,000 €) -4.393 0.7058 -3.095 0.6498 -5.374 0.8947 

2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.291 0.4756 1.834 0.7048 

3. Dwelling price * 1[Income > 5,000 €/M] 0.9463 0.5284 0.5298 0.5364 0.7604 0.6779 

4. Distance to Workplace (in Km) -0.1774 0.0538 -0.1617 0.0528 -0.1732 0.0639 

5. Log [Dwelling Area (in m2)] 4.217 0.7854 2.220 0.5530 4.454 1.0324 

6. Log [Dwelling Age (in years) +1] -0.6381 0.1158 -0.4850 0.1180 -0.7252 0.1604 

7. δ̂  Control-function Aux. Var. 1.987 0.4711 0.6193 0.3864 2.145 0.5763 

8. µO-A  Odivela-Amadora Nest 1.329 0.09414 5.480 3.053 1.392 0.1266 

Log likelihood at Convergence ( )µβ ˆ,ˆL   -547.89 -94.96 -93.53 

Log likelihood at Zero ( )1ˆ,0ˆ == µβL   -589.06 -134.13 -134.13 

Adjusted  2ρ   0.08518 0.3666 0.3623 

Sample Size N 63 63 63 

Choice-set Size J 11,501 10 10 

Estimation Time ( in seconds] 363.0 1.080 10.65 

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity  

with 2SCF. Sample 5 alts. from Odivelas-Amadora nest and 5 from Lisbon municipality. €/M: Euros per month. 

 
To demonstrate the method proposed in this paper to achieve sampling of alternatives 

and estimation in MEV models, we performed two experiments where we sampled a set 
of alternatives in the choice-set and then re-estimated the model with and without the 
expansion of the sum of the exponentials proposed in this paper. The sampling protocol 
used in the first experiment was the following. First, the chosen alternative was included. 
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Then, alternatives were randomly drawn from the Odivelas-Amadora nest and from the 
root (Lisbon) up to make a total of 5 alternatives for each case. 

Table 7 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model 

 Sampling 500 + 500 Alternatives 

No Sampling Unexpanded 
Expanded  

Iterative Prob. Variables 

β̂  
s.e β̂  

s.e β̂  
s.e 

1. Dwelling price (in 100,000 €) -4.393 0.7058 -4.349 0.6780 -4.347 0.7054 

2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.242 0.5649 1.184 0.5776 

3. Dwelling price * 1[Income > 5,000 €/M] 0.9463 0.5284 0.9566 0.5290 0.9923 0.5333 

4. Distance to Workplace (in Km) -0.1774 0.0538 -0.1766 0.05288 -0.1811 0.05380 

5. Log [Dwelling Area (in m2)] 4.217 0.7854 4.177 0.7450 4.223 0.7902 

6. Log [Dwelling Age (in years) +1] -0.6381 0.1158 -0.6362 0.1123 -0.6321 0.1161 

7. δ̂  Control-function Aux. Var. 1.987 0.4711 1.908 0.4460 1.937 0.4683 

8. µO-A  Odivela-Amadora Nest 1.329 0.09414 1.510 0.1618 1.326 0.09340 

Log likelihood at Convergence ( )µβ ˆ,ˆL   -547.89 -382.38 382.95 

Log likelihood at Zero ( )1ˆ,0ˆ == µβL   -589.06 -424.25 424.25 

Adjusted  2ρ   0.08518 0.1223 0.1162 

Sample Size N 63 63 63 

Choice-set Size J 11,501 1,000 1,000 

Estimation Time (in seconds) 363.0 55.27 220.8 

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity 
 with 2SCF. Sample 500 alts. from Odivelas-Amadora nest and 500 from Lisbon municipality. €/M: Euros per month. 

 
The results of the model estimated using this sampling protocol, are shown in Table 

6. In the third column are reported the estimators of the Unexpanded model where the 
sampling correction was applied but the sum of the exponentials of the Odivelas-
Amadora nest was calculated using only the 5 alternatives sampled from the nest. Note 
that several estimators are statistically different (with 95% confidence) from those of the 
original model. Remarkably, the estimator of the scale of the Odivelas-Amadora nest is 
highly positively biased. This means that the use of the Unexpanded model for simulation 
would cause an important overestimation of the substitution among dwellings in the 
Odivelas-Amadora nest. 

The fourth column of Table 5 reports the estimators of the model estimated using the 
Expanded  Iterative Prob. method, where the sampling correction is applied and the sum 
of the exponentials is expanded using the iterative procedure described in Section 6.3. 
Equivalent to what occurred in the Monte Carlo experiments, the estimators are 
remarkably similar to those of the model without sampling and statistically equal (with 
95% confidence) to them. 

The second experiment corresponded to the application of the same sampling 
protocol as before, but with alternatives that were sampled up to make a total of 500 for 
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the Odivelas-Amadora nest and 500 for the root (Lisbon). The results of the models 
estimated using this sampling protocol are shown in Table 7. Equivalent to what occurred 
with the Monte Carlo experiments, the estimators of the Unexpanded and of the 
Expanded Iterative Prob. models are similar to those of the model without sampling 

when J
~

 is large. All estimators are statistically equal (with 95% confidence) in both 
cases. The most significant difference is that the bias of the estimator of the scale of the 
Odivelas-Amadora’s nest is smaller for the Expanded Iterative Prob. model. 

Finally, Table 6 and Table 7 report also the computational time used in the estimation 
of the different models. In the case where only 10 alternatives were sampled, the 
differences in computational costs were huge. The true model that considers the full 
choice-set of 11,501 alternatives took approximately 350 times more to be estimated than 
the Unexpanded model, and approximately 35 times more than the Expanded Iterative 
Prob. method. The differences are reduced to 7 and 1.7 times respectively, when 1,000 
alternatives are sampled. These differences in estimation time, together with the evidence 
gathered from the Monte Carlo experiment with one million alternatives, reflect the 
significant gains that can be obtained with sampling. The methodological developments 
of this paper will allow taking benefit of these gains in the implementation of spatial 
choice models with more realistic error structures rendering the development of better 
tools for policy analysis. 

8 Conclusion 
Sampling of alternatives for non-Logit models is a problem that has been open for over 
30 years, and that have hindered the development of suitable spatial choice models. This 
paper proposes a novel method to address this issue for MEV models and illustrates its 
properties by means of a Monte Carlo experiment applied to the Nested Logit model, and 
a case study based on real data on residential location choice from Lisbon, Portugal. 

Monte Carlo experiments showed that the sampling of alternatives causes a 
significant bias in the estimators of the model parameters when the choice model is 
Nested Logit. In addition, the proposed method for expanding the sum of the 
exponentials performed well, even for small sample sizes. In cases where it is possible to 
obtain an additional sample to expand the sum of the exponentials, the method proposed 
is easily applicable. When it is not possible to re-sample, the method requires knowledge 
of the choice probabilities in order to build the expansion factors. In this final case, an 
iterative procedure showed satisfactory results. 

Monte Carlo experiments additionally offered evidence that the sample size required 
to obtain good estimators while sampling alternatives in MEV models depends on the 
distribution of the data available and cannot be expressed as a percentage of the 
cardinality of the true choice-set. In general, an appropriate strategy to determine if the 
size of the sample of alternatives is large enough might be to test the stability of the 
estimators with different number of alternatives sampled. 

The application with real data demonstrated that the proposed method to achieved 
consistency while sampling of alternatives in MEV is practical and may have a 
significant impact in the design of more sophisticated modeling tools for policy analysis 
in urban systems. 



 31 

Different lines for future research may be proposed to address the limitations of this 
study. First, it would be interesting to apply the method developed in this paper into 
larger real databases and other spatial choice models, such as job and firm location, route 
choice or activity scheduling. Finally, it would be interesting to assess the full impact of 
the methodological advances of this research in policy analysis by applying them in the 
framework of an operational microscopic integrated urban model such as UrbanSim 
(Waddell et al., 2008). 
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