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ABSTRACT

When the number of alternatives in a choice-shtige, sampling is unavoidable. In 1978 Daniel
McFadden showed that consistent estimation undeplgag of alternatives is possible if the true
model is Logit; that is, if the errors of the randautilities are independent and identically
distributed {id) Extreme Value. However, th&l assumption might be easily broken in models
with large choice-sets. For example, in resideritahtion, dwelling-units are expected to be
correlated depending on proximity. This paper ed¢eMcFadden’s result to MEV models, a
class of closed-form discrete choice models thkiwal for different degrees of correlation
between alternatives. A methodology to achieve istarscy, asymptotic normality and relative
efficiency is proposed and deployed for all MEV ralsdand then illustrated using Monte Carlo
experimentation and real data for the Nested Logitlel, an important member of the MEV
class. Experiments show that the proposed methggdddopractical, that it is substantially better
than an uncorrected model, and that it yields aetdp results, even for small sample sizes. The
paper finishes with a synthesis and an analysikefmpact, limitations and potential extensions
of this research.
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1 Introduction

The computational burden and the impossibilitydahitifying or measuring the attributes
of a huge number of alternatives in spatial chommdels, makes it necessary to only
consider a subset of the choice-set in practicgbli@aions. McFadden (1978)
demonstrated that if the model underlying the ahgcocess is Logit, the problem of
sampling of alternatives and estimation can beestd#d by adding a corrective constant
to the systematic utility of each alternative.

The Logit model requires the assumption that tmeréerms of the random utilities
are uncorrelated among alternatives. This assumptiay be invalid for some spatial
choice models. In residential location, the erenms may be correlated according to
proximity or nested according to different decisiexels. Equivalently, in route choice
modeling, routes that share sets of common linkg bb@aperceived as more similar than
other routes that are complete substitutes, brgdkom the Logit assumption.

Ignoring a non-Logit structure in spatial choicedaling may significantly impact
the quality of such models. For example, if theerhydng model is a Nested Logit with
nests defined by geographical areas, a locatiosidylwill trigger more intra-area than
inter-area household relocation. This effect wdmdimpossible to capture with a Logit
model, resulting in misleading guidance for urbaoliqy analysis. This suggests
extending McFadden’s result on sampling of alteweat in Logit models to a more
general class of models that allows correlationragrtbe error terms of the utilities.

Building on an idea originated by Ben-Akiva (2009), this paper, we extend
McFadden'’s results to the Multivariate Extreme \¢a(MEV) models, a class of closed-
form discrete choice models that allows for certdegrees of correlation among
alternatives. We also use Monte Carlo experimesriaaind real data to show the impact
of the application of this novel method in the mstiion of Nested Logit models while
sampling alternatives.

The paper is structured as follows. The next sedescribes McFadden'’s results on
sampling of alternatives in Logit models. Next, greposed extension to MEV models is
presented. The following sections describe the fation of the proposed methodology
for the Nested and the Cross-Nested Logit modéls, main members of the MEV
family. Then, the effects of the proposed methogglare analyzed using a Monte Carlo
experiment and real data on residential locatiamiaghfrom Lisbon, Portugal. The final
section summarizes the main conclusions, implicati@nd potential extensions of this
research.

2 Estimation and Sampling of Alternatives in LogitModels

Consider that the random utility;,, which a household retrieves from alternativie can
be written as the sum of a systematic paend a random error term as shown in Eg.
(1)

Uin =Vin-'-‘s.in :V(Xm,ﬂ*)'i'fm, (1)
where the systematic utility depends on variaklasd parameteys".



Then, if¢ is independent and identically distributed ) Extreme Value (@), the
probability thatn will choose alternative will correspond to the Logit model shown in

Eq. (2)

R.(i)= ze::% : 2)

whereGC, is the choice-set af, elements from which househaldchooses an alternative.
The scale: in Eqg. (2) is not identifiable and usually norraali to equal 1.

Consider that, of the true choice-§gt only a subsdd, with 3n elements is sampled

by the researcher. For estimation purpoggsmust include (and therefore depends on)
the chosen alternativiebecauseptherwise, the quasi-log-likelihood of the modelyma
become unbounded, making the estimation of the hpatameters impossible.

Term 7{i,D,) the joint probability that householi would chose alternativie and

that the researcher would construct the Bgt Using the Bayes theorem, this joint
probability can be rewritten as shown in Eq. (3)
r(i,D,)= (D, 1)R,(i) = (i | D, )A(D,), 3)

where n(i | Dn) is the conditional probability of choosing altetiiia i, given that the set
D, was constructed, an;d(Dn |i) is the conditional probability of constructing thetD,,
given that alternativewas chosen.

Since the events of choosing each one of the aligas inC, are mutually exclusive
and totally exhaustive, we can use the Total Pnibatheorem (see, e.g., Bertsekas and
Tsitsiklis, 2002) to write the probabilityr(D, ) of constructing the s@, as shown in Eq.

(4)
n(D,) = %n(m IR.(i)= > (D, 1 i)R.(i). @)

n oD,
where the second equality holds becauélén | j) =00jun,.

Substituting Eq. (4) and the Logit choice probapilP (i) shown in Eq. (2) into Eq.
(3), Eq. (5) is obtained by canceling and re-ar@agn¢erms.

Vi, +In 72(D, i
i1D,)= Zee—"(,%y ©)
oD,

The expressiofin 77(Dn | j) is termed the sampling correction.

Eq. (5) indicates that the conditional probabibfychoosing alternative given that a
particular choice-seD,, was constructed, depends only on the alternaiivd3,. This
results from the cancellation of the denominatohenvdividing the probabilities of two
alternatives in the Logit model, which is known t@® Independence of Irrelevant
Alternatives (IlIA) property. Note that although Ili#As a convenient mathematical
property, it results from the assumption that ttrerestructure isid, a statement that may
be unrealistic in spatial choice models.



McFadden (1978) demonstrated thar{D, | j) >0 and known for al] in D,,, and if
the true model is Logit with choice-98¢, it is possible to obtain consistent estimators of
the model parameter8* by maximizing the following quasi-log-likelihoodrction:

N gV bin B)+In 7Dyl ;)
QLLogit,D = Zl

n=1

n Zev(xjn,ﬁ)ﬂn A(Dylix) ©)

jDDn
McFadden’s procedure falls into the type of estmsatdentified by White (1982),
which achieve the consistent estimation of the rhqueameters in spite of being
misspecified.
Eq. (6) can be simplified if the sampling correntim 77(Dn |i) is the same for all

alternatives. In that case, the sampling correctiihcancel out in Eq. (6) and can be
ignored. The effects of using other sampling prot®care studied by Manski and
McFadden (1981), Ben-Akiva and Lerman (1985), Watiatia and Ben-Akiva (1979)
and Frejinger et al. (2009).

Diverse applications of McFadden’s results on samgpbf alternatives for Logit
models can be found in the literature. Some exasmmle Parsons and Kealy (1992) and
Sermons and Koppelman (2001). In turn, the extensioMcFadden’s results to non-
Logit models is a problem for which few little pregs have been made in the last 30
years. Some advances have been done for choicd-basaples; cases where the full
choice-set is available to the researcher, but dbservations are instead sampled
depending on the choices. First, Manski and Ler{d&77) proposed a consistent but
inefficient estimator for non-Logit models. Thistiegator was also used by Cosslett
(1981) and by Imbens and Lancaster (1994). Latarrd® et al. (2005) proposed an
efficient estimator for a particular case of thestéd Logit model. Lastly, Bierlaire et al.
(2008) proposed an alternative estimator that @iegble to MEV models with choice
based samples and does not require knowledge shthpling protocol.

Additionally, some analyses have been done regartlie impact of sampling of
alternatives in Logit Mixture models. For exampM¢Connel and Tseng (2000), and
Nerella and Bhat (2004), used Monte Carlo expertaten to study the problem of
sampling of alternatives in random coefficients itagodels and found that sampling
causes only small changes to parameter estimatesn, Chen et al. (2005) used Monte
Carlo experimentation to show that, for Logit Misdumodels that capture correlation
among alternatives, the effects of sampling mightsevere. Finally, Domanski (2009),
citing an unpublished paper attributed to Haefeth dacobsen, claims that the use of the
expectation-maximization algorithm (see, e.g., Ar&009) might result in the consistent
estimation of model parameters while sampling ¢¢rahtives in random coefficients
Logit Mixture model.

Regarding the problem of sampling of alternatives the Nested Logit, several
authors have directly applied McFadden’s resultslogit without any modification.
Examples of these type of applications include Begc and Rust (1985), Train et al.
(1987), Hansen (1987), and Rivera and Tiglao (2088)it will be shown later, this
approach may significantly impact the estimatorghefmodel parameters. Finally, to the
best of my knowledge, the only attempt to deal witle problem of sampling of
alternatives in the Nested Logit model correspotaigshe work of Lee and Wadell



(2010). These authors use a method based on awridgaally suggested by Ben-Akiva
(2009), which we further develop in the next settio

3 A Novel Method for MEV Models

In this section, we present a novel methodologgddress the problem of sampling of
alternatives and estimation for Multivariate ExteeMalue (MEV) models, based on an
idea originated by Ben-Akiva (2009).

The genesis of MEV models goes back to 1973, when-Akiva proposed the
Nested Logit model. Afterwards, McFadden (1978)vatmb that the Logit, the Nested
Logit and other models belonged to a more gendaakf closed-form choice models
that can handle diverse correlation structures gmalternatives in the choice-set.
McFadden originally denominated this class of meded Generalized Extreme Value
(GEV) models. Since the error terms for this clasmodels follow a MEV distribution,
the models themselves are termed here as MEV.

The joint distribution of the error terms of theilities in MEV models has the

following cumulative density function
FEn..r ) =€ ), (7)

whereG is a generating function that is specific to ea@mber of the MEV family, and
y is a set of distribution parameters@fcomplies with certain requirements (McFadden,
1978) the choice model implied by Eq. (7) will bensistent with the random utility
maximization theory. Later, Ben-Akiva and Lerma®§%) show that the MEV choice
probability can be written in a Logit form as shoimnrgq. (8)

eV b £)inG, (<evln >|DCn ;y)

Pn (l ) - Z eV (Xjn rﬁ)+ln GJ' (<eV|n >|DCn ;yj , (8)
jm"
where G, (<ev'n >|DC ?VJ = 6G(eV1:3’é\./;n’evm;y) =G,.

Given the Logit form of the MEV model, it might lb@s if the problem of sampling
of alternatives can be easily extended to MEV blp¥ing the same process of analysis
deployed before for Logit, as shown in Eqg. (3)-(3hat procedure results in the
following expression for the conditional probalyilitf choosing alternative given that
setDn was constructed:

V (%, .8)+In G,(<ev'">
Ai1D,)=—
De

jDDn
Then, the same demonstration developed by McFadt@n8) for Logit, can be
claimed to show that the maximization of the follogvquasi-log-likelihood function

Cn;y)+|n (D)
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X B)*n Gi(<ev'”> V)+In (D,]j) .
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oo s ((8) i) rinmtouh)

Ze v (x, ﬁ)+InG(< De
itD,
leads to consistent estimators of the model paemnet
However, it can be immediately noted that Eq. 9ot practical. Even though the
denominator of the choice probability depends amtyD,, the argument of the term
InG,, still depends on the full choice-gét. Ben-Akiva (2009) suggests that this problem
might be solved i, is replaced by an estimator that depends onlyerstibseD,.
In this paper, we formalize the idea proposed bwy-Bkiva (2009), analyze the
conditions required for its success, study the gsgtic properties of the estimators
resulting from it, determine the correct expansfantors required in some relevant

examples, and study the properties of the estimatsing Monte Carlo experimentation
and real data.

The results on consistency, asymptotic normality efficiency can be summarized
in the following theorem:

Qlyevoc = i_mn(i D)= Zln ()

:VJ+In (D, )

I5Cn

Theorem: Given N observations, a choice-s€t, of cardinalityJ,, and a subsdD, of
cardinality jn. If
a) (D, |j)>0 0jOD, andn(D,|j)=0 0jOD,,
_00(e"..e%:y)
ae "
c) G, = f(B(C,)) wheref is continuous and twice-differentiable,

b) the choice model is MEV an@,, =

d) B(D,) is a consistent (id) and unbiased estimator &(C, ), and

e) Var(l_3>m)= K,/J. with K, scalar;
then, the maximization of the quasi-log-likelihcothction
N (><1n B 1 (8,(D,)}in (D)
Qlyvev, o :nzﬂlm i |D,)= Zln Z X BJin 1(8,(D,)Jin (0,11 (10)

jOD,
yields, under general regularity conditions, caesis estimators (irN) of the model

parameterg*, as J increases withN at any rate. IfJ increases faster thadN , the

estimators of the model parameters will be consistasymptotically normal, and as
efficient as the estimators obtained from the mazaton of a quasi-log-likelihood
shown in Eq. (9). Finally, i, is finite and the protocol is sampling without legement,

J,, needs to increase only up th =J, in order to achieve consistency and relative
efficiency.

Proof. Given that|§>I IS a consistent estimator d3_, as 3 increases, the Slutsky

in?

theorem guarantees thiat f (B,( )) will also be a consistent estimatorlofG,,, because

in?



the log andf are continuous. Equivalently, since(i |Dn) is continuous inInG,_, the

Slutsky theorem guarantees thafi |D,) will be a consistent estimator offi |D,).

Finally, McFadden’s consistency results for Loghpwn in Eq. (6), guarantees that the
maximization of the quasi-log-likelihood shown ig.§10) will result in the consistent
estimation of the model parameterd\asicreases.

Note that the claim of McFadden’s consistency tesuestablished all increases,
but the consistency o, , In f(B(D,)) and #{i | D,) is established ad, increases. To

in?

rely legitimately on the Slutsky theorem, it is isgensable to determine a concordance
betweenJ, and N. This concordance can be established by analyhiagasymptotic
properties of the estimators.

The asymptotic distribution of the estimators @& thodel parameters that result from
the maximization of the quasi-log-likelihood shownEq (10) can be derived using the
two-stage approach employed by Train (2009, pp-Z5¥) to analyze the asymptotic
properties of simulation-based estimators. In st 8tage, we will analyze the asymptotic
distribution of the sample average of the scoreiclvis defined as the gradient of the
quasi-log-likelihood shown in Eqg. (10). In a secatdge we will use those results to
derive the asymptotic distribution of the estimatof the model parameters.

Consider that the choice-se@sandD, of cardinalities) and J respectively, do not
vary across observations, and that there is a esitgim InG, that needs to be
approximated for each observatianThen, instead oBj,, the term considered in this
case should bB,,. These assumptions are not essential, and caasilg generalized, but
help in substantially to reduce notation burdenthWhe same purpose, we will refer to
the whole set of model paramet@randy, just ass.

Under this setting, the sample average of the seeatuated using the estimaté;;
will correspond to:

N 1Y 13 0Ing, _ 1Y 9

= = n="N_"1In .

§(4) N;g“(’g) N; )4 N;aﬁ zeV(xjn,ﬁ)ﬂnf(én)ﬂnnn(on,ﬁ)

jOD

gV 0B 18 n 7, (01.5)

To study the asymptotic distribution @(/) in the vicinity of the true valueg*,
consider the following re-arrangement of terms
6(5*) = 9(B*)+[E(6(5*))- 9(8*)] +[a(8*) - E(a(8*)).
A A A
The first termA = g(8*) is the statistic that is being approximatedd{ys*), where

1N9In7T 19 eV(Xinﬁ)+|“Gn(C)+Inﬂn(Diﬁ)
9(:3) = Néa—,ﬁn’w = N;@In ZeV(xjn,ﬁ)+InGn(C)+Inﬂn(D|j,ﬁ) '
jOD
The second termA, = E(§(8*))-g(5*) corresponds to the bias of the estimator of
g(,B*). The third termAg corresponds to the noise of the approximationciwhs the
difference between a particular realization@)ﬁjﬁ’*), and its expected value.
Consider the noise terAg, which can be rewritten as follows:




A =6(87)-E(a(8%)
A= 206.(5)- (6, (7))

1
=_ d ,
A=Lyq
where eacht, is the deviation ofj(5*) from its expectation for observation Note that

eachd, depends on a particular draw of alternatives tasttact the seD. This means
that there is a distribution of valuesafdepending on all possible draws of alternatives
in D. The distribution ofd, has zero mean because the expectation is sulotrizctee
creation ofd,. Also, note that the variance @f should decrease with the cardinalityDof

because@([z’*) should become closer to its expected valudl amscreases. To account
for this effect, the variance af, can be expressed &/ J, where$, is the variance

when J =1. Then, relying on the generalized version of teet@l limit theorem (see,
e.g., Train, 2009, pp.246), the no&sewill have the following limiting distribution:

JINA, T Norma(O,S/j),

whereS is the population mean &,. Consequently, the asymptotic distribution of the
noiseAs will be

A,~Normal0,5/ N).

It is interesting to note what occurs with the eofg whenN increases butl is
fixed. In this case,\/NA3 will have a limiting distribution, but will not vash asN
increases. In turn, the asymptotic variance ofrtbise A; will decrease a8l increases,
even if J is fixed. Note also that when the protocol is skmgpwithout replacement and
Jis finite, J needs to increase only upgsince from that poing§(2) = E(§(8)) = 9(8)

because any resorting of the alternatives in tlmcebsetC will have no impact on the
choice probabilities.

Consider the bias terdy,. This bias exists because the method describé&dj.irf{10)
considers an unbiased estimaé;r of B, but the calculation ofj(83) involves a series
of nonlinear transformations (ﬁn. The bias can be studied by taking a second order
Taylor's approximation ofd(8) around B, =B,. Noting that §,(3.B,)=g,(8), it
follows that

. 04, [ 5 10°§,

6.(6)=0.(0)+ 2 [8.(9)-8.(8)+ 35
Then, taking expectations (over possible realinatiof the seD), recalling thatl_5>n is an
unbiased estimator oB,, and considering that the discrepamgyhas zero mean, this
Taylor's approximation can be rewritten as

£(6.(8)-0.(8) = - &Pvarlg ().

8.(8)-B,(8)" +o,.



Note that theVar(én(,B)) should decrease a3 increases because thedy will
become progressively closer #),. Assuming that this relationship can be captungd b

the expressior’Q/ar(I_S)n (,8))= Kn/j, whereK, is a scalar, the bia% can be rewritten as
A =E(8(8) - 9(8) =, Z[E(.(8)-0.(6)]

_15196,(8)K,
AZ_Ngz 0Bz J

24
079,
RPN
n

whereZ is the sample average %ﬂ

The biasA, will vanish asN increases, if and only ifJ increases also with.
Otherwise, §(8) will be an inconsistent estimator @f(). Instead, an even stronger

assumption is required to achieve asymptotic natyndlo understand why, consider the
biasA, normalized for sample si2¢

\/NA2=@Z.

This term will vanish adN increases, if and only il increases faster thagw/N .
Otherwise, the estimatqj([a’) will have neither a limiting nor an asymptotictdisution.

Equivalent to what occurred with the noigg, note that when the protocol is

sampling without replacement addis finite, J needs to increase only up dpsince
from that pointE(§(8)) = g(/8) because any resorting of the alternatives in tinéce-set
C will have no impact on the choice probabilities.

In summary, it was shown that T increases wittN at any rate,@(ﬁ)DZF_» g(ﬁ)
and when J increases faster thadN , @(,B) will be asymptotically Normal. Given that
§(8) P - g(B), the limiting and asymptotic distributions §(3) will be the same as
those ofg().

To study the asymptotic properties of43), label W the population variance of
g,(8*). Then, assuming thag() equals zero in the population, by the centraltlimi
theorem, the limiting distribution ofi() corresponds to

JIN(g(8*)-0)? ~ Norma(o, W),
and the asymptotic distribution corresponds to

g(8*)~Norma(0,W/N).

It is then possible to combine the results foragbmponents o@(ﬁ) in order to study
the asymptotic distribution of the estimatqtf?sof the model parametefs This can be
achieved by taking a first-order Taylor’s expansdxbrg(ﬁ) around the true valugs



6(8)=a(8*)+ Rz~ 57 +o,.
where R=9§/03. Then, note that the estimatof® of the model parameteys are

defined by the conditiorﬁ(ﬁ)=0, because dividing Eq. (10) By does not impact the

solution of the problem. Assuming that and the r@igsancyo, disappears asymptotically,
it follows that the limiting distribution of the gsators is

IN(B-p*)=N[-RJg(87) = VN[-R[A + A+ A). (11)

As established before, if increases faster thafN the termsd, andAg will vanish.
Under this condition, the terA; in Eq. (11) becomes asymptotically equal géﬁ)
which has a limiting distribution ofv'N(g(8*)-0) I —~ Normal(0,wW). Note that

RIP- R, whereR = E(Ii). This implies that the limiting distribution ofeéhestimators
of the model parameters becomes

IN(B-g*) — Norma(o,R*WR ™), (12)
and their asymptotic distribution will be
B~Normalg*, R*WR*/N) = Norma(s*, @/N), (13)
* 2 *
whereQ =R™WR™, W =Var w andR=E 0°Inz,(*|D) .
0B 0B0p'

Q is usually defined as the “robust” or “sandwiclgrance-covariance matrix of the
estimators of the model parameters (see, e.gn,T2809, pp. 201). Berndt et al. (1974)
proposed an estimator £f that is known as the BHHH matrix and is used,eieample,
by the discrete-choice estimation software BiogdBierlaire, 2003). To deploy the
BHHH matrix for this case, note thgtis the Hessian of the model shown in Eqg. (9). A
consistent estimator & is its sample analog, which can be constructed tterHessian
of the quasi-log-likelihood shown in Eqg. (10). Beplently, the variance-covariance
matrix of the score of the model shown in Eq. (¥)aluated at the estimated values
VV(,H) is a consistent estimator W. Given that@(ﬂ)= 0, VV(,B) can be calculated as
the outer product of the scores of the model shiomieg. (10). In summary, the BHHH
estimator for the variance-covariance matrix of éstimators of the model parameters
resulting from the maximization of the quasi-lokelihood function shown in Eq. (10),
corresponds to the following expression:

ﬁ:[azln B3| Dq 1[ialnﬁn(ﬁ| D)oin 77,3 D)}[azlnﬁ(m D)} |

0B op 0B op 0B op

These results imply that the estimators obtainethbymaximization of Eq. (10) will
have the same asymptotic variance-covariance magrixhe estimators that would be
obtained by using Eqg. (9); that is, if the full atesetC is available for the calculation of
the expansion of the terimG,. Then, it can be affirmed that estimators olsdiry
maximizing Eq. (10) are efficient among all possildpproximations of the model
described in Eq. (9R.E.D.

It is interesting to note that the estimators ot#di by maximizing Eq. (9) are not
globally efficient because Eg. (9) is not the treg-likelihood and therefore the

n=1

1C



Crammer-Rao lower bound is not attained. This atfggies that the estimators obtained
by using McFadden’s (1978) method for Logit areafefficient. McFadden (1978) did

not study the asymptotic distribution of his estiona. However, following the same line
of analysis deployed in this section, it can bewghthat the asymptotic distribution of
McFadden’s (1978) estimators will be equal to B®)(using instead Eq. (6) to calculate
the termsR andW.

Additionally, the fact that the estimators obtaineith the method deployed in Eq.
(20) will not be consistent unlesk increases witt, implies that, in practice, we should
test the stability of the estimators of the modafameters as a function o . If the
estimators for different values of are statistically equal, we can be sure that ithitef

sample (of alternatives) bias is negligible. Othsey J should be increased until
attaining stability. This is equivalent to the nefed testing for the stability of Logit
Mixture’s estimators as a function of the numbedmws, in the simulated maximum-
likelihood framework (Walker, 2001).

The practical implementation of the method to aohieonsistency and asymptotic
normality under sampling of alternatives in MEV metgldepends on the specific MEV
model and the sampling protocol being considenedhé next two sections, we analyze
this implementation in detail for the Nested an& tBGross-Nested Logit models,
respectively. Then, for illustrative purposes, iec®n 6, we develop a Monte Carlo
experiment where the performance of the method nalyaed under different
circumstances. Finally, in Section 7, the methogples applied to a Nested Logit of
residential location choice that was estimatedgistal data from Lisbon, Portugal.

4 Formulation of the Method for Nested Logit

The Nested Logit model is a closed-form discreteicgh model that allows for the
correlation among random components of the usliteé alternatives that belong to
mutually exclusive and totally exhaustive subsetsngsts) of the full choice-set. In this
model, the marginal choice probabilities are wnities the product of the conditional
probability of choosing each alternative (giventtthee respective nest is chosen) and the
marginal probability of choosing the respectivetnébe utility of a nest is defined as the
expected maximum utility of choosing the alternagivthat belong to that nest, what is
known as the inclusive value (Ben-Akiva and Lernfg85).

McFadden (1978) showed that the Nested Logit mamhh be alternatively
formulated as a member of the MEV family. The gatieg functionG for a Nested

Logit model withM nests is

u
M

i

o(e*)  iv)=Y| e |, (14)
'Cn m=1\ DGn(i)n

wherem(i) is the nest to whichbelongsyy is the set of scales, of the nests, an@un

is the set of alternatives that belong to the ngst In this caselnG,, corresponds to the

expression shown in Eq. (15).

11



lnGin :[L— J['n Ze/’m(i)vi"j+|n/j+( m(i)_l)\/i (15)

/'Im(i) jECm(i)n

Then, if a sampl®mngn, is drawn from the true choice-B4, the only term that
would be affected (and therefore needs to be appedgd) is the sum of the
exponentials of the systematic utilities, the argomof thelogsum The sum of the
exponentials will be denoted as

B, = e (i Vin )

jECZm(i)n

One way of approximatingBi, is by constructing an expanded sum of the
exponentials of the utilities of the alternativadDn. Then, the challenge would be to
determine the expansion factovg, required to obtain an unbiased and consistent
estimator of the sum of the exponentials.

To obtain an unbiased estimator, the expansiorofadtave to comply with the
conditions shown in Eqg. (16), where the first expgon is taken over all values xfand
the second expectation is taken oxend all potential seBmn.

e(e.)-elg,)-0- Ex[ Se JE( ZWJ 16)

jmm(i)n jDDm(i)n
Note that eacke’"""" can be seen as a random variable with MERN , the mean of

the empirical distribution o0&~ In this case the first component of Eq. (16) ees

E(B,)= E[ Zeﬂm(iM"J = J ()l T(ipn -
IBCi(i)n

The expansion factors;, required to obtain an unbiased estimataBipEhall depend
on the sampling protocol. For analytical purposeswill consider first that the protocol
is sampling without replacement and then that gampling with replacement. Finally,
we will show that the expansion factavg required in both cases can be summarized in a
single expression.

Consider first that the protocol is samplwwghout replacement by nest. Then, using
the following indicator function
_{1 it J O Dy

1jDDm(i)n 0 0/ w

~
1

it is possible to rewriteE( n) in Eq. (16) as follows:

E(E;,n): E( ijne“mmVJ‘"J = E( Lo, wjne“m“)vi"j.

jDDm(|)n jmm(l)n

Then, by the Law of Total Expectations (also knows the Law of Iterated
Expectations), which is equivalent to the totalbjadolity theorem used in Eqg. (4),

5 —_ Hin(i an
E(Bm) - E[ E( ,Dg:liDDm(i)n Win€ ! |1JDDm(i)n JJ
J (i)n
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(Ls’m) [ Zlmo W E( e im0, )J: E(lemo Win/Tm(i)n J

JOCk( iCCm(i)n
£(B,)- zE(lm Wt

where E( finii Vi |1J.DDm(i)n)=/7m(i)n results from the fact that the distribution ef"

determines the sampling Dfy)n, but the causality does not go in the other divact
Given this result, one way for Eq. (16) to equabzes by having
in :]/E(ljDD ,
where E(l,mo ) is the probability of drawing alternatiyebecause the protocol in this
case is sampllng without replacement.

Consider now that the protocol is sampliwgh replacement by nest. Then it is
necessary to define the sétm and the indicator functiom, . The former is a set that
includes all the repetitions of the alternatlvemphed and the Iatter corresponds to the
number of times alternatiieis repeated in the sd@ m(ijn- THEN B, can be rewritten as

n

follows

= Zw gV = Z W , and therefore
iBDm(i)n IBCin(i)n
( ) D W7y E (ﬁ ) and thenw,, =J/E(f,, ).
TBCrn(i)n
Flnally, since
—_ g miV'n —_ miV'n
= ZW ghmVin = anJn FiVin = ijne””‘,
jOD, (i)n JODp (i)n jDDm(,)n

the expansion factors required to obtain an undiasstimation of the sum of the
exponentials, for the case of sampling with replaest, are equal to

W, = njn/E(njn).

The expansion factors required when the protoculitis or without replacement can
be summarized in a single expression by noting, twaen the protocol is sampling
without replacementiy,, =1 if j is in Dimn, and E(\ljDIS o ) is also the expected number of
times alternative] would be drawn to construct the sBt,ij,. Then, the general
expression for the expansion factors required tainkan unbiased estimator &, can

be denoted as shown in Eq. (17).

W, = E(r;—y (17)
The next step is to prove that the expansion facsbown in Eq. (17) will lead to
consistent estimators @, as jm(i)n increases. This results directly from any weak Law
of Large Numbers. Actually, consistency would banged even if no expansion factors
were considered at all. Agm(i)n increases, even an estimatorByf that only considers
the simple sum of the exponentials of the alteveatinDmg, will eventually be as near

13



to Bi, as desired, a§m(i)n increases. The difference is that the expansictofe.shown in

Eq. (17) will converge faster, leading to bettaité sample properties. In addition, using
Eq. (17) is what allows obtaining an unbiased emtibm condition required in the
derivation of the results on efficiency and asyrtiptoormality.

5 Formulation of the Method for Cross-Nested Logit

The Cross-Nested Logit model is a closed-form digcichoice model that allows for
correlation among the random components of théiesilof all alternatives in the choice-
set. Similar to the Nested Logit, the Cross-Nedtedit considers a set of nests
However, in the Cross-Nested Logit model the nests totally exhaustive but not
mutually exclusive in the coverage of the altenregtiin the choice-set. The correlation
structure is defined by a non-negative weightrepresenting the degree of belonging of
alternativej to the nesi. Examples of applications of the Cross-Nested tomgidel and
variations of it are the works of Small (1987), ¥ba (1997), Vovsha and Bekhor
(1998), Bierlaire (2001), and Papola (2004).

The Cross-Nested Logit model can be formulated ragmber of the MEV family. In
general, withM nests, the generating functi@that results in the Cross-Nested Logit
model is

A
M Hin
Vln . -_— mvin

G(<e >|Dcn,yj = mzf:l[i%ajme" J :
wherem are the nestg, corresponds to the set of scalgsof the nests, and;, are the
weights. Then, the terdim G, corresponds to the following expression:

H—Hn
Hm

M
NG, =In> ,uaime"'(”m‘l)( > a,¢e “"V"j
m=1 AG,

Just as it occurred with the Nested Logit, if a gienD, is drawn from the true
choice-selC,, the only term affected will be the sum of the @xgntials, which is now
weighed by the termsy,. Then, consistency, relative efficiency, and asytip
normality can be achieved for the Cross-Nested tLajile sampling of alternatives,
using the following estimator:

Bln = ijna'jme " = Bm = Zajmeumvj .
joDb, joc
The same derivation used in Eq. (16)-(17) can leel s show that the expansion factors

Wi, required in this case are also those shown i{I&q.

6 Monte Carlo Experiment

6.1 Model Setting

A Monte Carlo experiment was performed to analyze ilustrate the properties of the
proposed method in achieving consistency in the chsampling of alternatives in MEV
models. The setting of this experiment is summadrlae Figure 1. The true or underlying
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model is a Nested Logit with 1,005 alternativespagiwhich the first 5 belong to one
nest (J, = 9 and the other 1,000 to a second nestX )JO0Bie systematic utilities
Vin depend upon two variables, andx,, which were constructeidd Uniform (-1,1) for
the N=2,000 observations. The true parameters of the emodre uy=1

W=2,1,=3,B =B, =1.
u=1

/11:2 2 =3

1,004 1,005

v (X” ”8) = 1X1in + 1X2in

Figure 1 Monte Carlo Experiment: Nesting Structure.1,005 Alternatives

N=2,000J, =5J,=5; J, = 1000 J, = 5and500

The methodology used to implement the Nested Liogidlel shown in Figure 1 for
Monte Carlo experimentation was performed in seévaeps. First, the choice probability
was calculated replacing the true values of tharpaters in Eq. (8). Then, these choice
probabilities were used to build a discrete cunngatiensity function by alternative.
Afterwards, a random number Uniform (0,1) was gatesl for each observation. Finally,
the chosen alternative was determined as the ievadrthe cumulative density function,
evaluated for each random number.

The sampling protocol used to draw alternativesmfrthe choice-set in this
experiment was stratified importance sampling witheeplacement by nest. First, the
chosen alternative for each observation was indud@ieen non-chosen alternatives were

randomly sampled, without replacement by nest, &xema total of:Jul =5 for the first
nest, ancﬁ2 =5 and 32 =500 for the second nest.

Given this sampling protocol, the conditional proitity of constructing a particular
setD, for observatiom, given that alternativewas chosen, corresponds to

. ‘]mi -1 B Jm‘mi B
72;1(D||):(3()_ J (3 ’ ()j ,
m(i) mizm(i)
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wherem’#m(i) is the nest to which does not belong and the expression on parenthesis
corresponds to the binomial coefficient.

It can be shown that

({m(i)—lj: ) (Juy =" :Jm(i,({m@)J
o) ™Y (Ja) "D'O) 1= Gy =D ' Jiag) WImi)

and therefore, the conditional probability of ceusting the seb,, given that alternative
I was chosen, corresponds to

N do (3N (3T
ﬂn(Dll)_ ~m()|:(31j (jj ] (18)

Given that the second term in Eq. (18) does not gaross alternatives, it will cancel
out when taking the log to calculate the samplimgrection In7z(D, |i). Then, the
estimator of the conditional probability of choggialternativei, given that the sdb,
was constructed, will correspond to Eqg. (19)

V(i )+ in f(éin(Dn))Hn%l
m(i)

Ali1D,)=— — (19)

jn ’:B)+ In f (éin(Dn ))+ In"L(J)

\Y
Ze b In(j)

i,

whereln f (ém(Dn)): (L —1) (In ijne”m“""’"j+ In 22+ () =LV
B

Hin(i) n

The final step corresponds to the specificatiothefexpansion factons,. This task
is substantially different depending on whether #et D, (used for the sampling
correction) is or is not also used for the expamsibthe sum of the exponentials.

Consider first that the sdd, is also used for the expansion of the sum of the
exponentials. Then, given that the sampling prdtdsowithout replacement, the
numerator in Eq. (17) will equal lE(ﬁjn), the expected number of times alternajive
might be sampled to construct the & remains to be calculated. Given that the
protocol is without repIacementE(ﬁjn) corresponds to the probability of sampling
alterativej.

E(ﬁjn) can be calculated using the Law of Total Expeateti The idea is to divide
the space into mutually exclusive and totally exdtize events with known probabilities
of occurrence, and for which the conditional exptieh of n,, is also known. Consider

the following events:
A;: The chosen alternativejis
Az: The chosen alternative is rjpbut it is within those in the nesi(j)
Asz: The chosen alternative does not belong to them(gs

The eventd\;, A, andAs are totally exhaustive and mutually exclusive liseaonly
one alternative is chosen and the nests in theeNdsigit model are mutually exclusive
and totally exhaustive. The probabilities of théseee events depend on the choice
probabilities:

[

16



P(A)=P(j) : The probability of choosing alternatije
P(A)= Z P(l) : The probability of choosing other alternativesri), which
0) is equal to the sum of their choice probabilities.

P(A)=1- z P(1) : The probability of choosing an alternative ougsit(j),
which is equal to 1 minus the probability of thestma(j).

The conditional expectations af, given the eventéy, A, andAs are also known:

E(ﬁjn | Ai) =1 : Because the chosen alternative is always sampled.

: Because iff is not chosen, but the chosen alternative is in

3 ~
( il AZ) 3,1 m(j), only J,;y—1 out of J ) —1 alternatives remain to be
m(i) sampled from the nesi(j).
( |A3)‘ . Because if the chosen alternative is in nan(j), 3 (j) out
in -

Jm(j) of J,;) alternatives remain to be sampled from the mggt

Then, by the Law of Total Expectations, the expmcetember of times alternatiye
might be drawn will correspond to

E,)=E[, | AJP(A)+E[, | A)P(A )+ E[, | A)JP(A).
By replacing terms, Eq. (20) is finally obtained.

e )=R0)+ 71077 SR+ 1- () @)

Ju>1mn m(j)

The expression shown in Eq. (20) for the denominatbréh@ expansion factors
depends on the choice probabilities, which are uwknbeforehand in an application
with real data. In section 6.3, we analyze altewestio achieve this goal in practice.

Consider now the case when aBgtis used for the sampling correctitm7(D, |i),

and a different Se5n Is drawn to construct the expansion of the sum oéxp®nentials.
We term this alternative procedure re-sampling. Ia tlase, the conditional probability
of choosing alternative given that the setS, and D, were drawn, will correspond to
Eq. (21).

Im(i)
Iin(i)

V(3 )10 1 (B (B,
N ~\_ e
]T(I | Dn1Dn)_ V(Xi ,ﬂ)+|n f(é (~ )) Jm(j)

D, ))+In=

Ze " " ()

oD,

As stated before, the g8t must include the chosen alternative. Otherwise, tiasig
log-likelihood of the model may become unboundedkingaimpossible the estimation
of the model parameters. In turn, the getused for the expansion of the sum of the
exponentials in Eq. (21) does not need to incluéectiosen alternative, as long s
does it. This small difference is relevant becausthefsampling protocol used to build
the setD, does not require drawing the chosen alternativeeftly, there is no need for

knowing the choice probabilities beforehand to dalkeuthe expansion factong,.

(21)

17



The implementation of the expansion method in peactthenD, does not require

drawing the chosen alternative forcedly becomes thariderably simpler. Consider for
example that the sampling protocol used to buildsiteD, was importance sampling

without replacement by nest. Under this setting, deeominators of the expansion
factors, the equivalent to Eq. (20), would simplythe ratio shown in Eq. (22), where

J.;) corresponds to the cardinality Of,.

(22)

6.2 Assessment of the Methods with and without Re-saniph

Given this Monte Carlo experiment, the sampling geot described and the expansion
proposed, five models were estimated and the resulsharen in Table 1. The firsNE
Samplingin Table 1) corresponds to the true model, whersamapling was applied. This
model is estimated as a benchmark for the best posstileaéors that could be expected
for this particular experiment.

Table 1 Monte Carlo Experiment: Sampling in MEV with and without Re-Sampling

) Expanded Expanded
Experiments No Sampling Full InG, Unexpanded True Prob. Re-Sampling
est. s.e est. s.e est. s.e es. s.@ est. s.e
ﬂxl 1.009| 0.04681 0.9906 0.06112 2.570 0.1612 0.910D60@0| 0.9301 0.0670p
B, 1.062| 0.04933 1.027 0.06233 2.630 0.1649 0.927661@4| 0.9558 0.06818
- yA 2.055| 0.2076| 2.111 0.2289 0.2655 0.006477 2.211 688.2 1.976| 0.2913
ji _:55 M, | 2.824| 0.1125| 2.881 0.1291 1.130 0.075p2 3.313 6.1/&8.853 | 0.1567
L(,é) -10,312.09 -1,942.70 -2,036.24 -1,968.59 -2,030.30
L(0) | -13825.49 -4,605.17 -4,605.17 -4,605.17 -4,605.17
p? 0.2544 0.5790 0.5587 0.5734 0.5583
'Bxl 1.009| 0.04681] 1.005 0.0467Y8 0.7534 0.04708 1.005046@9| 1.004| 0.0467
B, 1.062| 0.04933 1.055 0.04915 0.7913 0.04950 1.05604908| 1.055| 0.0491
- My 2.055| 0.2076| 2.065 0.2088 2.730 0.3086 2.063 0.2p88065 | 0.2091
j-lz::zoo M, | 2.824| 0.1125| 2832 0.1130 3.785 0.2186 2831 0.1132834 | 0.1133
L(3) | -10312.09 -9,115.24 -9,117.40 -9,115.91 -9,115.37
L(O) -13,825.49 -12,449.12 -12,449.12 -12,449.12 -124219
yoa 0.2544 0.2681 0.2679 0.2681 0.2675
N=2,000.J,=5,5,= 3,=5:J, = 10003, = J, = 5ancs00

The second modeF(ll InG,, in Table 1) corresponds to the application of sampling
of alternatives and the corresponding sampling cborecbut using the full choice-set to
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evaluate the terninG,,, as shown in Eq. (9). Even though this model israatical

because it requires knowledge of the full choiceisetas estimated to show that Eq. (9)
is correct, and to quantify and to differentiate #féects of sampling of alternatives,

when having a reduced choice-set, from its effectsarapproximation on G, .

The third model estimatedJfiexpandedn Table 1) considers that a dBf was
sampled from the full choice-s€l,, that the corresponding sampling correction was
applied, and that the same €&t was used to construct the tedmG,, without any
expansion term. This model acts as a benchmark bettause=2sponds to what has been
used to date by the researchers to estimate Nested hogiels under sampling of
alternatives (see, e.g., Berkovec and Rust, 1985nT@8al.,1987; Hansen, 1987; and
Rivera and Tiglao, 2005).

The fourth model estimatedXpanded True Prohin Table 1) corresponds to the
method proposed for cases where the samB,sstused for the sampling correction and
for the expansion ofinG, using Eq. (20). The calculation of Eq. (20) inxesd

knowledge of the choice probabilities, which are nown beforehand in a real
application. However, in this Monte Carlo experimém true choice probabilities are
available beforehand and are therefore used to shewperformance of the method
proposed for the expansion of the sum of the expaient

The last model estimatedEXpanded Re-samplinop Table 1) corresponds to the
method proposed for cases where aB3ets used for the sampling correction, and a

different setf)n (constructed independently from the chosen altergais used for the
expansion ofinG,, using Eq. (22). For fair comparison with other meg#éie number of

alternatives considered in the 561; is the same as that used for the Bgt that is,

J,=J,.

The first result that should be noted in Table 1 ig,tha expected, all estimated
parameters for thBlo SamplingandFull InG,, models are statistically equal (with 95%
confidence) to the true values. Regardifgll InG,,, note that, as the sample size
increases, the standard error of the estimators is reéscadresult of the increment in
the number of casesl(j—l). In other words, efficiency increased as more in&irom
became available.

Regarding the modé&Inexpandednote that forj2 =5, the model estimates are very

far from the true values. Remarkably, one of theesparameters is even below one,
which makes this result inconsistent with utility maxation (Ben-Akiva and Lerman,

1985). The bias in this model is reduced substantiatlﬁg =500. This occurs because
the Unexpandedormulation collapses to the true model as the sarmsigke increases.
However, even for32 =500, the estimators are still statistically different (wiBb%
confidence) from the true values.

In the case of théexpanded True Probmethod, all estimates in Table 1 are
remarkably better than those of tHaexpandednodel and statistically equal (with 95%
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confidence) to the true ones with 95% confidencendor 32 =5. For the bias, note that
it is not negligible forj2 =5, but for 32 =500, it is significantly reduced.

Figure 2 shows the evolution of the estimatorsjgsis increased for the model
Expanded True ProbAs jzapproacheéz, the estimators of the model collapse to those

of the No Samplingmodel. Remarkably, the estimators quickly stabiliae 32 below
100 and are never far from the true values. As showrable 1, even for a sample size
as small asj2 =5, all the estimators are statistically equal (with 9&8afidence) to the
true values.

1.05 I I — 110 I —
\ I B I B
\ I B B O O
Lo e -1.009 o5 | s 1.062
: R N ‘:‘“ et
~ '? ﬁ ;.;
'8X1 0.95 g,: Xy 1.00 *
* -
0.90 - 0.95 1
0.85 ‘ ‘ 0.90 ‘ ‘
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2.10 I:,‘;& ERIRS 2.90
200 [FFrAbee 2055 ze | 2.824
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J, J,

Figure 2 Monte Carlo Experiment: Estimators as:JH2 Increases. Expanded True Prob.

Figure 2 is also useful for analyzing the small sampées.bFirst, note that the
parameter that has the poorest convergence beh#asiger( variance and slope) j3,,
the scale of the second nest. It can be hypothesiaédhis occurs because sampling is
performed only from the second nest in this experimiéigure 2 also shows that both
scales i1, and i, are biased upward and that the model parameferare biased
downward. The experiments analyzed did not allow @soyg hypotheses to explain this
result. Further analysis of the finite sample propsrif this estimator, and potential
ways to improve them, are left for future research.

Finally, the last column in Table 1 shows that tesults for theExpanded Re-
Samplingmethod are statistically equal (with 95% confidertoghose obtained by using
the Expanded True Probmethod, and also statistically equal (with 95% caafick) to
the true values. This implies that if re-sampling tofgren the expansion of the sum of
the exponentials is possible, it should be preferredusecit avoids approximating the
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choice probabilities. In the next section, we amalyhe performance of different
procedures that can be used in practice when relsenip not possible.

6.3 Expansion in Practice when Re-sampling is not Posde

When re-sampling is not possible the results of the miefttrosampling of alternatives in
MEV shown in Table 1, require knowledge of the ckoprobabilities, which are not
available in an application with real data. To avthis problem, three methods used to
approximate the choice probabilities are examined thie results are summarized in
Table 2.

Table 2 Monte Carlo Experiment: Different Estimators of Choice Probabilities

Expanded Expanded Expanded Expanded
Experiments True Prob. All or Nothing Population Shares| lIterative Prob.
est. s.e est. s.e est. s.e esl. s.@
lel 0.9102| 0.0602Q 0.7440 0.05335 1.133 0.06906 0.9484€6528
B, 0.9276| 0.06124 0.756p 0.05417 1.158 0.07¢20 0.968306641
j- _g yA 2211 | 0.2688| 2.787 0.332}y 1.685 0.2151 2.031 0.2734
31 __ 5 M, 3.313 | 0.1786| 4.328 0.281fy 2.714 0.1251 3.210 0.1B08
- L(3) -1,968.59 -1,864.44 -1,982.65 -1,991.85
L(0) -4,605.17 -4,605.17 -4,605.17 -4,605.17
p? 0.5734 0.5960 0.5703 0.568
'Bxl 1.005 | 0.04679 1.00§ 0.04643 1.007 0.04681 1.005 460D
B, 1.056 | 0.04918 1.055 0.04912 1.0538 0.049p0 1.056 4908
~ Y7 2.063 | 0.2088| 2.066 0.2088 2.059 0.2083 2.063  0.2p88
j~12 _:5500 My 2.831 | 0.1131f 2.833 0.1131 2.825 0.1125 2.831 0.1130
L(,é) -9,115.91 -9,114.88 -9,115.92 -9,115.92
L(O) -12,449.12 -12,449.12 -12,449.12 -12,449.12
P’ 0.2681 0.2682 0.2681 0.2681

N=2,000.J, =5.J, =5:J, = 1000 J, = 5and500

One alternative is to approximate the probabilityhef chosen alternative to equal 1,
and the probability of the non-chosen alternativegdoal zero. This model is termed
ExpandedAll or Nothing in Table 2. Replacing these assumptions in Eq. @®),
expansion factors used in this case will corresponkdedailowing:

w,, =1 if j is the chosen alternative

J.y—1
W, :3”‘('—)1 if j is not chosen, but another alternativenip) is chosen
m(j)
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W, =% if ] is not chosen, and no other alternativenif) is chosen.
m(j)

The expansion factors that result in this case arevalguit to those used by Frejinger
et al. (2009) to approximate the denominator of agil. model with sampling of
alternatives, and to those used by Lee and Wad#el(Q) to expand a Nested Logit
model under sampling of alternatives. That is, althoiigis not mentioned by those
authors, they implicitly approximated the probapilif the chosen alternative to 1, and
the probability of the non-chosen alternatives to O.

A second possibility to approximate the choice prdiieds needed for the
calculation of the expansion factors is to use thpufation shares of each alternative.
Although the true population shares are not availablea real application, good
approximations of them are clearly plausible fronfedént sources (Census data for
spatial choice models or flow counts in route choiceetng). This method is termed
ExpandedPopulation Shares Table 2. Replacing the population shares in(E@), the
expansion factors implied by this procedure are thewing:

W, =populationshareof alternatie j
W= = ! = On=1---,N; O OC,.
W. + Jm(J) -1 Z\NI + Jm(J) [1_ Z\N'J
In(3) _15?"“)" In(3) IECn(j)n

J
Finally, an iterative method can be proposed. Tieshod starts with an estimation of
the population shares of each alternative, and #stimates the choice probabilities for
each observation, iteratively, until convergencéisTmethod is termedExpanded
Iterative Prob.in Table 2 and can be summarized as follows.

Step O:
k=0
W, =populationshareof alternatie j
we = _ 1 _ On=1---,N;jOC,
" Iy 1 I
W+ YW 1= YW
In(i) 1I'D<J? (i)n I0Con(j)n m(j)
Step 1:
\7(xjn ,[3’)+In f(én (wk))

e

Z\le V )qn +Inf (wk))

10D,

Estimate the model usingv'j‘n to obtain 3 and I5nk(j)

Step 2:
W5 "3
i)+ 20007 S uppe() mm(l— Sup (u)j
Inti) ~hclo, i)\ 1000
Step 3:
k=k+1
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Go to Step 1 until convergence.

Convergence can be stated in terms of the estin@deaimeters of the model, the
expansion factors, or the choice probabilities. Hoe applications of the iterative
procedure in this research, the following stoppinterion was used:

PE(i)-Pe(i) <1/(003).
The three methods proposed to approximate the elpmbability when re-sampling
is not possible were used in the estimation ofpifudlem of sampling of alternatives for

the Nested Logit model described in Figure 1. Tdblshows the results of the three
methodologies, compared to the results obtained théExpanded True Probmethod.

Consider the case of thexpanded All or Nothingand theExpanded Population
Sharesprocedures. Table 2 shows that fﬁzr:S, the estimators of both methods are
statistically different (with 95% confidence) tcettrue ones. Although, comparing these
results with those of thenexpandednethod reported in Table 1, it should be noted tha
the new estimators have a smaller bias. Fp; 500, theExpanded All or Nothingnd

the Expanded Population Sharestimators are statistically equal (with 95% cdeafice)
to those obtained by using tBxpanded True Prolmethod, and also statistically equal
(with 95% confidence) to the true values.

Finally, for theExpandedterative Prob.method, Table 2 shows that f55 =5 and

J, =500 the estimates are statistically equal (with 95%tficence) to those obtained

using the Expanded True Probmethod, and also statistically equal (with 95%
confidence) to the true values. This implies tlten re-sampling is not possible, the
iterative procedure proposed to approximate thecehprobabilities should be preferred
to expand the sum of the exponentials.

max, ;

6.4 Additional Experiments

In this section, we present four additional expers to illustrate the performance of the
proposed method for addressing sampling of alteesin MEV models, under different
circumstances.

The first three experiments explore the effecthef distribution of the data. These
experiments consider the same structure descnibEayure 1. The only difference is that
the distributions of attributes, andx, vary across observations. Under this setting, the
estimators of the model parameters were obtaineti(fd repetitions using tHexpanded
True Prob.method and for different values df,. Table 3 reports the bias, mean squared

error (MSE) and t-test against the true value efgbale of the second nest for each
experiment.

The first experiment is termddniform Mixture For the first 1,000 observations,
was drawn from aiid Uniform (-1,1) distribution and, from aniid Uniform (-1.5,1.5)
distribution. For the second half of the observaio; was drawn from afid Uniform
(0,2) distribution anc, from aniid Uniform (-3,1) distribution. The results of thisodel
are shown in the first column (after the labelsYable 3. It can be noted that the sample
size required to obtain an estimator @f statistically equal (with 95% confidence) to its

true value is larger than 25 alternatives in tlaisec This value is larger than that obtained
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for the experiment reported in Table 1 and confirtinat the threshold required for
attaining valid estimates of the model parametepedds on the data.

The second experiment is termedrying J,. This experiment considers the same
structure and distribution of the data used inm&orm Mixture experiment. The only
difference is that the number of drawn alternativases across individuals following a
Discrete Uniform distribution with limits

[15./2)[23,]] .

Then, for example, fod,=10 in Table 3, the number of alternatives considdor each

of the 2,000 observations can be any integer betvdeand 20, with equal probability.
The results of this experiment are shown in th@sécolumn of Table 3. Although this
experiment is not directly comparable with thlmiform Mixture setting, it can be
affirmed that the fact that, in both cases, sansptes around 25 were large enough to
obtain an estimator of the scale of the second thestwas statistically equal (with 95%
confidence) to its true value, is evidence thayweay the sample size across observations
causes only minor impacts in the estimation procedu

Table 3 Monte Carlo Experiment: Additional Experiments on Sampling in MEV

i, Uniform Mixture Varying 32 Normal Uniform

J, Bias MSE | t-testtrue Bias MSE | t-testtrue| Bias MSE | t-test true
10 0.4878 0.2624 3.125 0.4502 0.2317 2.641 1.359 1.989 3.616
25 0.2760 | 0.09404 2.065 0.2623  0.08881 1.854 1.063 231.2 3.493
50 0.1512 | 0.03729 1.259 0.1465  0.03799 1.139 0.79386914@. 3.206

100 | 0.07260 | 0.01733 0.6612 0.074183  0.02034 0.6085 6.950.3516 2.498
250 | 0.01492 | 0.01154 0.1402 0.01944  0.01369 0.1682 8.296.1228 1.592
500 | -0.006329| 0.0110% -0.0603 0.0002020 0.01805 O0f®170.1473| 0.0475¢ 0.9155
N=2,OOO.\]1 =5.J, = 1000 31 =5; Average and variance from 100 repetitidBspanded True Prob.

The third experiment is termédbrmal Uniform In this case; isiid Normal (0,1) for
the first 1,000 observatiorad Normal (1,2) for the rest. In tuxaiid Uniform (1,3) for
the first 1,000 observations and Uniform (0,4) ttoe rest. The results of this experiment
are shown in the third column of Table 3. This expent shows that the sample size
required to attain estimators that are statisyjcatjual (with 95% confidence) to the true
values is now between 100 and 250. This resultrthér evidence that the performance
of the method can be significantly affected bydrsribution of the data.

The fourth experiment sheds light on whether orthetsample size required to attain
a desirable bias can be stated as a percentagge oétdinality of the true choice-set. The
experiment described in Figure 1 was modified aayarding the number of alternatives
in the second nest, which is 1,000,000 in this.céke distribution ok; andx, are again
iid Uniform (-1,1) for theN=2,000 observations. The model is described inrEiguand
the results are reported in Table 4.
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Figure 3 Monte Carlo Experiment: Nesting Structure.1,00,005 Alternatives

Table 4 Monte Carlo Experiment: Sampling in MEV. 1,000,005 Alternatives

Expanded
i True Unexpanded
Experiments values True Prob.
Est. s.e est. s.e
B, 1 2947 | 03594 | 09403 007198
B, 1 2820 | 03412 | 0911§  0.06894
- N 2 0.1427 | 0003651 1.877]  0.5237
J, =5
31_5 L 3 1073 | 01322 | 3372  0.2203
=
L(3) -1,348.82 -1,341.87
L(0) -3,670.51 -3,670.51
ok 0.6336 0.6355
B, 1 1.887 0.4404 1.014|  0.0593p
B, 1 1784 | 04162 | 09629  0.0558p
- n 2 0.1896 | 0.02426| 1.836]  0.455
J =5
= 3 1645 | 03837 | 3.054| 0162
3, =500 |_*2
L(3) -9,253.96 -9,241.78
L(0) -12,710.46 -12,710.46
° 0.2723 0.2732

N=2,000.J,=5,3,= 3, =5:J, = 10000007, = J, =
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In this case the true model is not estimatable witnmercial software because the
computational costs are unbearable. In turn, gassible to simulate independently the
choices for each observation, then to sample al smaalber of alternatives from the true
choice-set, and store that subset of information,stibsequent estimation. Using this
procedure, samples of 5 and 500 alternatives wererdfrom the second nest.

Table 4 contrasts the estimators that are obtawsidg the Unexpandedand
Expanded True Prolmethods. Similar to what occurred in the experitmeaported in
Table 1, the estimators of tiiexpanded True Prolmethod are also statistically equal
(with 95% confidence) to their true values, evem o sample size as small as 5.
However, comparing Table 1 with Table 4, it camléed that the confidence is smaller
in the case where the true choice-set has 1,00@/@8%atives.

Given that the quality of the estimators obtainethveamples of 5 and 500 are
qualitatively equal when the cardinality of theerthoice-set is 1,005 or 1,000,005, it can
be affirmed that there is evidence that the sansple required to obtain acceptable
estimators is independent of the true cardinalitthe choice-set.

7 Application to Real Data

The final step corresponds to the demonstratioth@imethod proposed for sampling of
alternatives and estimation in MEV models usind da@a. The case study corresponds to
a residential location choice model situated in Bloetuguese municipalities of Lisbon,
Odivelas and Amadora, which are located at theecasftthe Lisbon Metropolitan Area
(LMA).

The data to estimate the model was constructed) tisencombination of two sources.
The first source was a small convenience onlingesu(SOTUR) conducted in 2009 by
Martinez et al. (2010) in the LMA. The second seucorresponds to a snapshot of the
dwellings that were advertised for sale in Febru2®@7 within the municipalities of
Lisbon, Odivelas and Amadora (Martinez and Viega809). The details on the
construction of the database by matching both ssucan be found in Guevara (2010).

The database is compounded of 11,501 alternatiras, which only 63 correspond
to chosen dwellings. The main descriptive stasstitthe database are shown in Table 5.
Regarding dwelling attributes, Table 5 shows thatelings from the Lisbon
municipality tend to be more expensive and oldaantithose from Odivelas and
Amadora, although the differences are not stasifijicignificant (with 95% confidence).
Also, the dwellings from both regions have apprcadety equal area. Finally, dwellings
from Lisbon are significantly closer, in average,the workplace of the head-of-the-
households of the sample. Table 5 also shows thigildition of household location,
classified by income. It should be noted that 51 @fu63 households reside in Lisbon
municipality and that the larger share of househaldthe sample have an income that is
between 2,000 and 5,000 Euros per month (€/M).

Using the database described in Table 5 we corglder Nested Logit model
allowing for correlation between alternatives ogemgraphic base. The structure used is
shown in Figure 4. We considered one nest for {i83alternatives that belong to the
Municipalities of Odivelas and Amadora, and theeotl8,018 alternatives from the
Municipality of Lisbon, were considered to belooghe root of this Nested Logit model.
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The nesting structure used is simple principallgdwse of the small number of
observations available. More interesting structusesh as multilevel nests by area, were
impossible to estimate. However, the nesting strectonsidered does serve well its
main purpose of demonstrating the methodology fam@ing of alternatives and
estimation developed in this research. Furthermdespite its simplicity, the nesting
structure is concordant with what is observed e c¢hy. The municipalities of Odivelas
and Amadora are approximately what Rayle (2008)nddf (using a factor-analysis
approach) as the “Inner Periphery” of the centr8A, a sector that has marked
differences with the Lisbon’s Municipality.

Table 5 Summary of Lisbon’s Residential Location Chice Database for Estimation

Average Dwelling Attributes

_ Household Location
(Standard Deviation)

Total
Municipality Price | Distance to Area Age Dwellings | |/ -ome Income Income
100,000 Workplace m3 | [vears] Available <2,000 25%%% 5000 | Tot.
[€] [Km] [€/M] [€’ IM] [E/M]
2.356 4.508 99.30 | 39.93
Lisbon 8,018 16 28 7 51

(1.354) | (2.389) | (41.77)| (36.21)

Odivelas 1.680 10.581 98.44 | 32.17

and 0.836 253) | (3259)| (3168)| S ° > ! 0 12
and | (08365)| (1253) | (3259)| (31.68)

2.151 6.347 99.01 | 37.58

Total 11,501 21 35 7 63
(1.260) | (3.499) | (39.22)| (35.08)

€/M: Euros per month. Standard errors in parenshesi

Odivelas-Amadora Lisbon Municipality
Jo_A:3,483 JL:8,018

Figure 4 Nesting Structure of Lisbon’s Nested LogiResidential Location Choice Model

Under this setting, a Nested Logit model was eg#@ohavith the assumption that the
11,501 alternatives corresponded to the true cks®te This model considered the
correction for endogeneity caused by the omissibatwibutes using the Two-stage-
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control-function (2SCF) method (Hausman, 1978; Heak, 1978), as it is described in
detail by Guevara (2010).

The results of this model are reported in the sécomlumn of Table 6 and are
repeated in Table 7. It should be noted that thessof the coefficients of the models are

as expected. The coefficient of dwelling arqu)(is positive, meaning that households
prefer larger dwellings. The contrary occurs witletling price (,3’1), age (5’6), and
distance to workplace of the head-of-the-househﬁLc), which are perceived negatively.
Also, the impact of dwelling price decreases wittusehold income sinc)éfz,,@’3 >, Out

is negative for all stratum sinc,éﬁﬁz +,3’3 <0 for all cases. Finally, it should be noted

that the scale of the nest is statistically differéwith 95% confidence) from 1, what
implies that the null hypothesis that the choicalelas a Logit, is rejected.

Table 6 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model
Sampling 5 + 5 Alternatives

No Sampling Unexpanded ExPanded
Variables Iterative Prob.

,é s.e IB s.e ,é s.e
1. Dwelling price (in 100,000 €) -4.393 0.7058 -3.095| 0.6498 -5.374 0.8947
2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.291 0.4756 1.834 0.7048
3. Dwelling price * 1[Income > 5,000 €/M] 0.9463 0.5284 0.5298 0.5364 0.7604 0.6779
4. Distance to Workplace (in Km) -0.1774| 0.0538| -0.1617 0.0528 -0.1782 0.0639
5. Log [Dwelling Area (in n?)] 4.217 0.7854 2.220 0.5530  4.454 1.0324
6. Log [Dwelling Age (in years) +1] -0.6381| 0.1158| -0.4850 0.1180 -0.7252 0.1604
7.8 Control-function Aux. Var. 1.987 | 0.4711| 06193 03864 2145 0.5763
8.0 Odivela-Amadora Nest 1.329 0.09414 5.480 3.053 1.392 0.1266
Log likelihood at ConvergenceL(/}, [,) -547.89 -94.96 -93.53
Log likelihood at Zero |_(,[; =0,i= 1) -589.06 -134.13 -134.13
Adjusted p? 0.08518 0.3666 0.3623
Sample Size N 63 63 63
Choice-set Size J 11,501 10 10
Estimation Time ( in seconds] 363.0 1.080 10.65

Nest Amadora and Odivelas. Root Lisbon municipaMpdels include sampling correction. Models coreddor endogeneity

with 2SCF. Sample 5 alts. from Odivelas-Amadora aed 5 from Lisbon municipality. €/M: Euros per mtio.

To demonstrate the method proposed in this papach®ve sampling of alternatives
and estimation in MEV models, we performed two expents where we sampled a set
of alternatives in the choice-set and then re-edgoh the model with and without the
expansion of the sum of the exponentials proposetlis paper. The sampling protocol
used in the first experiment was the following sEithe chosen alternative was included.
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Then, alternatives were randomly drawn from thev@ldis-Amadora nest and from the
root (Lisbon) up to make a total of 5 alternatif@seach case.

Table 7 Corrected and Uncorrected Estimators for Lisbon’s Nested Logit Model
Sampling 500 + 500 Alternatives

No Sampling Unexpanded Exp.)anded
Variables Iterative Prob.

Ié s.e ,é s.e ,é s.e
1. Dwelling price (in 100,000 €) -4.393 0.7058 -4.349 0.678 -4.347 0.7054
2. Dwelling price * 1[Income > 2,000 €/M] 1.213 0.5769 1.242 0.5649 1.184 0.5776
3. Dwelling price * 1[Income > 5,000 €/M] | 0.9463 | 0.5284| 0.9566 0.5290 0.9923  0.53B33
4. Distance to Workplace (in Km) -0.1774| 0.0538| -0.1766 0.05288 -0.1811 0.05880
5. Log [Dwelling Area (in nf)] 4.217 0.7854 4.177 0.745 4.228 0.7902
6. Log [Dwelling Age (in years) +1] -0.6381| 0.1158| -0.6362 0.1128 -0.63p1 0.1161
7.8 Control-function Aux. Var. 1.987 | 0.4711| 1.908| 0.446 1.93]  0.4683
8.u0 Odivela-Amadora Nest 1.329 0.09414 1.510 0.1618 1.326 0.09340
Log likelihood at ConvergenceL(/}, [1) -547.89 -382.38 382.95
Log likelihood at Zero L(ﬁ’ =0,i= 1) -589.06 -424.25 424.25
Adjusted p? 0.08518 0.1223 0.1162
Sample Size N 63 63 63
Choice-set Size J 11,501 1,000 1,000
Estimation Time (in seconds) 363.0 55.27 220.8

Nest Amadora and Odivelas. Root Lisbon municipaMpdels include sampling correction. Models coreddor endogeneity
with 2SCF. Sample 500 alts. from Odivelas-Amadwst and 500 from Lisbon municipality. €/M: Eur@s ponth.

The results of the model estimated using this semggdrotocol, are shown in Table
6. In the third column are reported the estimatirshe Unexpandednodel where the
sampling correction was applied but the sum of #éxponentials of the Odivelas-
Amadora nest was calculated using only the 5 atewes sampled from the nest. Note
that several estimators are statistically differ@vith 95% confidence) from those of the
original model. Remarkably, the estimator of thals®f the Odivelas-Amadora nest is
highly positively biased. This means that the usth®@Unexpandeanodel for simulation
would cause an important overestimation of the tuwiti®n among dwellings in the
Odivelas-Amadora nest.

The fourth column of Table 5 reports the estimatfrthe model estimated using the
ExpandedIterative Prob.method, where the sampling correction is applied the sum
of the exponentials is expanded using the itergtnorzedure described in Section 6.3.
Equivalent to what occurred in the Monte Carlo ekpents, the estimators are
remarkably similar to those of the model withoumgéing and statistically equal (with
95% confidence) to them.

The second experiment corresponded to the applicabf the same sampling
protocol as before, but with alternatives that weampled up to make a total of 500 for
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the Odivelas-Amadora nest and 500 for the rootb@m. The results of the models
estimated using this sampling protocol are showhable 7. Equivalent to what occurred
with the Monte Carlo experiments, the estimatorstltd Unexpandedand of the
Expanded lIterative Probmodels are similar to those of the model withcarnpling

when J is large. All estimators are statistically equaith 95% confidence) in both
cases. The most significant difference is thathias of the estimator of the scale of the
Odivelas-Amadora’s nest is smaller for thgpandedterative Prob.model.

Finally, Table 6 and Table 7 report also the corapaomal time used in the estimation
of the different models. In the case where only dl@rnatives were sampled, the
differences in computational costs were huge. Tbhe tmodel that considers the full
choice-set of 11,501 alternatives took approxinyad®®0 times more to be estimated than
the Unexpandednodel, and approximately 35 times more thanEkpandediterative
Prob. method. The differences are reduced to 7 andih&strespectively, when 1,000
alternatives are sampled. These differences imastn time, together with the evidence
gathered from the Monte Carlo experiment with ondlion alternatives, reflect the
significant gains that can be obtained with sangplithe methodological developments
of this paper will allow taking benefit of theseimgm in the implementation of spatial
choice models with more realistic error structuresdering the development of better
tools for policy analysis.

8 Conclusion

Sampling of alternatives for non-Logit models iprablem that has been open for over
30 years, and that have hindered the developmesitable spatial choice models. This
paper proposes a novel method to address this fesMEV models and illustrates its
properties by means of a Monte Carlo experimenlieghpo the Nested Logit model, and
a case study based on real data on residentididaazhoice from Lisbon, Portugal.

Monte Carlo experiments showed that the samplingakérnatives causes a
significant bias in the estimators of the modelapagters when the choice model is
Nested Logit. In addition, the proposed method &xpanding the sum of the
exponentials performed well, even for small sang#es. In cases where it is possible to
obtain an additional sample to expand the sum @fettponentials, the method proposed
is easily applicable. When it is not possible tesample, the method requires knowledge
of the choice probabilities in order to build thepansion factors. In this final case, an
iterative procedure showed satisfactory results.

Monte Carlo experiments additionally offered eviderthat the sample size required
to obtain good estimators while sampling alterredivn MEV models depends on the
distribution of the data available and cannot beressed as a percentage of the
cardinality of the true choice-set. In general,ag@propriate strategy to determine if the
size of the sample of alternatives is large enoomght be to test the stability of the
estimators with different number of alternativespéed.

The application with real data demonstrated that gloposed method to achieved
consistency while sampling of alternatives in MEY practical and may have a
significant impact in the design of more sophiggdamodeling tools for policy analysis
in urban systems.
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Different lines for future research may be proposedddress the limitations of this
study. First, it would be interesting to apply tirethod developed in this paper into
larger real databases and other spatial choice Isyaiech as job and firm location, route
choice or activity scheduling. Finally, it would beeresting to assess the full impact of
the methodological advances of this research ircypa@lnalysis by applying them in the
framework of an operational microscopic integrateban model such as UrbanSim
(Waddell et al., 2008).
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