
Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

1

FREIGHT LOCOMOTIVE RESCHEDULING
AND UNCOVERED TRAIN DETECTION

DURING DISRUPTIONS

Keisuke SATO (Railway Technical Research Institute)

Naoto FUKUMURA (Railway Technical Research Institute)

ABSTRACT

This paper discusses optimization of freight train locomotive rescheduling under a disrupted

situation in the daily operations in Japan. In the light of the current framework of dispatching

processes that passenger railway operators modify the entire timetables, the adjusted

timetable is distributed to a freight train operator. We solve the locomotive rescheduling

problem for the given adjusted timetable in which we change the assignment of the

locomotives to the trains as required, considering a periodic inspection of the locomotives.

The uncovered train detection problem that selects unassigned trains of less importance is

solved if the rescheduling has failed. We formulate the two problems as integer programming

problems derived from our network representation of the disrupted situation, and solve the

problems by column generation. Our simple speeding-up technique named set-covering

relaxation is applied to the rescheduling problem, which has set-partitioning constraints. The

column generation subproblem reduced to a shortest path problem with the inspection

constraint is solved in polynomial time. Numerical experiments using a real timetable,

locomotive scheduling plan and major disruption data in the highest-frequency freight train

operation area reveal that satisfactory solutions are obtained within around 30 seconds by a

PC even for the cases with 72-hour goal for recovery. The set-covering relaxation speeds up

the computation time by a factor of six at a maximum.

Keywords: Locomotive rescheduling, uncovered train detection, set partitioning, set-covering

relaxation, column generation.

1. INTRODUCTION

Mathematical optimization approaches for railway planning problems such as timetabling,

rolling stock circulation and crew scheduling have been long and widely studied, and have

recently brought major success to some train operators (refer to Caprara et al. (2007) and

Kroon et al. (2009)). They dramatically reduce the associated operational cost and improve

satisfaction of passengers and cargo owners. Meanwhile under a disrupted situation in the

daily operations where the planned timetables and schedules are not achieved by accidents

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

2

or adverse weather conditions, the resolutions of timetable adjustment and rolling stock/crew

rescheduling by optimization have not yet been proposed sufficiently as indicated in

Jespersen-Groth et al. (2009b) as well as Rezanova and Ryan (2010). One of major factors

making the rescheduling optimization difficult is time for train dispatchers in charge to wait for

a solution provided by a computer. A solution of acceptable quality must be obtained as

quickly as possible to prevent further delays of the trains by done nothing, particularly in

areas with high-frequency train operations.

One among the limited literature on optimization approaches for railway disruption

management is by Walker et al. (2005), in which timetables and drivers on the Metro line in

New Zealand are rescheduled simultaneously. They formulate their problem as a set-

partitioning problem with many additional constraints and they aim at minimizing the

deviation from the existing timetables and crew schedules. An arbitrary chosen one out of the

36 trains operated in the area is delayed for the numerical experiments and the solutions are

obtained in 110 seconds. Huisman (2007) gives a set-covering model for a driver

rescheduling problem of passenger railway operator NS of the Netherlands where the

timetables are changed due to maintenance work on train tracks. It takes about 15 hours to

solve the real size of the problem that has more than 700 driver duties and 7,000 tasks. The

computation time is reasonable since the modification of the timetables is anticipated in

advance. Quite recently, another crew rescheduling formulation has been proposed by

Rezanova and Ryan (2010) for the daily disruption. Their model is based on a set-partitioning

problem and it is applied to the data obtained from Danish passenger railway operator DSB

S-tog A/S with up to 74 drivers and 91 tasks. The solutions are provided in 26 seconds.

Some uncovered trains are detected as their results. Jespersen-Groth (2009a) discusses a

rolling stock recovery problem. The problem is aimed at re-routing rolling stocks according to

estimated passenger demand, and is formulated as a network flow model. Reportedly, 100

train tasks are recovered in about 70 seconds. In the airline industry, the resource

management optimization during disruptions is often discussed, as reviewed in Clausen et al.

(2010). In the context of general vehicle routing, Huisman and Wagelmans (2006) and Li et

al. (2007) offer vehicle rescheduling algorithms. They do not take into consideration the

constraints characteristic to the railway industry such as the periodic vehicle inspections.

In this paper, we discuss optimization of rescheduling of locomotives that haul freight trains

in Japan. The Japan Freight Railway Company operates all of approximately 600 freight

trains daily except for those in some bay or regional areas. This company is, in almost all of

its operational areas, recognized as the second class railway operator, which indicates that

its trains run on the roadways owned by the first class railway operators (passenger railway

operators) such as the East Japan Railway Company, the Central Japan Railway Company

and the West Japan Railway Company. The freight and passenger trains share the same

infrastructures and the freight trains run between the passenger ones, which are operated by

the first class operators. The frequencies of the passenger trains are very high in the urban

areas in Tokyo, Nagoya and Osaka, the three largest cities in Japan. The timetables for the

freight and passenger trains are planned and decided once per year after negotiations

among the operators involved. The timetables planned as above are sometimes suspended

due to accidents or adverse weather conditions in the daily operations. Under such a

disrupted situation, train dispatchers serving on the first class railway operator in the area

modify the timetables and accordingly the rolling stock schedules in various ways for the

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

3

passenger trains to prevent further expansion of the trouble. Some of their efforts are studied

in Tomii et al. (2005). At the same time, the dispatchers, having an authority as the first class

operator, adjust the freight train timetable. In this framework of the current dispatching

processes, the options that the freight train operator can take to prevent the disruption from

spreading are much restricted; rescheduling its resources (locomotives, freight cars,

containers and drivers), requesting for re-adjustment of the freight train timetable, or

cancelling the trains. The re-assignment of the resources to the trains is first tried. The freight

railway company makes a request to the first class operators for the re-adjustment of the

train timetables only if the rescheduling has failed; however, the request is not always

approved. Cancelling of the trains is the last resort since it might lead to lose the cargo

owners’ trust. Thus, the resource rescheduling is the most important part of disruption

management for freight trains in Japan. It is, however, very difficult for the freight train

operator to decide manually in short time whether the rescheduling is possible in a case of a

large disruption. Among the rescheduling problems, the one pertaining to locomotives is

crucial. The number of locomotives available is rather limited to compare with freight cars,

containers and drivers. Exactly one locomotive must be assigned to each train (unless the

operation in tandem is specified) since an additional locomotive may run over a block section

or a platform. Note that locomotives in tandem are permissible when the train is a deadhead

one without cars. The time that it takes for a locomotive to haul its loads from and to the

specified stations ranges from 30 minutes to 20 hours. Furthermore, each locomotive must

be inspected for every 72 or 96 hours depending on its type in spite that locomotive depots

and workers for the inspections are limited. Hence, two or three days of rescheduling have to

be considered, enlarging the problem size to be handled.

Based on the current framework of the freight train dispatching processes in Japan, we study

the challenging rescheduling issue concerning locomotives. Given an adjusted timetable and

the current schedules and positions of the locomotives, we model the whole issue as two

optimization problems. The first one is the locomotive rescheduling problem, in which we

change the assignment of the locomotives to the trains as needed. It consequently decides

whether all of the trains are exactly covered by the locomotives, which is NP-complete as we

show it later. The second problem is the uncovered train detection problem and it is solved

only if the rescheduling has failed. The locomotives are assigned to the trains in accordance

with the importance of the trains, and the remaining uncovered trains are detected. It will help

the freight train operator cancel the trains or make a request to the first class operators for

re-adjustment of the timetable. Note here that the evaluation criteria are different between

the two problems. If the locomotives can cover all the trains, then the degree of the

locomotive rescheduling is preferred to be as small as possible. If there are some trains

whose timetable must be re-adjusted or which must be cancelled eventually, they are

preferred to be the ones of less importance. We therefore divide the whole issue into the two

phases based commonly on our network representation of the disrupted situation. Both of the

problems are formulated as integer programming problems. More specifically, the first

problem is a set-partitioning problem with side constraints and the second a set-packing

problem with the same side constraints (refer to Nemhauser and Wolsey (1988) for set-

partitioning, set-packing and set-covering problems). Column generation technique (of which

insightful overview is introduced in Desaulniers et al. (2005)) and our approach named set-

covering relaxation solve the real size of the problems in real time while achieving good

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

4

solution quality. A polynomial-time algorithm for our column generation subproblem reduced

to a shortest path problem with the periodic locomotive inspection constraint also contributes

to the reduction of computation time.

The rest of the paper is organized as follows. Section 2 gives precise definitions of our freight

locomotive rescheduling and uncovered train detection problems on our network

representation of the disrupted situation. We also discuss the complexity of the problems. In

Section 3, we formulate the rescheduling problem and solve it by column generation

combined with our simple speeding-up technique as termed set-covering relaxation. A

polynomial-time algorithm for our column generation subproblem is also presented in the

section. We subsequently indicate an algorithm for the uncovered train detection problem in

Section 4 when the rescheduling problem turns out to be infeasible. Numerical experiments

using the real timetable, locomotive scheduling plan and disruption data are explicit in

Section 5. Section 6 concludes the paper and we present our view of future work.

2. PROBLEM DESCRIPTION

2.1. Network Representation

To model the locomotive rescheduling and uncovered train detection problems, we first

represent a freight train timetable and locomotive scheduling as a network. Figure 1 is a

freight train diagram and schedules of two locomotives planned on the diagram. The

locomotive labeled as Loco. 2, for instance, is planned to haul Train 2 from Station C to

Station B, and then Train 4 from Station B to Station A. The minimum unit of haulage of a

train from and to the specified stations is termed a task, and a sequence of tasks over

several days is planned for each locomotive. The label “Ins.” indicates an inspection of the

locomotive. An inspection is also included in a sequence of tasks. Assume here that a

disruption has occurred and that the departure of Train 2 is delayed. Loco. 2 would miss

Train 4 if no action were taken. In this case, we can avoid it if the tasks of Loco. 1 and Loco.

2 are exchanged, i.e., Loco. 1 hauls Train 4 while Loco. 2 does Train 1. This is a simple

example and a solution for the locomotive rescheduling problem. We then explain our way of

modeling through Figure 1. For the given adjusted timetable, we set rescheduling starting

time along with rescheduling period , and construct a network shown in Figure 2. The

nodes of this network consist of, positions of the locomotives at the starting time , tasks

to be covered , scheduled or extra inspections , and the first tasks after the

rescheduling period . The directed arcs are drawn between nodes if a locomotive is

able to move between them.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

5

Figure 1 – Planned timetable/locomotive scheduling and adjusted timetable

Figure 2 – Network representation of adjusted timetable and locomotives

Formally, we first define node set ̂ from a given adjusted timetable, a

locomotive scheduling plan, rescheduling starting time and rescheduling period . The set

 consists of the locomotives involved. This set also includes reserve locomotives available.

Each locomotive has the information on its previous inspection time PrevIns_time(),

time ready for the rescheduling Ready_time() , and station Arr_sta() that is at as

of Ready_time(). Inspection interval , 72 or 96 hours depending on the type of the

locomotive, is also prepared. The locomotive must be inspected for every . We denote

by a set of rescheduling tasks to be covered. A set of deadhead train tasks without cars is

denoted by ̂ . An element of or ̂ has its departure time Dep_time() and station

Dep_sta(), its arrival time Arr_time() and station Arr_sta(). Note that Arr_time()

 holds, i.e., the arrival time of the rescheduling tasks is neither earlier than the

rescheduling starting time nor later than the stopping time of the rescheduling. Since each

locomotive has its planned sequence of tasks, its first task after the rescheduling period has

expired, or the task whose departure time is later and arrival time is earlier than the stopping

time respectively, is definable. For a reserve locomotive, the task is to be in its home depot.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

6

We call the set of such tasks the convergence tasks and denote them by . It holds that

| | | | by the definition. Each convergence task has locomotive Due_loco() due

to be assigned and next inspection time NextIns_time() which are determined

by the planned sequence of tasks, as well as Dep_time() and Dep_sta(). For each node

 ̂, an inspection of the locomotives can be carried out after if a locomotive depot

is adjacent to Arr_sta(). We let an inspection node after , and then the node has its

previous task (or a locomotive) Prev_task() which equals to and station Sta(). Moreover

the node has finishing time of the inspection FinishIns_time(), which is trivially later than

Arr_time() (or Ready_time()). We denote by the set of the inspection nodes.

Next, we define directed arc set . The first type of arcs is drawn from a locomotive to tasks

if pair ̂ satisfies the following condition:

Arr_sta() = Dep_sta() and Ready_time() + Buf_time(Arr_sta()) ≤ Dep_time()

where Buf_time(∗) is some buffer time needed to assign a locomotive to a train at station ∗.

It should be noted that we do not consider shunting problems here since there are many

tracks and turnouts in the freight train stations in Japan. An arc is also connected between

task node pair ̂ ̂ if

Arr_sta() = Dep_sta() and Arr_time() + Buf_time(Arr_sta()) ≤ Dep_time()

holds. There are no outgoing arcs from any member of . For each inspection node , we

draw (Prev_task(),) ((̂)) expressing an inspection after the end of its

previous task. A task after an inspection is represented by arc ̂

satisfying the condition:

Sta() = Dep_sta() and FinishIns_time() ≤ Dep_time().

We now have the node set and the arc set forming an acyclic graph, and we add two

functions and to it, constructing network . The cost function

 returns a nonnegative value when a locomotive and an arc are input. For simplicity we

substitute
 for , and it represents the cost for locomotive to traverse arc . The

cost function is used as the criterion for the locomotive rescheduling problem. We set

for arc (̂) (̂) when its endpoint tasks coincide with two consecutive

tasks in the planned sequence of tasks of any locomotive. Some positive cost is set

otherwise, since it indicates a change of locomotive assignment. We prepare two cost values

 and , and select either of them according to the workload of the change. For arc

 (̂) from a locomotive or a task to an inspection node, its cost is

zero if the inspection after the task is included in the planned sequence of tasks of any

locomotive. If not, then it means an unscheduled extra inspection and cost is given to the

arc. The cost of arc (̂) from an inspection node to a task node is

equal to that of (Prev_task(),). The cost of an arc incoming to the convergence tasks, say

 for , depends on the locomotive name . The Japanese freight train

operator permits an assignment of a locomotive other than the planned one to the task

after a disruption, though the assignment of the planned locomotive is much preferred.

Hence we set
 when Due_loco() = and

 otherwise. There are

several types of locomotives running in the same area in Japan, and an additional cost is

imposed when the next task of a locomotive is switched to a task that a different type of

locomotives plans to haul. When a task should not be covered by the locomotives of a

certain type since the type has too small tractive effort or such assignment violates some

other operational constraints, we set
 to prevent it from happening. The demand

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

7

function defines the value of importance of each task and it is used as the

criterion for the uncovered train detection problem.

2.2. Feasible Path and Inspection Capacity

We consider a path from a locomotive node to a convergence node on the network. It is the

planned or rescheduled sequence of tasks of the locomotive. Let be such a path and
 be

the sum of
 which appears in the path. We call

 the cost of path of locomotive . Then

 with
 is the planned sequence of tasks of and that with positive cost indicates the

workload of rescheduling the locomotive. We also define
 similarly and call it the

importance of path . Recall here, that any locomotive must be inspected for every

inspection interval . To express a locomotive path in which the periodical inspection is

carried out properly, we first prepare function { } ̂ such that, for each

locomotive and inspection ,

 { ̂ | }

 { | },

 { ̂ | }

 { | }.

The set is the tasks to which we can assign the locomotive without any inspection.

The set includes the tasks to which we can assign after the inspection is done.

Note that is equivalent to | | |)| for any { } , since

the function is based on time. We next take the locomotive and inspection nodes contained

in path and call them in order of their appearance (). Let

 ̂ be the tasks between and in , and ̂ the ones after the last

inspection . We then call that the path is a feasible path if satisfies the following

condition:

 { }

The locomotive is properly inspected in a feasible path. We denote by the set of ’s

feasible paths for each .

Another constraint involving the inspections is the limited number of facilities and workers for

the inspections. We let be the depot set and be the time span set. The capacity of the

inspections for depot at time span is expressed as
 .

2.3. Problem Definitions and Complexity

We are now ready for defining our locomotive rescheduling and uncovered train detection

problems. Given the network , the function for each locomotive and

the inspection capacity
 for every , we select one path among the feasible paths

for each locomotive and exactly cover all the elements in by them, i.e., any task node is

traversed by only one path. Note that a train whose locomotive operation in tandem is

specified is divided into two distinct tasks, and that the elements in ̂ need not be covered or

can be covered by up to two paths. At the same time, the number of locomotive inspections

at and included in the selected paths must not exceed
 . The locomotive rescheduling

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

8

problem decides whether such covering is possible or not, and if possible, finds paths so that

the sum of
 is sufficiently small. The uncovered train detection problem is defined as, to

find the combination of feasible paths so that the sum of
 is large enough, under the

condition that all the elements in are covered by up to one path and the constraints

concerning the deadhead tasks and that the inspections are satisfied.

We discuss here the complexity of the decision problem part of our locomotive rescheduling

problem. In Maróti and Kroon (2005) which studies routing for train units inspected, one NP-

complete result is obtained. That is the problem of whether all the nodes of an arbitrary

acyclic graph can be exactly covered by disjoint paths or not, where multiple sources (nodes

with no in-going arcs) and sinks (nodes with no out-going arcs) of the paths are given and a

given one source of them is specified to a certain sink. In our problem, consider a case with

one locomotive type, ̂ , every element in having both in-going and out-going arcs

and that | | holds for some while for any other

{ }. In this case, locomotive is specified to the one destination and our problem coincides

with the NP-complete problem.

3. FORMULATION AND ALGORITHM OF RESCHEDULING

3.1. Integer Programming Formulation and Overall Algorithm

In this paper, we regard the locomotive rescheduling problem as a variant of a set-

partitioning problem and model it as an integer programming problem. For locomotive

and its feasible path , let
 be one if task ̂ is included in , otherwise zero.

We similarly define
 for depot at time span . We introduce a decision variable

 that takes one if is selected as a rescheduled sequence of tasks of , otherwise zero.

We then present the following formulation:

 minimize
∑

∑

 (1)

 subject to ∑

∑

 (2)

 ∑

∑

 ̂

 ̂ ̂ (3)

 ∑

 (4)

 ∑

∑

 (5)

 { } (6)

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

9

The objective function expressed as equation (1) seeks to minimize the total sum of the cost

of paths selected, i.e., the total workload of the rescheduling. Equation (2) is a set of set-

partitioning constraints, which indicates that any task is contained in only one of the paths. A

deadhead train task without cars need not be covered or can be covered by up to two paths,

and it is expressed as constraint (3). For each locomotive, only one path is selected among

its feasible paths according to equation (4). Equation (5) is the inspection capacity constraint

for each depot and time span, and the variables take binary values by equation (6).

The optimal solution for this problem is straightforwardly obtained after all the feasible paths

 are enumerated from the network . The enumeration of all such paths, however, is not

reasonable; it would take too much time. In fact, none of them is available before the

rescheduling, since the adjusted timetable and consequently the topology of the network

cannot be presumed. We therefore adopt column generation technique, which alternately

enumerates some of the feasible paths and solves our optimization problem with the integer

constraints of the variables relaxed. Additionally we replace the set-partitioning constraints

with set-covering constraints temporally in which the covering of the tasks by more than one

path is allowed, since the application of column generation to problems that have set-

partitioning constraints is known to cause degeneracy, i.e., the improvement of the objective

function value is slowed down. Degeneracy is also observed in solving problems with set-

covering constraints, particularly when the objective function value is close to optimal. We

therefore restore some of the set-partitioning constraints when the objective function value

approaches its lower bound, and solve our problem again in a different solution space. We

call our relaxation approach set-covering relaxation and show the overall algorithm in Figure

3. The details of the subroutines are displayed in the following subsections.

3.2. Initialization and Restricted Master Problem

At Step 1 of the algorithm, we first introduce and initialize iteration counter of our

column generation as well as lower bound of the objective function value. A subset

 of all the feasible paths set is given for each with

 . We then replace with

 in the locomotive rescheduling problem. Some of the feasible paths (or columns) are

generated and added to
 through the iterations. Similarly and ̂ ̂ are defined with

 ̂ . The two subsets are related to the set-covering relaxation; we simply permit that

the tasks in are covered by one or more locomotives and that any number of the

locomotives are assigned to the deadhead tasks in ̂ ̂ . The binary constraint (6) is also

replaced with a nonnegative one for column generation. One artificial nonnegative variable

is introduced whose coefficient column consists of the right-hand side of equations (2)-(5)

and a huge cost in the objective function, making the locomotive rescheduling problem

always feasible at . We give here restoring parameter to enlarge the task

sets and ̂ forming the original constraints. This parameter is used at Step 4.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

10

Figure 3 – Algorithm for locomotive rescheduling problem

Restricted master problem to the original locomotive rescheduling problem is thus

defined for each iteration counter as follows:

 minimize
∑

∑

 (7)

 subject to ∑

∑

 (8)

 ∑

∑

 (9)

 ∑

∑

 ̂

 ̂ ̂ ̂ (10)

 ∑

∑

 ̂

 ̂ ̂ (11)

Step 1: Initialization.

 Set
 ̂ .

 Replace with
 .

 Introduce dummy variable with cost .
 Apply set-covering relaxation to (2), (3) and LP relaxation to .
 Set restoring parameter .
Step 2: Restricted Master Problem .

 Solve LP for
 ̂ .

 Set objective value on , dual prices on
 .

Step 3: Column Generation Subproblem .
 Solve shortest path problem for

 .

 Set feasible paths found on
 , shortest path length on

 .
Step 4: Lower Bound Update and Restoring Constraints.

 Set { ∑

 }.

 If ∑

 , then
 (set of tasks violating (2) at optimal solution for).
 ̂ ̂ (set of tasks violating (3) at optimal solution for).
 Else, then ̂ ̂.
Step 5: Termination of Column Generation.

 If (or or ̂ ̂), then

 and go to Step 2.

 Else if , then output “infeasible” and Stop.
Step 6: Integer Solution Search .
 Set ̂ ̂.

 Solve IP for
 ̂ .

 Set objective value on .
 If (), then output solution and Stop.
Step 7: Feasibility Check .
 Apply branch-and-price.
 If integer solution with is found, then output it.

 Else, then output “infeasible.”

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

11

 ∑

 (12)

 ∑

∑

 (13)

 (14)

The problem is solved by applying a standard linear programming algorithm at Step 2. The

optimal objective value is set on . At the same time, we obtain the dual prices or the

optimal solutions for the dual problem of (refer to Nemhauser and Wolsey (1988) for

duality and Lagrangian relaxation related to it). Let the dual price corresponding to task

constraint in equations (8)-(11), be that to constraint in (12) and
 be that to

constraint in (13).

3.3. Column Generation Subproblem

After is solved to optimality for , we decide at Step 3 in Figure 3 whether the

objective value can further be improved by adding new paths to the partial feasible paths

set
 for each locomotive. We search for such a path by introducing the following

column generation subproblem which is derived from the dual of :

 find

 such that
 ∑

 ̂

 ∑

∑

We reduce the search problem to an unconstrained shortest path problem thought there is a

constraint that a path must be chosen from the feasible paths set. We find a path satisfying

the above conditions by introducing network extended from the network defined in

Section 2. The extended network is constructed as shown below for each locomotive :

 Step A: For each task ̂ , prepare index Ind() and set its rank number in

ascending order of Arr_time() (NextIns_time() for) on ind().

 Step B: Make (| ̂ | | |) copies of network and denote them by

 | | | ̂ | , where .

 Step C: For each , change destination node of each arc

to | ()|.

 Step D: For each , delete all the incoming arcs of each task node satisfying

ind() .

An example of network is displayed in Figure 4 where is permissible to haul the three

train tasks without any inspection. Assuming that FinishIns_time(∗) of the inspection

nodes ∗ plus the inspection interval exceeds NextIns_time(), the corresponding

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

12

extended network is Figure 5. The locomotive starting from the node can reach the

convergence task
 by traversing

 and such a route is a feasible path.

The copied part in the extended network is interpreted as a subnetwork that has first to

 th tasks in ascending order of the arrival time of all the tasks. In the subnetwork | |, for

instance, the copied locomotive | | of can reach up to the | | th task (if the

locomotive can reach the node on). The | | tasks correspond to the trains that is

permissible to haul without any inspection. The locomotive can be assigned to more tasks if it

traverses an inspection node on | |.

We assume that, for locomotive , there is a path from | | | | to an element of

 {| | | ̂ |} on , i.e., a copied convergence task. We define, such a path in

which superscript * of node ∗ is deleted, as a - path. Then the following holds.

Proposition 1. For all , the set of - paths on is equivalent to on .

Proof. Given a - path for any , we first show that the path is included in . For any

node between the two inspections and in , Ind() | |

holds from Step C and D in constructing the extended network . Task satisfying Ind()

 | | is a member of (otherwise has at most Ind() tasks, a

contradiction), therefore holds from Step A and the definition of the function .

The same holds true for , and is shown to be a member of .

Given the nodes in a feasible path , let locomotive be | | , each task

 be |
 | , inspection be

| |
 and each be |

 | .

For any it holds that by definition, and so Ind() | |

(otherwise). The copied node |
 | has also an index with Ind(|

 |)

 | |, and hence the incoming arc to |
 | is not deleted at Step D. Meanwhile,

and its next node in is connected by the arc drawn at Step C on the extended network .

Therefore, a path exists on from | | to | | if we let the endpoint of be . □

Hence, we can reduce the column generation subproblem to a shortest path problem

for all if we impose the values of the dual prices
 on the corresponding nodes.

Note that the dual price –
 imposed on an inspection node is selected as follows;

Sta(), and is the time span which has the minimum value of –
 satisfying

 Arr_time(Prev_task()), Dep_time() where is a node starting from . The number of

arcs on the extended network is usually more than that of nodes, and Dijkstra’s algorithm

for an acyclic graph solves the problem in | ̂ || | for each locomotive, i.e., the

maximum number of arcs on . Moreover we can solve it in | || | when holds,

i.e., the rescheduling period is not longer than the inspection interval of locomotive . That is

since | ̂| holds for any inspection node and there is no arc from one node on

 to another node on for any { | | | ̂| }.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

13

Figure 4 – Initial network

Figure 5 – Extended network

In fact there is no need to construct the extended network . Consider subpath on the

initial network from locomotive node to a certain task or inspection node. By introducing

label Reachable() | | where is the latest inspection in , we can judge whether

locomotive operated along is permissible to haul a next task node. We can also reduce

the computation time by comparing two subpaths that have the same endpoint. If

Reachable() Reachable() holds and the cost of is less than or equal to , then

 can be excluded from the candidate shortest path list. Supposing that there is a subpath,

say , from the endpoint of to a convergence task, and that the path consisting of and

 is feasible, then the path consisting of and is trivially feasible and has less cost.

We add to set
 feasible paths with a negative cost value obtained by Dijkstra’s algorithm.

The feasible paths other than the shortest one can also be added which are obtained

collaterally by the algorithm. Let
 be the shortest path length (let

 when
).

From the complementary slackness condition for linear programming problems,
 is always

less than or equal to zero.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

14

3.4. Lower Bound Update, Restoring Constraints and Termination of CG

The shortest paths of the locomotives found in the preceding subsection is equal to the

optimal solution for the Lagrangian relaxation problem of our locomotive rescheduling

problem with equations (2), (3), (5) relaxed, if we regard the dual prices
 as Lagrangian

multipliers. By the duality theorem (refer to Desaulniers et al. (2005)), at any iteration the

optimal value of the Lagrangian relaxation problem is equal to ∑

 , i.e., the objective

function value of plus the sum of the shortest path lengths. Since this value can be

adopted as the lower bound of the original formulation of our locomotive rescheduling

problem, we set { ∑

 } at the beginning of Step 4 in Figure 3.

We refer here to the value of the restoring parameter and enlarge the task sets and ̂

forming the original constraints if the following inequality is satisfied:

 ∑

Then we denote the optimal solution for obtained at Step 2 by ̅ ̅, and update the

task set forming the equality constraint (or the at-most-two constraint) at the next restricted

master problem to:

 { | ∑

∑

 ̅̅ ̅ ̅ }

 ̂ ̂ { ̂ ̂ | ∑

∑

 ̂

 ̅̅ ̅ ̅ }

When the inequality involving the parameter is not satisfied, we let and ̂ ̂.

For , the sets and ̂ are updated only if ∑

 holds, i.e., the column

generation for the restricted master problem with some fixed constraints set converges. For

 , the constraints are changed when the lower bound is updated. If we set ,

then the set and ̂ are enlarged when the ratio of the difference of the objective function

value and the current lower bound to the negative sum of the shortest path lengths

approaches. In the dual problem viewpoint the domain of the variable is enlarged to

 by restoring the constraint for , hence our relaxation approach can be seen

as a simple version of the BOXSTEP method (a survey on speeding-up techniques of

column generation including the method is displayed in Lübbecke and Desrosiers (2005)).

At Step 5 of our algorithm, we set

 and go to Step 2 if holds,

since the complementary slackness ensures that
 is equivalent to

 . For the

cases where the task sets and ̂ forming the original constraints are updated at Step 4, we

also return to Step 2 since the solution space is changed. Else, then we stop the generation

and find an integer solution in the following subsection. However, we stop the algorithm when

 which means ; it is obvious that there exists no solution for the

rescheduling in this case.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

15

3.5. Integer Solution Search and Feasibility Check

At the starting point of Step 6 in Figure 3, we have a fractional optimal solution for the

locomotive rescheduling problem. We then restore all the set-partitioning constraints by

setting ̂ ̂, and find an integer solution by applying branch-and-cut algorithm.

We denote by the objective function value of the integer solution. If holds, then it

indicates a not necessarily optimal but feasible solution found. We stop the algorithm there,

expecting the solution to be of acceptable quality. Else, then it shows that there may or may

not exist a feasible locomotive rescheduling plan since
 , i.e., not all the feasible paths

are enumerated at this point. We then apply branch-and-price algorithm in which the

branching rule follows that in Rezanova and Ryan (2010). In the optimal solution for ,

we find locomotive which fractionally covers task (or inspection in depot at time span).

We then divide our linear programming problem into two subproblems. One has a constraint

such that any feasible path of must exactly traverse (or must have an inspection in at),

the other must not. This branching rule is verified by the following proposition via introducing

variable vector with:

 ∑

 ̂

 ∑

Proposition 2(Rezanova and Ryan (2010)). For ̂ ̂ , an arbitrary 0-1

assignment to which does not violate equations (9), (11) (13), and properly adjusted

coefficients of so that is feasible, there exists an integer solution for when

 .

Proof. Suppose not. Then we have, by equation (12), fractional optimal solution values

 for some and it holds that the path is equal to the path (the coefficient

columns of
 and

 have been determined by the value of

). We can set either of

them at one and the other at zero. □

If an integer solution is found and the corresponding objective function value is less than ,

then our problem turns out to be feasible. There is no solution for the rescheduling otherwise,

and we subsequently solve the uncovered train detection problem.

4. FORMULATION OF UNCOVERED TRAIN DETECTION

We consider the uncovered train detection problem as a variant of a set-packing problem

that tries to maximize the sum of the importance of the tasks selected. All the train tasks can

be covered by up to one path, and the constraints concerning the deadhead tasks and the

inspections must be satisfied. The number of feasible paths selected for a locomotive is zero

or one in case there is no feasible path for the locomotive. We give below the integer

programming formulation of the problem:

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

16

 maximize
∑

∑

 subject to ∑

∑

 ∑

∑

 ̂

 ̂ ̂

 ∑

 ∑

∑

 { }

We again relax the integer constraint and apply column generation to the problem. Let be

an iteration counter of the column generation. The feasible paths
 enumerated in the

locomotive rescheduling problem are added at the first iteration. Any task with ∑∑

in the integer solution means an uncovered task and such tasks are output as the result of

the algorithm.

5. NUMERICAL EXPERIMENTS

5.1. Disruption Cases and Computational Environment

This section presents computational results obtained by applying our algorithms to data on

the railway lines shown in Figure 6. The lines include the highest-frequency freight train

operation area in Japan, where more than 250 freight trains are operated daily. The distance

between Kuroiso Station and Shimonoseki Freight Station is about 1,300 km and it takes

almost one day for DC electric locomotives to haul the trains between the stations.

We apply delay and cancelation information reported on the website by Japan Freight

Railway Company (2006) to the timetable and the DC locomotive schedule plan for year

2006 (obtained from Railway Freight Association (2006)). We set | | and assume that

there is no reserve locomotive available. The locomotives are divided into seven types with

the inspection interval being 72 or 96 hours. We choose five major cases among the real

disruption logs in from July to November and their summary is shown in Table I. Three to 24

(17% of all) locomotives will miss their next trains to haul without rescheduling; indicating the

lower bound of the number of locomotives whose schedules need to be changed. 36 to 72

hours are set as the rescheduling period since there is a task whose running time is over 20

hours. Table II shows the average size of the problems for each rescheduling period, in

which the density is defined by | | (| |

) .

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

17

Figure 6 – Major freight railway lines and stations in Japan (Kamada (2009) and GSI)

Table I – Disruption cases

No. # Cancelled trains # Delayed trains Average delay time (h) # Locos to miss next trains

1 0 12 3.1 3

2 0 16 2.2 4

3 0 18 3.1 5

4 0 15 4.4 10

5 2 50 3.1 24

Table II – Instance size (average of 5 cases)

Rescheduling period (h) | | | | | | Density (%)

36 602.2 1,119.8 17,866.6 2.86

48 776.0 1,404.8 29,259.6 2.97

60 958.2 1,696.8 43,027.8 2.99

72 1,132.0 1,981.8 59,887.4 3.05

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

18

The time span for the inspections is set to twelve hours and the capacity for each existing

depot and each time span is one plus the number of scheduled inspections in the depot and

at the time span. The upper limit for the number of feasible paths |
 | added to

 for each

is, one for , 66 for and five otherwise. We set the restoring parameter to 3.0.

The cost values are, and ,

based on the opinions by the experienced workers who were in charge of the locomotive

rescheduling. The importance of each task is given similarly. Preliminary experiments show

that this combination of parameter values causes much computation time than others.

The programs are implemented in Java SE 6, calling the Java API of IBM ILOG CPLEX 12.1

for solving , and . An interior point method is applied to according to

Desaulniers et al. (2005), in which they point out that less iteration is expected for the

convergence of column generation if we take rather an analytic center than an extreme point

of the optimal face as the solution for . All the experiments are carried out on the 32-

bit Windows PC having Core i7 CPU with 3.2 GHz and 3 GB RAM. The four CPU cores are

used by CPLEX and the shortest path problem on four locomotives is concurrently solved in

 .

5.2. Locomotive Rescheduling Results

Table III shows the results of our algorithm applied to the locomotive rescheduling problem.

The algorithm is run ten times for each disruption case and rescheduling period. The number

of locomotives whose sequence of tasks is changed, the quality of the solutions, the number

of column generation iterations, the sum of feasible paths enumerated and the real time for

the computation are presented in the table. All the results shown in Table III are the average

values of the ten trials except for the maximum computation time among the trials. We first

note that several different solutions are obtained from trial to trial for the disruption cases No.

4 and 5. For the cases and the rescheduling periods where the same solutions are obtained,

the number of iterations and subsequently the number of enumerated feasible paths differ

from trial to trial. That derives from the facts that, the feasible paths are enumerated by

in a different order for each trial due to the multi-threading, the dual optimal solution is not

unique for , and these cause the linear programming solver to return different

values of
 .

The number of locomotives whose sequence of tasks modified is around twice as many as

the locomotives whose schedules need to be changed for the cases No. 1, 4 and 5.

Generally, dispatchers in charge of locomotive rescheduling try to exchange the planned

sequences of a disrupted locomotive with an undisrupted one, and our results seem to be

comparable to them. Our solution for the case No. 1 is manually assessed and the

rescheduling of the six locomotives is favorably evaluated by experienced workers of

dispatching processes. Although that does not hold for the cases No. 2 and 3, the gap

defined by indicates that the solutions very close to optimal are

obtained. In many cases, the optimal integer solution is obtained at the termination of Step 5

in our algorithm as it is also seen in Rezanova and Ryan (2010), where they conclude that it

comes from the special structure of the constraint matrix.

It should also be noted that the algorithm stops at Step 5 for all the infeasible cases. The

reason for the rescheduling to become feasible when we set the rescheduling period longer

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

19

is that some of the tasks cannot be covered unless the planned sequences of the

locomotives of different types are exchanged. These sequences, however, have to be

exchanged again prior to the stopping time of the rescheduling. The Japanese freight train

operator imposes an operational constraint that, to a convergence task of a certain

locomotive in its planned sequence of tasks, only locomotives with the same type as the

locomotive may be assigned. There is no time and place for the re-exchange in the short

rescheduling period while there is a chance of it after the 36 hours.

Table III – Rescheduling results and computation time (average of 10 trials)

No. Rescheduling
period (h)

Locos
whose
tasks

changed

 Gap
(%)

 ∑ |
 | Time

(s)
 Max.

time
(s)

1 36 6.0 1,200.0 0.00 6.0 8,921.3 0.9 0.4 0.5 0.0 1.0

1 48 6.0 1,200.0 0.00 7.8 9,546.6 1.6 0.6 0.9 0.0 1.9

1 60 6.0 1,200.0 0.00 7.1 9,630.1 2.2 0.6 1.5 0.0 2.4

1 72 6.0 1,200.0 0.00 7.6 9,735.6 3.7 0.9 2.9 0.0 4.3

2 36 16.0 5,335.0 0.00 22.5 10,340.0 3.8 2.6 1.2 0.0 4.2

2 48 14.0 5,235.0 0.00 27.6 11,638.6 7.2 4.1 3.1 0.0 8.6

2 60 14.0 5,120.0 1.23 27.3 12,494.1 12.3 5.0 6.2 1.2 17.0

2 72 14.0 4,840.0 0.46 23.5 13,597.5 15.3 4.8 9.2 1.3 18.6

3 36 infeasible - - 22.3 10,795.2 3.9 2.6 1.3 0.0 4.9

3 48 18.0 8,430.0 0.00 23.8 12,561.6 6.7 3.7 3.1 0.0 7.7

3 60 16.0 7,850.0 0.00 26.2 14,850.6 12.1 5.4 6.7 0.0 13.4

3 72 17.0 7,710.0 0.00 35.2 17,867.0 25.9 11.0 14.9 0.0 32.4

4 36 infeasible - - 11.7 9,572.7 1.6 1.0 0.6 0.0 1.9

4 48 20.4 5,560.0 0.00 18.6 10,898.3 3.7 1.8 1.8 0.0 5.8

4 60 20.8 5,560.0 0.00 29.0 14,185.5 10.9 5.4 5.5 0.0 13.2

4 72 20.4 5,240.0 0.00 37.7 17,784.2 23.9 10.9 13.0 0.0 27.8

5 36 infeasible - - 3.0 8,728.0 0.5 0.1 0.4 0.0 0.5

5 48 45.0 16,160.0 0.25 25.2 12,678.5 7.4 3.8 2.4 1.2 9.0

5 60 43.5 15,632.0 1.77 28.2 16,073.3 14.4 6.8 5.2 2.3 16.5

5 72 44.4 14,362.0 0.52 39.7 18,787.6 28.8 13.1 13.0 2.7 32.3

Table IV – Rescheduling solution summary of case No. 3

No. Rescheduling
period (h)

Extra
inspections

Locos whose original task not assigned
at end of rescheduling period

Locos assigned to tasks
of different loco type

3 48 6 10 6

3 60 7 8 5

3 72 7 4 7

Table V – Computation time without set-covering relaxation (average of 10 trials)

No. Rescheduling period (h) ∑ |
 | Time (s)

4 36 9.7 10,182.5 1.8

4 48 26.2 16,761.0 9.2

4 60 49.4 30,262.0 42.3

4 72 82.0 48,383.0 161.7

5 36 3.0 8,728.0 0.5

5 48 27.5 16,263.9 10.5

5 60 45.6 25,857.5 33.8

5 72 68.5 35,357.2 84.2

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

20

The number of locomotives whose sequence of tasks modified does not decrease for the

case No. 3, 4 and 5 though we take the rescheduling period longer, while the objective

function value does. This outcome is possible since we do not directly minimize the number

but do the sum of rescheduling penalties divided into the five types. Table IV presents the

number of unscheduled extra inspections (the value times the cost is included in as a

part of the total cost) in the rescheduling solution for the case No. 3. The number of

locomotives assigned to a different convergence task from the planned locomotive (the value

times is in) and the number of locomotives whose rescheduled sequence of tasks

includes a task originally hauled by a different locomotive type (the value is relevant to the

cost) are also displayed in the table. The value concerning the penalty gets smaller for

a longer rescheduling period as there are more opportunities for a locomotive to be assigned

to its planned convergence task. By comparing the 72-hour result with the 60-hour one, we

see that four more locomotives are assigned to their own convergence tasks by involving one

additional locomotive rescheduled.

All the solutions are obtained in ten seconds with the rescheduling period being 48 hours and

within around 30 seconds for 72 hours, which is acceptable enough for the freight train

operator. The operator will be able to even output and compare different solutions by

adjusting the cost values within the admissible time for the locomotive rescheduling. The

short computation time also enables the operator ready for the re-adjustment of the timetable

arising from further disruptions. It should be noted that the short computation time is not

achieved without our set-covering relaxation; Table V presents the number of column

generation iterations and the computation time for the cases No. 4 and 5 where

 ̂ ̂ , i.e., the instances are solved without set-covering relaxation. The values of

decrease slowly, and it causes the enumeration of many feasible paths that are not selected

in the solutions. Our relaxation approach speeds up the computation time by a factor of six at

a maximum.

5.3. Uncovered Train Detection Results

For the cases where the rescheduling is identified as infeasible, we have carried out the

uncovered train detection. Table VI shows the number of tasks uncovered and the

computation time. It is observed that there exist feasible paths to all the locomotives for every

case. Bigger values of ∗ is set to the convergence tasks since the haulage of the trains after

the rescheduling period has expired is more important. We then have results such that some

unimportant, short-distance trains in the rescheduling period are uncovered. Exactly optimal

or almost optimal solutions are obtained in terms of the objective function. It takes more

computation time to solve the problem than to do the rescheduling problem in spite that there

are approximately 10,000 feasible paths enumerated in advance. 27% to 77% of overall time

is spent for finding the integer solutions. This observation indicates that the rescheduling

algorithm is superior to the uncovered train detection algorithm for the feasibility decision of

locomotive re-assignment.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

21

Table VI – Uncovered train detection results (average of 10 trials)

No. Rescheduling
period (h)

tasks
uncovered

Gap (%) ∑ |
 | Time (s)

3 36 3.0 0.01 3.6 411.9 7.0 1.1 0.5 5.4

4 36 1.0 0.00 5.5 705.3 3.0 1.2 0.5 1.3

5 36 12.3 0.01 8.3 2,044.4 4.7 2.8 0.6 1.3

6. CONCLUSIONS

This paper has presented a study on the optimization of freight train locomotive rescheduling

under a disrupted situation in the daily operations in Japan. In the light of the current

framework of the dispatching processes that the passenger railway operators have the

authority to modify the whole timetables, the adjusted timetable is given for the freight train

operator. We solve the locomotive rescheduling problem for the given adjusted timetable in

which we change the assignment of the locomotives to the trains as needed, taking into

account the periodic inspection of the locomotives as well as the inspection capacity. It is

simultaneously decided whether all of the trains can be exactly covered by the available

locomotives, which is NP-complete. The uncovered train detection problem that selects

unassigned trains of less importance is solved only if the rescheduling has failed. Based on

our network representation of the disrupted situation, we formulate the two problems as the

integer programming problems and solve them by column generation. We apply the set-

covering relaxation to the locomotive rescheduling problem, which has set-partitioning

constraints. The column generation subproblem that has the inspection constraint is solved

in polynomial time. Numerical experiments have been carried out by using the real timetable

of long-distance trains, the locomotive scheduling plan and major disruption data including

the case where at least 17% of the locomotives must have been rescheduled. The results

indicate that our algorithms provide the solutions within approximately 30 seconds for the

cases with 72-hour goal for recovery involving more than 1,100 train tasks. The set-covering

relaxation speeds up the computation time by a factor of six at a maximum. The quality of the

solutions is also satisfactory since the objective function values are within 1.8% of optimality

and the number of locomotives rescheduled seems to be comparable to the number of those

manually rescheduled by the dispatchers. For the small disruption case, our solution is

assessed by the experienced workers of the actual dispatching processes and it is favorably

evaluated.

We are now developing a computer-aided rescheduling system for practical use with the

algorithms presented in the paper installed. The system also includes the freight driver

rescheduling algorithm by Sato and Fukumura (2010). Meanwhile, the timetable modification

algorithm by Tomii et al. (2005) handles the timetable of freight trains in addition to those of

the passenger trains. Message passing between their algorithm and ours is left for future

study.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

22

ACKNOWLEDGMENT

The authors thank anonymous reviewers for their valuable comments. The data for the

numerical experiments are partially provided by courtesy of Mr. Eiki Shigeta and Mr. Hiroshi

Kawakami of the Japan Freight Railway Company. The authors also thank them for

assessing our rescheduling solution.

REFERENCES

Caprara, A., Kroon, L., Monaci, M., Peeters, M. and Toth, P. (2007). Passenger railway

optimization. In: Handbooks in Operations Research and Management Science:

Transportation (Barnhart, C. and Laporte, G., Eds.), Vol. 14, pp. 129–187. Elsevier,

Amsterdam.

Clausen, J., Larsen, A., Larsen, J., and Rezanova, N. J. (2010). Disruption management in

the airline industry - concepts, models and methods. Computers and Operations

Research, 37, 809–821.

Desaulniers, G., Desrosiers, J. and Solomon, M. M., Eds. (2005). Column Generation.

Springer, New York.

Huisman, D. (2007). A column generation approach for the rail crew re-scheduling problem.

European Journal of Operational Research, 180, 163–173.

Huisman, D. and Wagelmans, A. P. M. (2006). A solution approach for dynamic vehicle and

crew scheduling. European Journal of Operational Research, 172, 453–471.

Japan Freight Railway Company (2006). Operational information.

http://www.jrfreight.co.jp/i_daiya/index.html (in Japanese).

Jespersen-Groth, J. (2009a). Decision Support for the Rolling Stock Dispatcher. Doctoral

Thesis, Informatics and Mathematical Modelling, Technical University of Denmark.

Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L., Maróti, G. and Nielsen,

M. N. (2009b). Disruption management in passenger railway transportation. In:

Robust and Online Large-Scale Optimization (Ahuja, R. K., Möhring, R. H. and

Zaroliagis, C. D., Eds.), Lecture Notes in Computer Science, 5868, 399–421.

Kamada, T. (2009). Hakuchizu KenMap Ver. 8.4. http://www5b.biglobe.ne.jp/~t-

kamada/CBuilder/kenmap.htm (in Japanese).

Kroon, L., Huisman, D., Abbink, E., Fioole, P.-J., Fischetti, M., Maróti, G., Schrijver, A.,

Steenbeek, A. and Ybema, R. (2009). The new Dutch timetable: the OR revolution.

Interfaces, 39, 6–17.

Li, J.-Q., Mirchandani, P.B. and Borenstein, D. (2007). The vehicle rescheduling problem:

model and algorithms. Networks, 50, 211–229.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Operations

Research, 53, 1007–1023.

Maróti, G. and Kroon, L. (2005). Maintenance routing for train units: the transition model.

Transportation Science, 39, 518–525.

Nemhauser, G. L. and Wolsey, L. A. (1988). Integer and Combinatorial Optimization. John

Wiley & Sons, New York.

Freight locomotive rescheduling and uncovered train detection during disruptions
SATO, Keisuke; FUKUMURA, Naoto

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal

23

Railway Freight Association (2006). The 2006 Japan Freight Railway Company Timetable.

Railway Freight Association, Tokyo (in Japanese).

Rezanova, N. J. and Ryan, D. M. (2010). The train driver recovery problem - a set

partitioning based model and solution method. Computers and Operations Research,

37, 845–856.

Sato, K. and Fukumura, N. (2010). An algorithm for freight train driver rescheduling in

disruption situations. Quarterly Report of RTRI, 51, 72–76.

Tomii, N., Tashiro, Y., Tanabe, N., Hirai, C. and Muraki, K. (2005). Train rescheduling

algorithm which minimizes passengers' dissatisfaction. In: Innovations in Applied

Artificial Intelligence (Ali, M., Esposito, F., Eds.), Lecture Notes in Artificial Intelligence,

3533, 829–838.

Walker, C. G., Snowdon, J. N. and Ryan, D. M. (2005). Simultaneous disruption recovery of

a train timetable and crew roster in real time. Computers and Operations Research,

32, 2077–2094.

Keisuke SATO* and Naoto FUKUMURA.

Transport Information Technology Division, Railway Technical Research Institute,

2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan.

Tel.: +81-(0)42-573-7311, Fax.: +81-(0)42-573-7305.

E-mail: keisato@rtri.or.jp (Keisuke SATO).

(*: Corresponding author.)

