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ABSTRACT 

This paper discusses optimization of freight train locomotive rescheduling under a disrupted 

situation in the daily operations in Japan. In the light of the current framework of dispatching 

processes that passenger railway operators modify the entire timetables, the adjusted 

timetable is distributed to a freight train operator. We solve the locomotive rescheduling 

problem for the given adjusted timetable in which we change the assignment of the 

locomotives to the trains as required, considering a periodic inspection of the locomotives. 

The uncovered train detection problem that selects unassigned trains of less importance is 

solved if the rescheduling has failed. We formulate the two problems as integer programming 

problems derived from our network representation of the disrupted situation, and solve the 

problems by column generation. Our simple speeding-up technique named set-covering 

relaxation is applied to the rescheduling problem, which has set-partitioning constraints. The 

column generation subproblem reduced to a shortest path problem with the inspection 

constraint is solved in polynomial time. Numerical experiments using a real timetable, 

locomotive scheduling plan and major disruption data in the highest-frequency freight train 

operation area reveal that satisfactory solutions are obtained within around 30 seconds by a 

PC even for the cases with 72-hour goal for recovery. The set-covering relaxation speeds up 

the computation time by a factor of six at a maximum.  

 

Keywords: Locomotive rescheduling, uncovered train detection, set partitioning, set-covering 

relaxation, column generation.  

1. INTRODUCTION 

Mathematical optimization approaches for railway planning problems such as timetabling, 

rolling stock circulation and crew scheduling have been long and widely studied, and have 

recently brought major success to some train operators (refer to Caprara et al. (2007) and 

Kroon et al. (2009)). They dramatically reduce the associated operational cost and improve 

satisfaction of passengers and cargo owners. Meanwhile under a disrupted situation in the 

daily operations where the planned timetables and schedules are not achieved by accidents 
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or adverse weather conditions, the resolutions of timetable adjustment and rolling stock/crew 

rescheduling by optimization have not yet been proposed sufficiently as indicated in 

Jespersen-Groth et al. (2009b) as well as Rezanova and Ryan (2010). One of major factors 

making the rescheduling optimization difficult is time for train dispatchers in charge to wait for 

a solution provided by a computer. A solution of acceptable quality must be obtained as 

quickly as possible to prevent further delays of the trains by done nothing, particularly in 

areas with high-frequency train operations.  

One among the limited literature on optimization approaches for railway disruption 

management is by Walker et al. (2005), in which timetables and drivers on the Metro line in 

New Zealand are rescheduled simultaneously. They formulate their problem as a set-

partitioning problem with many additional constraints and they aim at minimizing the 

deviation from the existing timetables and crew schedules. An arbitrary chosen one out of the 

36 trains operated in the area is delayed for the numerical experiments and the solutions are 

obtained in 110 seconds. Huisman (2007) gives a set-covering model for a driver 

rescheduling problem of passenger railway operator NS of the Netherlands where the 

timetables are changed due to maintenance work on train tracks. It takes about 15 hours to 

solve the real size of the problem that has more than 700 driver duties and 7,000 tasks. The 

computation time is reasonable since the modification of the timetables is anticipated in 

advance. Quite recently, another crew rescheduling formulation has been proposed by 

Rezanova and Ryan (2010) for the daily disruption. Their model is based on a set-partitioning 

problem and it is applied to the data obtained from Danish passenger railway operator DSB 

S-tog A/S with up to 74 drivers and 91 tasks. The solutions are provided in 26 seconds. 

Some uncovered trains are detected as their results. Jespersen-Groth (2009a) discusses a 

rolling stock recovery problem. The problem is aimed at re-routing rolling stocks according to 

estimated passenger demand, and is formulated as a network flow model. Reportedly, 100 

train tasks are recovered in about 70 seconds. In the airline industry, the resource 

management optimization during disruptions is often discussed, as reviewed in Clausen et al. 

(2010). In the context of general vehicle routing, Huisman and Wagelmans (2006) and Li et 

al. (2007) offer vehicle rescheduling algorithms. They do not take into consideration the 

constraints characteristic to the railway industry such as the periodic vehicle inspections.  

In this paper, we discuss optimization of rescheduling of locomotives that haul freight trains 

in Japan. The Japan Freight Railway Company operates all of approximately 600 freight 

trains daily except for those in some bay or regional areas. This company is, in almost all of 

its operational areas, recognized as the second class railway operator, which indicates that 

its trains run on the roadways owned by the first class railway operators (passenger railway 

operators) such as the East Japan Railway Company, the Central Japan Railway Company 

and the West Japan Railway Company. The freight and passenger trains share the same 

infrastructures and the freight trains run between the passenger ones, which are operated by 

the first class operators. The frequencies of the passenger trains are very high in the urban 

areas in Tokyo, Nagoya and Osaka, the three largest cities in Japan. The timetables for the 

freight and passenger trains are planned and decided once per year after negotiations 

among the operators involved. The timetables planned as above are sometimes suspended 

due to accidents or adverse weather conditions in the daily operations. Under such a 

disrupted situation, train dispatchers serving on the first class railway operator in the area 

modify the timetables and accordingly the rolling stock schedules in various ways for the 
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passenger trains to prevent further expansion of the trouble. Some of their efforts are studied 

in Tomii et al. (2005). At the same time, the dispatchers, having an authority as the first class 

operator, adjust the freight train timetable. In this framework of the current dispatching 

processes, the options that the freight train operator can take to prevent the disruption from 

spreading are much restricted; rescheduling its resources (locomotives, freight cars, 

containers and drivers), requesting for re-adjustment of the freight train timetable, or 

cancelling the trains. The re-assignment of the resources to the trains is first tried. The freight 

railway company makes a request to the first class operators for the re-adjustment of the 

train timetables only if the rescheduling has failed; however, the request is not always 

approved. Cancelling of the trains is the last resort since it might lead to lose the cargo 

owners’ trust. Thus, the resource rescheduling is the most important part of disruption 

management for freight trains in Japan. It is, however, very difficult for the freight train 

operator to decide manually in short time whether the rescheduling is possible in a case of a 

large disruption. Among the rescheduling problems, the one pertaining to locomotives is 

crucial. The number of locomotives available is rather limited to compare with freight cars, 

containers and drivers. Exactly one locomotive must be assigned to each train (unless the 

operation in tandem is specified) since an additional locomotive may run over a block section 

or a platform. Note that locomotives in tandem are permissible when the train is a deadhead 

one without cars. The time that it takes for a locomotive to haul its loads from and to the 

specified stations ranges from 30 minutes to 20 hours. Furthermore, each locomotive must 

be inspected for every 72 or 96 hours depending on its type in spite that locomotive depots 

and workers for the inspections are limited. Hence, two or three days of rescheduling have to 

be considered, enlarging the problem size to be handled.  

Based on the current framework of the freight train dispatching processes in Japan, we study 

the challenging rescheduling issue concerning locomotives. Given an adjusted timetable and 

the current schedules and positions of the locomotives, we model the whole issue as two 

optimization problems. The first one is the locomotive rescheduling problem, in which we 

change the assignment of the locomotives to the trains as needed. It consequently decides 

whether all of the trains are exactly covered by the locomotives, which is NP-complete as we 

show it later. The second problem is the uncovered train detection problem and it is solved 

only if the rescheduling has failed. The locomotives are assigned to the trains in accordance 

with the importance of the trains, and the remaining uncovered trains are detected. It will help 

the freight train operator cancel the trains or make a request to the first class operators for 

re-adjustment of the timetable. Note here that the evaluation criteria are different between 

the two problems. If the locomotives can cover all the trains, then the degree of the 

locomotive rescheduling is preferred to be as small as possible. If there are some trains 

whose timetable must be re-adjusted or which must be cancelled eventually, they are 

preferred to be the ones of less importance. We therefore divide the whole issue into the two 

phases based commonly on our network representation of the disrupted situation. Both of the 

problems are formulated as integer programming problems. More specifically, the first 

problem is a set-partitioning problem with side constraints and the second a set-packing 

problem with the same side constraints (refer to Nemhauser and Wolsey (1988) for set-

partitioning, set-packing and set-covering problems). Column generation technique (of which 

insightful overview is introduced in Desaulniers et al. (2005)) and our approach named set-

covering relaxation solve the real size of the problems in real time while achieving good 
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solution quality. A polynomial-time algorithm for our column generation subproblem reduced 

to a shortest path problem with the periodic locomotive inspection constraint also contributes 

to the reduction of computation time.  

The rest of the paper is organized as follows. Section 2 gives precise definitions of our freight 

locomotive rescheduling and uncovered train detection problems on our network 

representation of the disrupted situation. We also discuss the complexity of the problems. In 

Section 3, we formulate the rescheduling problem and solve it by column generation 

combined with our simple speeding-up technique as termed set-covering relaxation. A 

polynomial-time algorithm for our column generation subproblem is also presented in the 

section. We subsequently indicate an algorithm for the uncovered train detection problem in 

Section 4 when the rescheduling problem turns out to be infeasible. Numerical experiments 

using the real timetable, locomotive scheduling plan and disruption data are explicit in 

Section 5. Section 6 concludes the paper and we present our view of future work.  

 

2. PROBLEM DESCRIPTION 

2.1. Network Representation 

To model the locomotive rescheduling and uncovered train detection problems, we first 

represent a freight train timetable and locomotive scheduling as a network. Figure 1 is a 

freight train diagram and schedules of two locomotives planned on the diagram. The 

locomotive labeled as Loco. 2, for instance, is planned to haul Train 2 from Station C to 

Station B, and then Train 4 from Station B to Station A. The minimum unit of haulage of a 

train from and to the specified stations is termed a task, and a sequence of tasks over 

several days is planned for each locomotive. The label “Ins.” indicates an inspection of the 

locomotive. An inspection is also included in a sequence of tasks. Assume here that a 

disruption has occurred and that the departure of Train 2 is delayed. Loco. 2 would miss 

Train 4 if no action were taken. In this case, we can avoid it if the tasks of Loco. 1 and Loco. 

2 are exchanged, i.e., Loco. 1 hauls Train 4 while Loco. 2 does Train 1. This is a simple 

example and a solution for the locomotive rescheduling problem. We then explain our way of 

modeling through Figure 1. For the given adjusted timetable, we set rescheduling starting 

time    along with rescheduling period  , and construct a network shown in Figure 2. The 

nodes of this network consist of, positions of the locomotives at the starting time      , tasks 

to be covered           , scheduled or extra inspections        , and the first tasks after the 

rescheduling period      . The directed arcs are drawn between nodes if a locomotive is 

able to move between them.  
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Figure 1 – Planned timetable/locomotive scheduling and adjusted timetable 

 
 

Figure 2 – Network representation of adjusted timetable and locomotives 

 

Formally, we first define node set        ̂      from a given adjusted timetable, a 

locomotive scheduling plan, rescheduling starting time    and rescheduling period  . The set 

  consists of the locomotives involved. This set also includes reserve locomotives available. 

Each locomotive     has the information on its previous inspection time PrevIns_time( ), 

time ready for the rescheduling Ready_time( )      , and station Arr_sta( ) that   is at as 

of Ready_time( ). Inspection interval   , 72 or 96 hours depending on the type of the 

locomotive, is also prepared. The locomotive   must be inspected for every   . We denote 

by   a set of rescheduling tasks to be covered. A set of deadhead train tasks without cars is 

denoted by  ̂ . An element   of   or  ̂  has its departure time Dep_time(  ) and station 

Dep_sta( ), its arrival time Arr_time( ) and station Arr_sta( ). Note that     Arr_time( ) 

      holds, i.e., the arrival time of the rescheduling tasks is neither earlier than the 

rescheduling starting time nor later than the stopping time of the rescheduling. Since each 

locomotive has its planned sequence of tasks, its first task after the rescheduling period has 

expired, or the task whose departure time is later and arrival time is earlier than the stopping 

time respectively, is definable. For a reserve locomotive, the task is to be in its home depot. 
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We call the set of such tasks the convergence tasks and denote them by  . It holds that 

| |  | | by the definition. Each convergence task     has locomotive Due_loco( ) due 

to be assigned and next inspection time NextIns_time( )         which are determined 

by the planned sequence of tasks, as well as Dep_time( ) and Dep_sta( ). For each node 

       ̂, an inspection of the locomotives can be carried out after   if a locomotive depot 

is adjacent to Arr_sta( ). We let   an inspection node after  , and then the node has its 

previous task (or a locomotive) Prev_task( ) which equals to   and station Sta( ). Moreover 

the node has finishing time of the inspection FinishIns_time( ), which is trivially later than 

Arr_time( ) (or Ready_time( )). We denote by   the set of the inspection nodes.  

Next, we define directed arc set   . The first type of arcs is drawn from a locomotive to tasks 

if pair             ̂     satisfies the following condition:  

Arr_sta( ) = Dep_sta( )  and  Ready_time( ) + Buf_time(Arr_sta( )) ≤ Dep_time( )  

where Buf_time(∗) is some buffer time needed to assign a locomotive to a train at station ∗. 

It should be noted that we do not consider shunting problems here since there are many 

tracks and turnouts in the freight train stations in Japan. An arc is also connected between 

task node pair             ̂      ̂     if  

Arr_sta(  ) = Dep_sta(  )  and  Arr_time(  ) + Buf_time(Arr_sta(  )) ≤ Dep_time(  )  

holds. There are no outgoing arcs from any member of  . For each inspection node  , we 

draw (Prev_task( ),  ) ( (     ̂)   ) expressing an inspection after the end of its 

previous task. A task after an inspection is represented by arc             ̂     

satisfying the condition:  

Sta( ) = Dep_sta( )  and  FinishIns_time( ) ≤ Dep_time( ).  

We now have the node set   and the arc set   forming an acyclic graph, and we add two 

functions   and   to it, constructing network            . The cost function        

   returns a nonnegative value when a locomotive and an arc are input. For simplicity we 

substitute   
  for        , and it represents the cost for locomotive   to traverse arc  . The 

cost function is used as the criterion for the locomotive rescheduling problem. We set   
    

for arc      (     ̂)  (   ̂)  when its endpoint tasks coincide with two consecutive 

tasks in the planned sequence of tasks of any locomotive. Some positive cost is set 

otherwise, since it indicates a change of locomotive assignment. We prepare two cost values 

   and   , and select either of them according to the workload of the change. For arc 

         (     ̂)     from a locomotive or a task to an inspection node, its cost is 

zero if the inspection after the task is included in the planned sequence of tasks of any 

locomotive. If not, then it means an unscheduled extra inspection and cost    is given to the 

arc. The cost of arc            (   ̂   )  from an inspection node to a task node is 

equal to that of (Prev_task( ),  ). The cost of an arc incoming to the convergence tasks, say 

      
  for              , depends on the locomotive name  . The Japanese freight train 

operator permits an assignment of a locomotive other than the planned one to the task   

after a disruption, though the assignment of the planned locomotive is much preferred. 

Hence we set       
    when Due_loco(  ) =   and       

     otherwise. There are 

several types of locomotives running in the same area in Japan, and an additional cost    is 

imposed when the next task of a locomotive is switched to a task that a different type of 

locomotives plans to haul. When a task should not be covered by the locomotives of a 

certain type since the type has too small tractive effort or such assignment violates some 

other operational constraints, we set   
    to prevent it from happening. The demand 
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function            defines the value of importance of each task and it is used as the 

criterion for the uncovered train detection problem.  

2.2. Feasible Path and Inspection Capacity 

We consider a path from a locomotive node to a convergence node on the network. It is the 

planned or rescheduled sequence of tasks of the locomotive. Let   be such a path and   
  be 

the sum of   
  which appears in the path. We call   

  the cost of path   of locomotive  . Then 

  with   
    is the planned sequence of tasks of   and that with positive cost indicates the 

workload of rescheduling the locomotive. We also define   
  similarly and call it the 

importance of path  . Recall here, that any locomotive must be inspected for every 

inspection interval   . To express a locomotive path in which the periodical inspection is 

carried out properly, we first prepare function     { }         ̂    such that, for each 

locomotive     and inspection    ,  

      {      ̂  |                                 } 

                    {      |                                     },  

      {      ̂  |                                   } 

                    {      |                                       }.  

The set       is the tasks to which we can assign the locomotive   without any inspection. 

The set       includes the tasks to which we can assign   after the inspection   is done. 

Note that               is equivalent to |      |  |     )| for any       { }   , since 

the function is based on time. We next take the locomotive and inspection nodes contained 

in path   and call them            in order of their appearance (    ). Let             

   ̂ be the tasks between    and      in  , and            ̂    the ones after the last 

inspection   . We then call that the path   is a feasible path if   satisfies the following 

condition:  

                          {       }   

                                                                      

The locomotive is properly inspected in a feasible path. We denote by    the set of  ’s 

feasible paths for each    .  

Another constraint involving the inspections is the limited number of facilities and workers for 

the inspections. We let   be the depot set and   be the time span set. The capacity of the 

inspections for depot     at time span     is expressed as   
 .  

2.3. Problem Definitions and Complexity 

We are now ready for defining our locomotive rescheduling and uncovered train detection 

problems. Given the network            , the function    for each locomotive     and 

the inspection capacity   
  for every        , we select one path among the feasible paths 

for each locomotive and exactly cover all the elements in     by them, i.e., any task node is 

traversed by only one path. Note that a train whose locomotive operation in tandem is 

specified is divided into two distinct tasks, and that the elements in   ̂ need not be covered or 

can be covered by up to two paths. At the same time, the number of locomotive inspections 

at   and   included in the selected paths must not exceed   
 . The locomotive rescheduling 
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problem decides whether such covering is possible or not, and if possible, finds paths so that 

the sum of   
  is sufficiently small. The uncovered train detection problem is defined as, to 

find the combination of feasible paths so that the sum of   
  is large enough, under the 

condition that all the elements in     are covered by up to one path and the constraints 

concerning the deadhead tasks and that the inspections are satisfied.  

We discuss here the complexity of the decision problem part of our locomotive rescheduling 

problem. In Maróti and Kroon (2005) which studies routing for train units inspected, one NP-

complete result is obtained. That is the problem of whether all the nodes of an arbitrary 

acyclic graph can be exactly covered by disjoint paths or not, where multiple sources (nodes 

with no in-going arcs) and sinks (nodes with no out-going arcs) of the paths are given and a 

given one source of them is specified to a certain sink. In our problem, consider a case with 

one locomotive type,  ̂     , every element in   having both in-going and out-going arcs 

and that |         |    holds for some      while           for any other     

{  }. In this case, locomotive    is specified to the one destination and our problem coincides 

with the NP-complete problem.  

 

3. FORMULATION AND ALGORITHM OF RESCHEDULING 

3.1. Integer Programming Formulation and Overall Algorithm 

In this paper, we regard the locomotive rescheduling problem as a variant of a set-

partitioning problem and model it as an integer programming problem. For locomotive     

and its feasible path     , let    
  be one if task      ̂    is included in  , otherwise zero. 

We similarly define    
   for depot     at time span    . We introduce a decision variable 

  
  that takes one if   is selected as a rescheduled sequence of tasks of  , otherwise zero. 

We then present the following formulation:  

 

 minimize 
∑  

   

∑  

    

  
   

  
   (1) 

 subject to ∑  

   

∑  

    

   
   

               (2) 

  ∑  

   

∑  

    

  ̂ 
   

         ̂   ̂  (3) 

  ∑  

    

  
             (4) 

  ∑  

   

∑  

    

   
    

      
                (5) 

    
    {   }                (6) 
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The objective function expressed as equation (1) seeks to minimize the total sum of the cost 

of paths selected, i.e., the total workload of the rescheduling. Equation (2) is a set of set-

partitioning constraints, which indicates that any task is contained in only one of the paths. A 

deadhead train task without cars need not be covered or can be covered by up to two paths, 

and it is expressed as constraint (3). For each locomotive, only one path is selected among 

its feasible paths according to equation (4). Equation (5) is the inspection capacity constraint 

for each depot and time span, and the variables take binary values by equation (6).  

The optimal solution for this problem is straightforwardly obtained after all the feasible paths 

   are enumerated from the network  . The enumeration of all such paths, however, is not 

reasonable; it would take too much time. In fact, none of them is available before the 

rescheduling, since the adjusted timetable and consequently the topology of the network 

cannot be presumed. We therefore adopt column generation technique, which alternately 

enumerates some of the feasible paths and solves our optimization problem with the integer 

constraints of the variables relaxed. Additionally we replace the set-partitioning constraints 

with set-covering constraints temporally in which the covering of the tasks by more than one 

path is allowed, since the application of column generation to problems that have set-

partitioning constraints is known to cause degeneracy, i.e., the improvement of the objective 

function value is slowed down. Degeneracy is also observed in solving problems with set-

covering constraints, particularly when the objective function value is close to optimal. We 

therefore restore some of the set-partitioning constraints when the objective function value 

approaches its lower bound, and solve our problem again in a different solution space. We 

call our relaxation approach set-covering relaxation and show the overall algorithm in Figure 

3. The details of the subroutines are displayed in the following subsections.  

3.2. Initialization and Restricted Master Problem 

At Step 1 of the algorithm, we first introduce and initialize iteration counter     of our 

column generation as well as lower bound       of the objective function value. A subset 

  
  of all the feasible paths set    is given for each   with   

   . We then replace    with 

  
  in the locomotive rescheduling problem. Some of the feasible paths (or columns) are 

generated and added to   
  through the iterations. Similarly      and  ̂   ̂ are defined with 

    ̂   . The two subsets are related to the set-covering relaxation; we simply permit that 

the tasks in          are covered by one or more locomotives and that any number of the 

locomotives are assigned to the deadhead tasks in  ̂   ̂ . The binary constraint (6) is also 

replaced with a nonnegative one for column generation. One artificial nonnegative variable   

is introduced whose coefficient column consists of the right-hand side of equations (2)-(5) 

and a huge cost   in the objective function, making the locomotive rescheduling problem 

always feasible at        . We give here restoring parameter     to enlarge the task 

sets    and  ̂  forming the original constraints. This parameter is used at Step 4.  

 



Freight locomotive rescheduling and uncovered train detection during disruptions 
SATO, Keisuke; FUKUMURA, Naoto 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
10 

 

Figure 3 – Algorithm for locomotive rescheduling problem 

 

Restricted master problem        to the original locomotive rescheduling problem is thus 

defined for each iteration counter   as follows:  

 

 minimize 
∑  

   

∑  

    
 

  
   

     
   (7) 

 subject to ∑  

   

∑  

    
 

   
   

                      (8) 

  ∑  

   

∑  

    
 

    
   

                 (9) 

  ∑  

   

∑  

    
 

  ̂ 
   

            ̂   ̂   ̂   (10) 

  ∑  

   

∑  

    
 

  ̂  
   

            ̂   ̂   (11) 

Step 1: Initialization.  

                Set             
         ̂    .  

                Replace    with   
 .  

                Introduce dummy variable   with cost  .  
                Apply set-covering relaxation to (2), (3) and LP relaxation to  .  
                Set restoring parameter  .  
Step 2: Restricted Master Problem       .  

                Solve LP for    
        ̂ .  

                Set objective value on   , dual prices on         
 .  

Step 3: Column Generation Subproblem      .  
                Solve shortest path problem for             

  .  

                Set feasible paths found on   
 , shortest path length on   

 .  
Step 4: Lower Bound Update and Restoring Constraints.  

                Set         {        ∑   
 

    }.  

                If             ∑   
 

    , then  
                               (set of tasks violating (2) at optimal solution for       ).  
                           ̂    ̂   (set of tasks violating (3) at optimal solution for       ).  
                Else, then                ̂    ̂.  
Step 5: Termination of Column Generation.  

                If (         or           or      ̂    ̂ ), then  

                          
    

    
        and go to Step 2.  

                Else if     , then output “infeasible” and Stop. 
Step 6: Integer Solution Search     .  
                Set         ̂   ̂.  

                Solve IP for    
        ̂ .  

                Set objective value on    .  
                If (       ), then output solution and Stop.  
Step 7: Feasibility Check     .  
                Apply branch-and-price.  
                If integer solution with      is found, then output it.  

                Else, then output “infeasible.”  
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  ∑  

    
 

  
               (12) 

  ∑  

   

∑  

    
 

   
    

    
       

                (13) 

        
                     (14) 

 

The problem is solved by applying a standard linear programming algorithm at Step 2. The 

optimal objective value is set on   . At the same time, we obtain the dual prices or the 

optimal solutions for the dual problem of        (refer to Nemhauser and Wolsey (1988) for 

duality and Lagrangian relaxation related to it). Let    the dual price corresponding to task 

constraint   in equations (8)-(11),    be that to constraint   in (12) and   
  be that to 

constraint     in (13).  

3.3. Column Generation Subproblem 

After        is solved to optimality for  , we decide at Step 3 in Figure 3 whether the 

objective value    can further be improved by adding new paths to the partial feasible paths 

set   
      for each locomotive. We search for such a path by introducing the following 

column generation subproblem       which is derived from the dual of       :  

 

 find           

 such that   
  ∑  

     ̂  

   
       ∑  

   

∑ 

   

   
    

     

 

We reduce the search problem to an unconstrained shortest path problem thought there is a 

constraint that a path must be chosen from the feasible paths set. We find a path satisfying 

the above conditions by introducing network    extended from the network   defined in 

Section 2. The extended network    is constructed as shown below for each locomotive  :  

 

 Step A: For each task      ̂   , prepare index Ind( ) and set its rank number in 

ascending order of Arr_time( )  (NextIns_time( ) for    ) on ind( ).  

 Step B: Make ( |   ̂   |  |     |   ) copies of network   and denote them by 

 |     |    |   ̂  | , where               .  

 Step C: For each   , change destination node    of each arc                     

to  |  (  )|.  

 Step D: For each   , delete all the incoming arcs of each task node    satisfying 

ind(  )   .  

 

An example of network   is displayed in Figure 4 where   is permissible to haul the three 

train tasks         without any inspection. Assuming that FinishIns_time( ∗) of the inspection 

nodes  ∗  plus the inspection interval    exceeds NextIns_time(   ), the corresponding 
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extended network    is Figure 5. The locomotive starting from the node    can reach the 

convergence task   
  by traversing   

  and such a route is a feasible path.  

The copied part    in the extended network is interpreted as a subnetwork that has first to 

 th tasks in ascending order of the arrival time of all the tasks. In the subnetwork  |     |, for 

instance, the copied locomotive  |     |  of   can reach up to the |     | th task (if the 

locomotive can reach the node on  ). The |     | tasks correspond to the trains that   is 

permissible to haul without any inspection. The locomotive can be assigned to more tasks if it 

traverses an inspection node on  |     |.  

We assume that, for locomotive  , there is a path from  |     |   |     | to an element of 

   {|     |   |   ̂  |}     on   , i.e., a copied convergence task. We define, such a path in 

which superscript * of node  ∗ is deleted, as a  -  path. Then the following holds.  

 

Proposition 1. For all    , the set of  -  paths on    is equivalent to    on  .  

Proof. Given a  -  path   for any  , we first show that the path is included in   . For any 

node               between the two inspections    and      in  , Ind(  )  |      | 

holds from Step C and D in constructing the extended network   . Task    satisfying Ind(  ) 

 |      |  is a member of        (otherwise        has at most Ind(   )    tasks, a 

contradiction), therefore          holds from Step A and the definition of the function   . 

The same holds true for         , and   is shown to be a member of   .  

Given the nodes in a feasible path     , let locomotive        be  |     | , each task 

              be  | 
     | , inspection      be     

|      |
 and each          be  | 

     | . 

For any               it holds that          by definition, and so Ind( )  |      | 

(otherwise         ). The copied node  | 
     |  has also an index with Ind(  | 

     | ) 

 |      |, and hence the incoming arc to  | 
     | is not deleted at Step D. Meanwhile,    

and its next node in   is connected by the arc drawn at Step C on the extended network   . 

Therefore, a path exists on    from  |     | to  |      | if we let the endpoint of   be  . □  

 

Hence, we can reduce the column generation subproblem       to a shortest path problem 

for all   if we impose the values of the dual prices            
  on the corresponding nodes. 

Note that the dual price –   
  imposed on an inspection node   is selected as follows;    

Sta(  ), and   is the time span which has the minimum value of –   
  satisfying   

 Arr_time(Prev_task( )), Dep_time( )  where   is a node starting from  . The number of 

arcs on the extended network    is usually more than that of nodes, and Dijkstra’s algorithm 

for an acyclic graph solves the problem in   |   ̂   || |  for each locomotive, i.e., the 

maximum number of arcs on   . Moreover we can solve it in   | || |  when      holds, 

i.e., the rescheduling period is not longer than the inspection interval of locomotive  . That is 

since       |   ̂| holds for any inspection node   and there is no arc from one node on 

       to another node on    for any   { |     |        |   ̂|    }.  
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Figure 4 – Initial network    

 
 

Figure 5 – Extended network     

 

In fact there is no need to construct the extended network   . Consider subpath   on the 

initial network   from locomotive node   to a certain task or inspection node. By introducing 

label Reachable( )  |      | where    is the latest inspection in  , we can judge whether 

locomotive   operated along   is permissible to haul a next task node. We can also reduce 

the computation time by comparing two subpaths       that have the same endpoint. If 

Reachable(  )   Reachable(  ) holds and the cost of    is less than or equal to   , then 

   can be excluded from the candidate shortest path list. Supposing that there is a subpath, 

say   , from the endpoint of    to a convergence task, and that the path consisting of    and 

   is feasible, then the path consisting of    and    is trivially feasible and has less cost.  

We add to set   
  feasible paths with a negative cost value obtained by Dijkstra’s algorithm. 

The feasible paths other than the shortest one can also be added which are obtained 

collaterally by the algorithm. Let   
  be the shortest path length (let   

     when   
   ). 

From the complementary slackness condition for linear programming problems,   
  is always 

less than or equal to zero.  
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3.4. Lower Bound Update, Restoring Constraints and Termination of CG 

The shortest paths of the locomotives found in the preceding subsection is equal to the 

optimal solution for the Lagrangian relaxation problem of our locomotive rescheduling 

problem with equations (2), (3), (5) relaxed, if we regard the dual prices      
  as Lagrangian 

multipliers. By the duality theorem (refer to Desaulniers et al. (2005)), at any iteration   the 

optimal value of the Lagrangian relaxation problem is equal to    ∑   
 

   , i.e., the objective 

function value of        plus the sum of the shortest path lengths. Since this value can be 

adopted as the lower bound of the original formulation of our locomotive rescheduling 

problem, we set         {       ∑   
 

   } at the beginning of Step 4 in Figure 3.  

We refer here to the value of the restoring parameter   and enlarge the task sets    and  ̂  

forming the original constraints if the following inequality is satisfied:  

 

            ∑   
 

   

  

 

Then we denote the optimal solution for        obtained at Step 2 by  ̅  ̅, and update the 

task set forming the equality constraint (or the at-most-two constraint) at the next restricted 

master problem          to:  

 

        {        |  ∑  

   

∑  

    
 

   
    

 ̅̅ ̅   ̅    }   

    ̂    ̂  {  ̂   ̂  |  ∑  

   

∑  

    
 

  ̂ 
    

 ̅̅ ̅    ̅    }         

 

When the inequality involving the parameter   is not satisfied, we let         and     ̂    ̂. 

For      , the sets    and  ̂  are updated only if ∑   
 

      holds, i.e., the column 

generation for the restricted master problem with some fixed constraints set converges. For 

   , the constraints are changed when the lower bound     is updated. If we set    , 

then the set    and  ̂  are enlarged when the ratio of the difference of the objective function 

value and the current lower bound to the negative sum of the shortest path lengths 

approaches. In the dual problem viewpoint the domain of the variable      is enlarged to 

      by restoring the constraint for      , hence our relaxation approach can be seen 

as a simple version of the BOXSTEP method (a survey on speeding-up techniques of 

column generation including the method is displayed in Lübbecke and Desrosiers (2005)).  

At Step 5 of our algorithm, we set     
    

        and go to Step 2 if        holds, 

since the complementary slackness ensures that   
    is equivalent to   

   . For the 

cases where the task sets    and  ̂  forming the original constraints are updated at Step 4, we 

also return to Step 2 since the solution space is changed. Else, then we stop the generation 

and find an integer solution in the following subsection. However, we stop the algorithm when 

     which means        ; it is obvious that there exists no solution for the 

rescheduling in this case.  
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3.5. Integer Solution Search and Feasibility Check 

At the starting point of Step 6 in Figure 3, we have a fractional optimal solution for the 

locomotive rescheduling problem. We then restore all the set-partitioning constraints by 

setting         ̂   ̂, and find an integer solution by applying branch-and-cut algorithm. 

We denote by     the objective function value of the integer solution. If       holds, then it 

indicates a not necessarily optimal but feasible solution found. We stop the algorithm there, 

expecting the solution to be of acceptable quality. Else, then it shows that there may or may 

not exist a feasible locomotive rescheduling plan since   
    , i.e., not all the feasible paths 

are enumerated at this point. We then apply branch-and-price algorithm      in which the 

branching rule follows that in Rezanova and Ryan (2010). In the optimal solution for       , 

we find locomotive   which fractionally covers task   (or inspection in depot   at time span  ). 

We then divide our linear programming problem into two subproblems. One has a constraint 

such that any feasible path of   must exactly traverse   (or must have an inspection in   at  ), 

the other must not. This branching rule is verified by the following proposition via introducing 

variable vector   with:  

 

  
  ∑    

   
 

    

                ̂       

  
   ∑    

    
 

    

                        

 

Proposition 2(Rezanova and Ryan (2010)). For         ̂   ̂ , an arbitrary 0-1 

assignment to   which does not violate equations (9), (11) (13), and properly adjusted 

coefficients of   so that     is feasible, there exists an integer solution for        when 

      .  

Proof. Suppose not. Then we have, by equation (12), fractional optimal solution values 

   
     

  for some   and it holds that the path    is equal to the path    (the coefficient 

columns of    
  and    

  have been determined by the value of   
    

  ). We can set either of 

them at one and the other at zero. □  

 

If an integer solution is found and the corresponding objective function value is less than  , 

then our problem turns out to be feasible. There is no solution for the rescheduling otherwise, 

and we subsequently solve the uncovered train detection problem.  

 

4. FORMULATION OF UNCOVERED TRAIN DETECTION 

We consider the uncovered train detection problem as a variant of a set-packing problem 

that tries to maximize the sum of the importance of the tasks selected. All the train tasks can 

be covered by up to one path, and the constraints concerning the deadhead tasks and the 

inspections must be satisfied. The number of feasible paths selected for a locomotive is zero 

or one in case there is no feasible path for the locomotive. We give below the integer 

programming formulation of the problem:  
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 maximize 
∑  

   

∑  

    

  
   

  
    

 subject to ∑  

   

∑  

    

   
   

                

  ∑  

   

∑  

    

  ̂ 
   

         ̂   ̂   

  ∑  

    

  
              

  ∑  

   

∑  

    

   
    

      
                 

    
    {   }                 

 

We again relax the integer constraint and apply column generation to the problem. Let   be 

an iteration counter of the column generation. The feasible paths   
  enumerated in the 

locomotive rescheduling problem are added at the first iteration. Any task   with ∑∑   
   

     

in the integer solution means an uncovered task and such tasks are output as the result of 

the algorithm.  

 

5. NUMERICAL EXPERIMENTS 

5.1. Disruption Cases and Computational Environment 

This section presents computational results obtained by applying our algorithms to data on 

the railway lines shown in Figure 6. The lines include the highest-frequency freight train 

operation area in Japan, where more than 250 freight trains are operated daily. The distance 

between Kuroiso Station and Shimonoseki Freight Station is about 1,300 km and it takes 

almost one day for DC electric locomotives to haul the trains between the stations.  

We apply delay and cancelation information reported on the website by Japan Freight 

Railway Company (2006) to the timetable and the DC locomotive schedule plan for year 

2006 (obtained from Railway Freight Association (2006)). We set | |      and assume that 

there is no reserve locomotive available. The locomotives are divided into seven types with 

the inspection interval being 72 or 96 hours. We choose five major cases among the real 

disruption logs in from July to November and their summary is shown in Table I. Three to 24 

(17% of all) locomotives will miss their next trains to haul without rescheduling; indicating the 

lower bound of the number of locomotives whose schedules need to be changed. 36 to 72 

hours are set as the rescheduling period since there is a task whose running time is over 20 

hours. Table II shows the average size of the problems for each rescheduling period, in 

which the density is defined by | |   (| |
 
)     .  
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Figure 6 – Major freight railway lines and stations in Japan (Kamada (2009) and GSI) 

 
Table I – Disruption cases  

No.  # Cancelled trains # Delayed trains Average delay time (h) # Locos to miss next trains 

1  0  12  3.1  3  

2  0  16  2.2  4  

3  0  18  3.1  5  

4  0  15  4.4  10  

5  2  50  3.1  24  

 
Table II – Instance size (average of 5 cases)  

Rescheduling period (h) |     | |   | |   | Density (%) 

36  602.2  1,119.8  17,866.6  2.86  

48  776.0  1,404.8  29,259.6  2.97  

60  958.2  1,696.8  43,027.8  2.99  

72  1,132.0  1,981.8  59,887.4  3.05  
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The time span for the inspections is set to twelve hours and the capacity for each existing 

depot and each time span is one plus the number of scheduled inspections in the depot and 

at the time span. The upper limit for the number of feasible paths |  
 | added to   

  for each   

is, one for    , 66 for     and five otherwise. We set the restoring parameter   to 3.0. 

The cost values are,                                    and        , 

based on the opinions by the experienced workers who were in charge of the locomotive 

rescheduling. The importance of each task is given similarly. Preliminary experiments show 

that this combination of parameter values causes much computation time than others.  

The programs are implemented in Java SE 6, calling the Java API of IBM ILOG CPLEX 12.1 

for solving       ,      and     . An interior point method is applied to        according to 

Desaulniers et al. (2005), in which they point out that less iteration is expected for the 

convergence of column generation if we take rather an analytic center than an extreme point 

of the optimal face as the solution for       . All the experiments are carried out on the 32-

bit Windows PC having Core i7 CPU with 3.2 GHz and 3 GB RAM. The four CPU cores are 

used by CPLEX and the shortest path problem on four locomotives is concurrently solved in 

     .  

5.2. Locomotive Rescheduling Results 

Table III shows the results of our algorithm applied to the locomotive rescheduling problem. 

The algorithm is run ten times for each disruption case and rescheduling period. The number 

of locomotives whose sequence of tasks is changed, the quality of the solutions, the number 

of column generation iterations, the sum of feasible paths enumerated and the real time for 

the computation are presented in the table. All the results shown in Table III are the average 

values of the ten trials except for the maximum computation time among the trials. We first 

note that several different solutions are obtained from trial to trial for the disruption cases No. 

4 and 5. For the cases and the rescheduling periods where the same solutions are obtained, 

the number of iterations and subsequently the number of enumerated feasible paths differ 

from trial to trial. That derives from the facts that, the feasible paths are enumerated by       

in a different order for each trial due to the multi-threading, the dual optimal solution is not 

unique for         , and these cause the linear programming solver to return different 

values of         
 .  

The number of locomotives whose sequence of tasks modified is around twice as many as 

the locomotives whose schedules need to be changed for the cases No. 1, 4 and 5. 

Generally, dispatchers in charge of locomotive rescheduling try to exchange the planned 

sequences of a disrupted locomotive with an undisrupted one, and our results seem to be 

comparable to them. Our solution for the case No. 1 is manually assessed and the 

rescheduling of the six locomotives is favorably evaluated by experienced workers of 

dispatching processes. Although that does not hold for the cases No. 2 and 3, the gap 

defined by                     indicates that the solutions very close to optimal are 

obtained. In many cases, the optimal integer solution is obtained at the termination of Step 5 

in our algorithm as it is also seen in Rezanova and Ryan (2010), where they conclude that it 

comes from the special structure of the constraint matrix.  

It should also be noted that the algorithm stops at Step 5 for all the infeasible cases. The 

reason for the rescheduling to become feasible when we set the rescheduling period longer 
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is that some of the tasks cannot be covered unless the planned sequences of the 

locomotives of different types are exchanged. These sequences, however, have to be 

exchanged again prior to the stopping time of the rescheduling. The Japanese freight train 

operator imposes an operational constraint that, to a convergence task of a certain 

locomotive in its planned sequence of tasks, only locomotives with the same type as the 

locomotive may be assigned. There is no time and place for the re-exchange in the short 

rescheduling period while there is a chance of it after the 36 hours.  

 
Table III – Rescheduling results and computation time (average of 10 trials) 

No. Rescheduling 
period (h) 

# Locos 
whose 
tasks 

changed 

    Gap 
(%) 

  ∑ |   
  | Time 

(s) 
                  Max. 

time 
(s) 

1  36  6.0  1,200.0  0.00  6.0  8,921.3  0.9  0.4  0.5  0.0  1.0  

1  48  6.0  1,200.0  0.00  7.8  9,546.6  1.6  0.6  0.9  0.0  1.9  

1  60  6.0  1,200.0  0.00  7.1  9,630.1  2.2  0.6  1.5  0.0  2.4  

1  72  6.0  1,200.0  0.00  7.6  9,735.6  3.7  0.9  2.9  0.0  4.3  

2  36  16.0  5,335.0  0.00  22.5  10,340.0  3.8  2.6  1.2  0.0  4.2  

2  48  14.0  5,235.0  0.00  27.6  11,638.6  7.2  4.1  3.1  0.0  8.6  

2  60  14.0  5,120.0  1.23  27.3  12,494.1  12.3  5.0  6.2  1.2  17.0  

2  72  14.0  4,840.0  0.46  23.5  13,597.5  15.3  4.8  9.2  1.3  18.6  

3  36  infeasible -  -  22.3  10,795.2  3.9  2.6  1.3  0.0  4.9  

3  48  18.0  8,430.0  0.00  23.8  12,561.6  6.7  3.7  3.1  0.0  7.7  

3  60  16.0  7,850.0  0.00  26.2  14,850.6  12.1  5.4  6.7  0.0  13.4  

3  72  17.0  7,710.0  0.00  35.2  17,867.0  25.9  11.0  14.9  0.0  32.4  

4  36  infeasible -  -  11.7  9,572.7  1.6  1.0  0.6  0.0  1.9  

4  48  20.4  5,560.0  0.00  18.6  10,898.3  3.7  1.8  1.8  0.0  5.8  

4  60  20.8  5,560.0  0.00  29.0  14,185.5  10.9  5.4  5.5  0.0  13.2  

4  72  20.4  5,240.0  0.00  37.7  17,784.2  23.9  10.9  13.0  0.0  27.8  

5  36  infeasible -  -  3.0  8,728.0  0.5  0.1  0.4  0.0  0.5  

5  48  45.0  16,160.0  0.25  25.2  12,678.5  7.4  3.8  2.4  1.2  9.0  

5  60  43.5  15,632.0  1.77  28.2  16,073.3  14.4  6.8  5.2  2.3  16.5  

5  72  44.4  14,362.0  0.52  39.7  18,787.6  28.8  13.1  13.0  2.7  32.3  

 
Table IV – Rescheduling solution summary of case No. 3 

No. Rescheduling 
period (h) 

# Extra 
inspections 

# Locos whose original task not assigned 
at end of rescheduling period 

# Locos assigned to tasks 
of different loco type 

3  48  6  10  6  

3  60  7  8  5  

3  72  7  4  7  

 
Table V – Computation time without set-covering relaxation (average of 10 trials) 

No. Rescheduling period (h)   ∑ |   
  | Time (s) 

4  36  9.7  10,182.5  1.8  

4  48  26.2  16,761.0  9.2  

4  60  49.4  30,262.0  42.3  

4  72  82.0  48,383.0  161.7  

5  36  3.0  8,728.0  0.5  

5  48  27.5  16,263.9  10.5  

5  60  45.6  25,857.5  33.8  

5  72  68.5  35,357.2  84.2  
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The number of locomotives whose sequence of tasks modified does not decrease for the 

case No. 3, 4 and 5 though we take the rescheduling period longer, while the objective 

function value does. This outcome is possible since we do not directly minimize the number 

but do the sum of rescheduling penalties divided into the five types. Table IV presents the 

number of unscheduled extra inspections (the value times the cost    is included in     as a 

part of the total cost) in the rescheduling solution for the case No. 3. The number of 

locomotives assigned to a different convergence task from the planned locomotive (the value 

times    is in    ) and the number of locomotives whose rescheduled sequence of tasks 

includes a task originally hauled by a different locomotive type (the value is relevant to the 

cost   ) are also displayed in the table. The value concerning the penalty    gets smaller for 

a longer rescheduling period as there are more opportunities for a locomotive to be assigned 

to its planned convergence task. By comparing the 72-hour result with the 60-hour one, we 

see that four more locomotives are assigned to their own convergence tasks by involving one 

additional locomotive rescheduled.  

All the solutions are obtained in ten seconds with the rescheduling period being 48 hours and 

within around 30 seconds for 72 hours, which is acceptable enough for the freight train 

operator. The operator will be able to even output and compare different solutions by 

adjusting the cost values within the admissible time for the locomotive rescheduling. The 

short computation time also enables the operator ready for the re-adjustment of the timetable 

arising from further disruptions. It should be noted that the short computation time is not 

achieved without our set-covering relaxation; Table V presents the number of column 

generation iterations and the computation time for the cases No. 4 and 5 where          

  ̂     ̂ , i.e., the instances are solved without set-covering relaxation. The values of    

decrease slowly, and it causes the enumeration of many feasible paths that are not selected 

in the solutions. Our relaxation approach speeds up the computation time by a factor of six at 

a maximum.  

5.3. Uncovered Train Detection Results 

For the cases where the rescheduling is identified as infeasible, we have carried out the 

uncovered train detection. Table VI shows the number of tasks uncovered and the 

computation time. It is observed that there exist feasible paths to all the locomotives for every 

case. Bigger values of  ∗ is set to the convergence tasks since the haulage of the trains after 

the rescheduling period has expired is more important. We then have results such that some 

unimportant, short-distance trains in the rescheduling period are uncovered. Exactly optimal 

or almost optimal solutions are obtained in terms of the objective function. It takes more 

computation time to solve the problem than to do the rescheduling problem in spite that there 

are approximately 10,000 feasible paths enumerated in advance. 27% to 77% of overall time 

is spent for finding the integer solutions. This observation indicates that the rescheduling 

algorithm is superior to the uncovered train detection algorithm for the feasibility decision of 

locomotive re-assignment.  
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Table VI – Uncovered train detection results (average of 10 trials) 

No. Rescheduling 
period (h) 

# tasks 
uncovered 

Gap (%)   ∑ |   
  | Time (s)                   

3  36  3.0  0.01  3.6  411.9  7.0  1.1  0.5  5.4  

4  36  1.0  0.00  5.5  705.3  3.0  1.2  0.5  1.3  

5  36  12.3  0.01  8.3  2,044.4  4.7  2.8  0.6  1.3  

 

 

6. CONCLUSIONS 

This paper has presented a study on the optimization of freight train locomotive rescheduling 

under a disrupted situation in the daily operations in Japan. In the light of the current 

framework of the dispatching processes that the passenger railway operators have the 

authority to modify the whole timetables, the adjusted timetable is given for the freight train 

operator. We solve the locomotive rescheduling problem for the given adjusted timetable in 

which we change the assignment of the locomotives to the trains as needed, taking into 

account the periodic inspection of the locomotives as well as the inspection capacity. It is 

simultaneously decided whether all of the trains can be exactly covered by the available 

locomotives, which is NP-complete. The uncovered train detection problem that selects 

unassigned trains of less importance is solved only if the rescheduling has failed. Based on 

our network representation of the disrupted situation, we formulate the two problems as the 

integer programming problems and solve them by column generation. We apply the set-

covering relaxation to the locomotive rescheduling problem, which has set-partitioning 

constraints. The column generation subproblem that has the inspection constraint is solved 

in polynomial time. Numerical experiments have been carried out by using the real timetable 

of long-distance trains, the locomotive scheduling plan and major disruption data including 

the case where at least 17% of the locomotives must have been rescheduled. The results 

indicate that our algorithms provide the solutions within approximately 30 seconds for the 

cases with 72-hour goal for recovery involving more than 1,100 train tasks. The set-covering 

relaxation speeds up the computation time by a factor of six at a maximum. The quality of the 

solutions is also satisfactory since the objective function values are within 1.8% of optimality 

and the number of locomotives rescheduled seems to be comparable to the number of those 

manually rescheduled by the dispatchers. For the small disruption case, our solution is 

assessed by the experienced workers of the actual dispatching processes and it is favorably 

evaluated.  

We are now developing a computer-aided rescheduling system for practical use with the 

algorithms presented in the paper installed. The system also includes the freight driver 

rescheduling algorithm by Sato and Fukumura (2010). Meanwhile, the timetable modification 

algorithm by Tomii et al. (2005) handles the timetable of freight trains in addition to those of 

the passenger trains. Message passing between their algorithm and ours is left for future 

study.  
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