
Estimating route travel time variability from link data by means of clustering 
CHARLE, Wouter; VITI, Francesco; TAMPERE, Chris  

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
1 

ESTIMATING ROUTE TRAVEL TIME 
VARIABILITY FROM LINK DATA BY MEANS 

OF CLUSTERING 

Wouter R. J. Charle 

Francesco Viti 

Chris M.J. Tampère 

Centre for Industrial Management 

Section Traffic and Infrastructure 

Faculty of Mechanical Engineering 

Katholieke Universiteit Leuven 

wouter.charle@cib.kuleuven.be 

ABSTRACT 

Accurate route travel time estimation is today one of the most challenging problems in traffic 
theory. This research proposes a novel method for the estimation of route travel time 
distributions, based on historical link travel time observations. Central in the development of 
this framework is the distinction between (cheap) off-line storage and computations and 
(expensive) on-line computations. For that it is important to minimize the on-line 
computational effort of calculating a route travel time histogram. The key elements in the 
method are correlations in link travel time fluctuations and a clustering algorithm. Tests on 
the Belgian road network show that 1) the clustering method is on-line computationally 
efficient while keeping the off-line storage under control, 2) that it can accurately estimate 
route travel time distributions and 3) that it can be applied successfully for route reliability 
estimation. 
 
Keywords: travel time variability, clustering, data mining, route information 

INTRODUCTION 

Transportation networks are facing more and more congestion issues all over the world. 
Under these conditions, the adoption of traffic management measures aimed at resolving 
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traffic issues and at using the available network capacity with greater efficiency is a 
necessary (short-term) policy to guarantee a sustainable transportation system. To achieve 
this goal, it is necessary to estimate and predict how congestion affects the performance of a 
network in order to provide the road users with optimal advices and guidance, and to identify 
which management strategies to apply. However, the continuously growing demand for 
mobility and the increasing complexity of transportation networks (e.g., more travel 
alternatives, more information sources) make the estimation and prediction of congestion 
effects one of the most challenging problems in traffic theory. 
One of the key issues is that congestion effects are typically local, i.e. they can be observed 
and confined within certain parts of the network and affect a limited number of links. 
However, their consequences can propagate through a much larger part of the network, 
since a local link travel time variation can be experienced by different users using different 
routes, whose reaction can also cause changes in the traffic patterns elsewhere. For that, 
even if congestion effects are observable and quantifiable at the link level, it is important to 
extrapolate their effects onto the route level. 
Another key aspect which motivates this study is that congestion causes two undesirable 
effects to the transportation users: on one hand it causes an increase of expected travel time 
due to a reduction of the mean speed and queuing, and on the other hand increases the 
variability of travel times. Since the decisions of both traffic managers and road users rely on 
accurate and reliable travel time estimation and prediction, knowing the variability of travel 
time might be as important as knowing its expectation value. However, the mainstream 
research on travel time estimation concentrates on the estimation of mean route travel time 
or some measures of travel time reliability (i.e. 10th and 90th percentiles). As a consequence, 
route travel time variability is rarely considered in traffic applications, and route choice 
models often favour alternatives on the basis of shortest travelling distance or expected 
travel time. The research described in this paper aims to show that, given the growing 
availability and detail of travel time measurements, it is also possible to estimate route travel 
time distributions. This serves a broader spectrum of applications and provides more useful 
information. 
Although new data sources, able to provide route travel time information directly, are 
becoming more and more popular (e.g., GPS data, Automatic Vehicle Identification 
technologies), they are often insufficient in size to derive statistically significant estimates for 
all system users. On the other hand, transversal aggregate data is more easily available in 
practice, through e.g. inductive loop detectors, it is a cheaper way to collect data and it can 
provide full statistics of flows at specific road sections. Although the calculation of link travel 
time distributions is possible through these data sources, the relationship between these 
distributions and travel time distributions at the route level is not straightforward. Because 
link flows and travel times are often highly mutually correlated, the calculation of route travel 
time variability can hardly be approximated by simply summing up the link travel time 
variability. 
This research presents a new method to calculate route travel time histograms, based on 
historical link travel time observations.  A computationally efficient procedure is proposed to 
relate link travel time variability to route travel time variability. Clustering techniques are used 
to combine successive links into clusters of links (hereafter called clusterlinks) such that the 
link travel times correlations between subsequent clusterlinks are minimized. This enables 
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one to aggregate link travel time distributions into route travel time distributions ignoring only 
arbitrarily small travel time correlations between adjacent links. 
It is important to stress that we aim to quantify link travel time correlations that are not 
caused by within-day and day-to-day fluctuations. The correlations we derive from the 
clustering approach will provide an indication of how congestion effects are expected to 
propagate onto the traffic system, for instance if an accident has occurred. In this sense link 
correlations are strongly related to the structure of the network and the connectivity between 
links. 
Many applications could employ the results of the method presented in this paper. They can 
be used for instance in any route selection criteria, e.g., to quantify route travel time 
uncertainty in the travellers' decision making, to provide route advice and guidance with 
some form of confidence bounds, to consider trip chain strategies etc. Moreover, this 
information can help to improve travel time estimation and prediction models, or to provide 
performance indicators, such as reliability or uncertainty measures. It is also important to 
stress that the method proposed in this study can also be deployed beyond road traffic 
engineering applications. Other applications can be for instance the location optimization of 
logistic hubs (i.e. airports, packaging services ...) or public services (i.e. hospitals, fire 
stations ...) and the evaluation of any network performance (e.g., electric, social and internet 
networks). 
In this paper the new clustering algorithm is incorporated in a robust route guidance 
framework. The aim is to allow the development of an advanced route planner that is able to 
optimize route choice reliability. The notion of reliability is defined by the end-user of the 
route planner and highly depends on the properties of the route travel time distribution. 
 
Outline The remainder of this article is organized as follows. The second section gives 
a literature overview of the methods proposed to derive travel time variability and their 
application to route planning. A description of the data is given in the third section, followed 
by a description of the proposed method. The results on a real traffic network are discussed 
in the fourth section. Finally, the last section gives the conclusions. 

LITERATURE REVIEW 

Travel time variability is widely acknowledged as one of the main factors in determining the 
route preferences of road travellers. Abdel-Aty et al. (Abdel-Aty, Kitamura, & Jovanis, 1996) 
reported in a survey that 54% of daily commuters indicated travel time variability as the most 
important or the second most important factor for choosing their route. Small et al. reported 
in (Small, Noland, Chu, & Lewis, 1999) that the value of one minute of travel time saving is 
comparable to a minute reduction in travel time variability in route choice. From the 
perspective of the individual drivers, route travel time variability has much more importance 
than link travel time variability, since drivers are interested in knowing primarily how long a 
trip will last, or at what time they will arrive at destination. It is therefore important, when 
modelling the choice process of drivers, to provide a measure of route travel time variability. 
The interest in methods for quantifying route travel time variability has also been growing 
since the increasing development of Intelligent Transportation Systems (ITS) as short-term 
measures to manage congested traffic networks (e.g. route guidance, Advanced Traveller 
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Information Systems, etc). However, most of the research has focused on determining long-
term variability, such as peak-hour, daily, weekly and seasonal variability. Many studies have 
assumed route travel times to be well approximated by Normal or Log-Normal distributions, 
under the condition that link travel times are (sufficiently) independent variables on a day-to-
day time scale (Noland & Polak, 2002), or that the network is under user equilibrium 
constraints (e.g. (Clark & Watling, 2005), (Davidson & Teye-Ali, 2008)). This assumption is 
acceptable in slow-varying and uncongested networks, while there is strong evidence of 
significant correlations between link travel times in a route otherwise (He, Liu, Kornhauser, & 
Ran, 2002). 
Although in uncongested sections route travel time variability is a simple accumulation of 
each single link travel time variability, this assumption inevitably underestimates route travel 
time variability in general since it would neglect their correlation1. Despite this fundamental 
shortcoming most of the available methods neglect this dependency for the sake of 
computational tractability (e.g., (Lecluyse, Van Woensel, & Peremans, 2009), (Lu, 2001)) or 
calculate the correlations using approximate analytic functions (e.g., (Fu & Rilett, 1998)), or 
using a traffic simulation model (e.g., (He, Liu, Kornhauser, & Ran, 2002)), which still 
remains a simplified representation of real traffic patterns. Finding these correlations using 
real data is much more complex, as correlations are intermixed with other stochastic factors 
(within-day and day-to-day variations, external factors such as weather, incidents etc.). 
In many applications a single measure of travel time variability may not be sufficient. He et al. 
(He, Liu, Kornhauser, & Ran, 2002) indicate that although mean and variance contain the 
most important information about path travel time, finding the single route with expected 
shortest travel time is not appropriate for routing when planners are not risk neutral. The 
entire travel time distribution contributes to the routing choice (Lecluyse, Van Woensel, & 
Peremans, 2009). However, the difficulty to derive some measure of route travel time 
variability from link-based data grows considerably if one aims to derive the complete 
distribution of travel times. In this respect there is very limited research, often bound to some 
specific application. For instance, Hellinga and Fu (Hellinga & Fu, 1999) and Key (Key, 2005) 
proposed methods to derive minimum travel time distributions (i.e. using only data from 
shortest paths) for application to respectively route choice in stochastic networks and to route 
guidance systems. Krishnamoorthy (Krishnamoorthy, 2008) proposed instead a method to 
derive route travel time variability from link travel time distributions, which is applicable only 
to signalized arterial corridors. 
In this paper we propose an important step forward into the calculation of route travel time 
distributions from link travel time data. The method proposed in this paper is not bound to 
any application domain. The remainder of this paper will describe the data used and the 
proposed method, together with some preliminary results on a real case study. 

METHODOLOGY 

The focal point of this research is the on-line calculation of a route travel time distribution 
based on historical link travel time observations. This will improve the stochastic shortest 

                                                 
1 It is well known in statistics that the variance of the sum of two or more random variables is equal to the sum of 
the variance of each variable plus twice the covariance of each couple of variables. 
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path algorithms as developed by Hellinga and Fu (Hellinga & Fu, 1999) and Key (Key, 2005) 
since more detailed route information is available. Moreover, the travel time distribution can 
be calculated for any route (i.e. not only shortest paths), and routes can be compared based 
on their travel time distribution. Consequently an optimal route is not necessarily a shortest 
route, neither is it always the fastest route. This is illustrated in Section 4.3 
For the on-line calculation of a route travel time distribution based on historical link travel 
time observations, two cases can be distinguished: 
 

• ad hoc: the route travel time distribution is calculated while searching a route 
• ex post: the route is already known when calculating the histogram 

 
The ad hoc calculation of the route travel time distribution has the advantage that the 
properties of the distribution can be optimized while calculating the route. This is because the 
statistics of several sections of the network can be compared in order to construct a route for 
which the travel time distribution is optimized (e.g. the variance is minimized). The result of 
the ad hoc calculation is 1 optimal route. This advantage is not present in the ex post 
calculation of a distribution of route travel times because a set of routes has to be provided a 
priori. This set of routes can for example be computed with a k-shortest-paths algorithm 
using simple weights (e.g., mean travel time, distance, etc.). The ex post calculation consists 
of calculating the travel time distribution for each of the routes. Based on these probability 
distributions the optimal route can be selected. The drawback of an ex post calculation is that 
the selected route will be 'an' optimal route, but not 'the' optimal route. The advantage is that 
the optimization criteria do not have to be know in advance. The ex post calculation of the 
distribution is in this way a simpler problem, but is non-trivial when on-line computational 
efficiency is an issue. In this paper we focus on the procedure to derive these distributions, 
not on the routing procedure. For this reason we will refer mainly to the ex post case. 
In what follows, both a naïve approach as adopted by Lecluyse in (Lecluyse, Van Woensel, & 
Peremans, 2009), and an approximative approach to the ex post calculation of travel time 
distributions are discussed. It is shown that the approximative method improves the 
computational efficiency of the naïve method by pre-processing the link travel time data off-
line. The approximative method can be applied to networks of any size. 

Notation 

In this section the notation used to describe the methodology is defined. A network contains ܮ links ߣ indexed by ݅. For each of the links ߣ௜ there is a collection of historical travel time 
observations ܶ ௜ܶ,௝ௗ  on ܶ times ߬ indexed by ݆ for ܦ different days ߜ indexed by ݀. A route ܴ, 

indexed by ݎ, is a set of ܪ௥ links ߣ௜. The travel time of route ܴ௥ on day ߜௗ and time ௝߬ is 
denoted by ܶ ௥ܶ,௝ௗ . The empirical travel time distributions are approximated by histograms of ܤ 

bins. The notation is summarized in Table 1. 
 

Table 1: Summary of the notation ܮ The number of links in the network ߣ௜ A specific link, indexed by ݅ 



Estimating route travel time variability from link data by means of clustering 
CHARLE, Wouter; VITI, Francesco; TAMPERE, Chris  

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
6 

ܶ ௥ The number of links in route ܴ௥ܪ ݎ ௗ A specific day, indexed by ݀ ܶ The number of observations on 1 day ௝߬ A specific observation time, indexed by ݆ ܴ௥ A route in the network, indexed byߜ The number of observation days ܦ ௜ܶ/௥,௝ୢ  The travel time for link ߣ୧ or route ܴ௥, on day ߜௗ and time ௝߬ ܩ௥ (≤ ≥) ܤ ௥) The number of (cluster)links in route ܴ௥ܪ ܶ × The number of bins in a travel time histogram (ܦ

Approaches 

A first straightforward but naïve approach makes direct use of the available historical travel 
time data to calculate a route travel time distribution. The setup of a system that implements 
such an approach is illustrated in Figure 1. In this setup a route-guidance framework sends a 
query to the statistics system in order to obtain the travel time distribution for a specific route ܴ௥. The statistics system calculates the distribution based on the historical data contained in 
a database and returns the distribution to the calling system. 

 
Figure 1: Architecture of the naïve approach. A route-guidance system sends a query to the statistics system in 
order to obtain the travel time distribution for a specific route. The statistics system calculates the distribution 
based on the historical data contained in a database. All calculations are done on-line. 

Not considering temporal propagation of travel time fluctuations explicitly, the route travel 
time histogram is calculated from the sum of instantaneous travel times ܶ ௜ܶ,௝ௗ  over all links ߣ௜ 
contained in the route ܴ௥ for each observation time: 
 
 ܶ ௥ܶ,௝ௗ = ෍ ܶ ௜ܶ,௝ௗ௜:௜∈ோೝ  (1) 

 
The computational complexity of this approach is dominated by the summations in 
(\ref{eq:naive}) and are of order ܪ௥ × ܶ ×  Considering that in practical applications this has .ܦ
to be done for each route in a set of relevant routes, it is easy to understand that this is not a 
feasible approach for an on-line application. The off-line pre-computation of all route statistics 
is neither an option because the total number of routes is at least a quadratic function of the 
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number of links in the network.2 Consequently shifting the naïve approach to an off-line 
environment results in a storage capacity increase by at least power 2. 
With the second approach a method is developed to shift computational effort partially off-
line while keeping the data storage size under control. This is done on one hand by pre-
processing the travel time data off-line and on the other hand by using clustering techniques 
to group links based on the network topology and correlations between link travel time data. 
In the remainder this approach is also referred to as the clustering approach. 
The setup of a system implementing the clustering approach is illustrated in Figure 2. In the 
on-line window of this setup, similar to the implementation of the naïve approach, a robust 
route-guidance framework sends a query to the statistics system to obtain the travel time 
distribution for a specific route. The statistics system calculates the distribution based on the 
statistical data contained in a statistics database. The statistics database is created and 
updated off-line by the clustering system. The clustering system uses the data contained in 
the historical travel time database to calculate the travel time histograms, using correlations 
and a clustering algorithm, and stores them in the statistics database. 

 
Figure 2: Architecture of the clustering approach. On-line (left): A robust route-guidance framework sends a query 
to the statistics system to obtain the travel time distribution for a specific route. The statistics system calculates 
the distribution based on the statistical data (i.e. averages, standard deviations, histograms) contained in a 
statistics database. Off-line (right): The statistics database is created and updated off-line by the clustering 
system. The clustering system uses the data contained in the historical travel time database to calculate the travel 
time histograms, using correlations and a clustering algorithm, and stores them in the statistics database. 

By pre-processing the travel time data to travel time histograms, the amount of data required 
during the on-line computation of a route travel-time distribution is reduced from ܶ ×  .ܤ to ܦ
However, because the statistical properties of the sum of observables is not equal to the sum 
of these properties if the observables are statistically dependent, statistical dependencies 
between travel time observations on different links have to be taken into account.  While this 
has no consequences for expected value calculations, neglecting these dependencies will 
result in an incorrect estimation of higher moments. 
Most often the observed travel times of two subsequent links in a network are not statistically 
independent. These statistical dependencies can be due to, for instance, congestion 
spillback over links, similar road conditions (e.g. due to the weather, incidents, etc.), or other 
structural similarities. The dependencies between link travel time statistics are in this 
                                                 
2 The number of routes considering a simple sequence of ܮ links in series is 

௅మା௅ଶ . 



Estimating route travel time variability from link data by means of clustering 
CHARLE, Wouter; VITI, Francesco; TAMPERE, Chris  

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
8 

approach removed by redefining the network. This is done off-line by means of a clustering 
algorithm which defines new (artificial) links as a combination of links that have correlated 
travel time fluctuations. In this way the correlations between each cluster of links are 
minimized. 
The travel time histogram of each cluster of links can be therefore calculated off-line by 
making use of the naïve approach. The clustering method is used because the route 
histogram is calculated as the convolution of the histograms of the clusterlinks, and the 
calculation of a density function of the sum of two stochastic variables by convolving their 
density functions requires that these variables are statistically independent. The clustering 
approach is thus an approximative method in which the quality of the approximation is 
determined by the extent to which the correlations between clusterlinks can be minimized. As 
a result the route travel time histogram is an approximation to the real route travel time 
distribution. 
Because a clusterlink is the combination of 1 or more links, the length of a route ܴ௥ is 
reduced to ܩ௥ ≤  ௥ clusterlinks. To calculate the convolutions efficiently, the histograms areܪ
stored in the database as Fourier Transformations (FT). The advantage of using the FT of 
the histograms is that, by the convolution theorem, the route travel time histogram is 
obtained as the inverse FT of the multiplication of the FT-ed clusterlink histograms instead to 
their convolution. For that the complexity of the on-line computation is of order ܤ ௥ܩ)× + log(ܤ)), with the ܤ log (ܤ) term due to the inverse FT. 
The computational complexity of both approaches is compared in the following numerical 
example. Suppose the route contains ܪ௥ = ௥ܩ = 100 links, the histogram contains ܤ = 25 
bins and that there are ܶ × ܦ = 1440 travel times observations for each link. It is found that 
the second approach (order ~ 3.10ଷ) outperforms the first approach (order ~ 1.10ହ). This is 
because in this test case ܤ − ܶ × ܦ < 0. The performance of the second approach improves 
further as ܩ௥ <  ௥. The naïve approach performs equal to or better than the clusteringܪ
approach only if 
 
௥ܪܤ  ௥ܩ) + log(ܤ)) ≥ ܶ ×  (2) ܦ

 
In general, even if ܩ௥ = ܤ ௥, this condition is not satisfied sinceܪ − ܶ × ܦ < 0 must always be 
valid to calculate the empirical travel time histogram correctly. 

The clustering algorithm 

The clustering algorithm is used to combine successive links into clusterlinks such that the 
correlation between subsequent clusterlinks is minimized. As such, the travel time statistics 
of any 2 subsequent clusterlinks in the resulting network are approximately linearly 
independent. To identify clusters in the network the following heuristic is proposed. The 
clustering algorithm considers all links ߣ௜ in the network and, assuming instantaneous travel 
times, calculates the correlation3 ܥ௜௞ with each successive link ߣ௞. 

                                                 
3 Temporal propagation of travel time fluctuations is not considered explicitly and is subject of future research. 
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Calculating the correlations, it is important to capture the temporal travel time fluctuations 
around the stationary travel time pattern to identify dependencies between any 2 successive 
links ߣ௜ and ߣ௞. Else the correlation will be large between most of the links because morning 
and evening peak effects in travel time data are universal accross the majority of links. To 
ensure unbiased correlations, it is necessary to transform the link travel time data into a 
symmetric distribution. For that the following assumption is made about the distribution of link 
travel times. Knowing that travel time observations on a link ߣ௜ are bound from below by 
some minimal travel time ߠ௜ and do virtually not have an upper bound, it is assumed that they 
are distributed as 
 
 ܶ ௜ܶ,௝ௗ ,௜ߤ൫ܰ݃݋ܮ~ ௜ଶ൯ߪ +  ௜, (3)ߠ

 
where ߤ௜ is the mean and ߪ௜ଶ is the variance of the travel time distribution of link ߣ௜. This is in 

line with Noland et al. (Noland & Polak, 2002). By assumption (3) and defining 
 
 ܶܶ∗௜,௝ௗ = log൫ܶ ௜ܶ,௝ௗ −  ௜൯, (4)ߠ

 
a vector of transformed travel times ܶේܶ௜,௝ௗ  can be constructed: 

 
 ܶ෪ܶ௜௝ௗ = ܶܶ∗௜௝ௗ − ܦ1 ∑஽ௗୀଵ ܶܶ∗௜௝ௗ∑௝்ୀଵ ∑஽ௗୀଵ ቀܶܶ∗௜௝ௗ − ܦ1 ∑஽ௗୀଵ ܶܶ∗௜௝ௗ ቁ. (5) 

 
In this transformation, the travel times are explicitly centralized around the historical mean 
(assumed stationary) travel time for each observation time ௝߬. This is necessary to capture 

travel time fluctuations instead of travel time patterns caused by day to day fluctuations. The 
correlation of travel time fluctuations ܥ௜௞ between any 2 subsequent links ߣ௜ and ߣ௞ is now 
readily calculated as the inner product of ܶ෪ܶ௜,௝ௗ  and ܶ෪ܶ௞,௝ௗ  

 
  
௜௞ܥ  = ௞௜ܥ = ෍்௝ୀଵ ෍஽

ௗୀଵ ܶ෪ܶ௜௝ௗܶ෪ܶ௞௝ௗ . (6) 

 
The correlation can be interepreted geometrically as the angle between 2 vectors and lies in 
the range ሾ−1,1ሿ because of the normalization in equation (5). 
Having calculated the correlation ܥ௜௞, it is tested against the hypothesis H0: ܥ௜௞ = 0 to 
minimize the probability of a Type II error. This means that Pr(H0 is accepted | ܥ௜௞ ≠ 0) is 
reduced to some specified value 0 ≤ ݌ ≤ 1. Link ߣ௜ and ߣ௞ are combined into a cluster of 
links if H0 is rejected (i.e. it is possible that ܥ௜௞ ≠ 0). The statistics of this new clusterlink are 
obtained from the sum of the instantaneous travel times of both links for each ௝߬ and ߜௗ. 

Each such combination of links is added to the network and expanded until H0 cannot be 
rejected (i.e. no links can be added to the cluster of links). Remark that assumption (3) has 
no influence on the functional form of the resulting clusterlink travel time distribution as it is 
only used to calculate correlations correctly. 
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Based on the function of the node between 2 links (i.e. traffic passage, origin or destination 
node), some links become redundant. Links that have become redundant due to the 
clustering are removed from the network. In this way the network is restructured such that 
the statistics of each 2 subsequent clusterlinks in the network are approximately linearly 
independent. The heuristic of the clustering algorithm is illustrated on a fundamental 
clustering diagram4 in Figure 3. 
 

 
Figure 3: Fundamental clustering diagram of 3 nodes and 2 correlated links. Depending on the properties of node 
2, the clustering of links results in diagram A, B, C, D or E with cluster C1 of links 1 and 2. A: Traffic can only pass 
by node 2. B: Traffic can enter the network at node 2. C: Traffic can exit the network at node 2. D: Traffic can both 
enter/exit the network at node 2. E: Traffic can enter/exit the network at node 2 but cannot pass over it, the links 
are not clustered. 

RESULTS 

Historical data is used to calculate empirical route travel time distributions. 
The traffic data is generated on the Belgian motorway network using the floating car system 
of Be-Mobile (BeMobile, 2010). The system uses vehicle probes (e.g., taxi's, commercial 
vehicles, private cars, etc.) that communicate their position frequently to a central system. 
The individual data samples are processed to generate a traffic state for each individual road 
segment. The system covers up to 60000 km of Belgian roads and is fully operational since 
October 2007. 
The methodology is tested on the Belgian road network for 6 different routes between Bruges 
and Leuven. The results in this section have been obtained by a comparison of the results for 
the routes. The routes are displayed in Figure 4 and all have a length of ≈ 130km (≈ 100 
links). The historical travel time dataset has the structure as described in Section 3.1. It 
consists of observations every 15 minutes between 6:00 and 22:45 (ܶ = 68) on 10 Tuesdays 
ܦ) = 100). For certain links and observation times no observations have been made. The 
gaps in the data occur especially on times where there is low density traffic. Because of this 
the lacking data will be mostly free flow travel times. The frequency of data gaps varies per 
road type. Roughly 10% of the data is missing on motorways and up to 50% on rural roads. 
Using equation (4), a gap in the data on link ߣ௜ and observation time ௝߬ on day ߜ௞ has been 

replaced by the historical mean ∑ ܶܶ∗௜,௝ௗௗஷ௞  to calculate the correlations correctly. In this way 

                                                 
4
Any other structure can be reduced to this diagram. 
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the correlations are not altered by the gaps because ܶ෪ܶ௜,௝ௗ = 0. Observation times on which 

there is no data are not used in the calculation of the link travel time histograms. 

 
Figure 4: Illustration of the 6 routes between Bruges and Leuven. The routes only differ slightly in regions where 
congestion frequently arises. These are the exit of Bruges, the E40 section around Affligem, the entrance of the 
Brussels ringroad, the exit of the Brussels ringroad and the entrance of Leuven. 

From an evaluation point of view it is more interesting to examine the impact of clustering on 
the results as a function of a correlation threshold ߩ instead of using the hypothesis test. 
Using the threshold, links ߣ௜ and ߣ௞ are clustered if |ܥ௜௞| > ߩ ranges from ߩ The value of .ߩ = 1 to ߩ = 0.02. 
In what follows, first the impact of clustering on the number of links in a route is examined. 
After this the variance and the histogram of route travel times is estimated using both 
approaches and in function of the correlation threshold ߩ. Finally the clustering approach is 
used to compare the route travel time percentiles of the 6 routes. 

Route size 

The number of links plus clusterlinks in a route is examined for each route in function of the 
correlation threshold ߩ. The results are averaged over all routes and are illustrated relative to 
the initial number of links in the route in Figure 5. It is found that the total number of links in a 
route is linearly related to ߩ. This is because for lower correlation thresholds, more links are 
clustered into clusterlinks. As ߩ decreases from 1 to approximately 0.5, the links are 
especially clustered into new clusterlinks. As ߩ decreases below 0.5, the size of the 
clusterlinks begins to increase. This causes the number of clusterlinks in the route to remain 
stable for 0.3 ≲ ߩ ≲ 0.5 and to decrease for ߩ ≲ 0.3. The number of clusterlinks never 
coincides with the total number of links in a route. Moreover, while the total number of links in 
a route is linearly related to ߩ, the route is never replaced by 1 clusterlink. This indicates that 
the clustering algorithm is not oversensitive to correlation estimation errors since also very 
small correlations can be obtained from the data, and that the correlations capture 
meaningful dependencies between adjacent links. 
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Figure 5: Plot of size effects relative to the initial number of links in a route, in function of the correlation threshold. 
Blue: Fractional number of links in a route after clustering. Red: Percentage of clusterlinks in the route. Green: 
Fractional cluster size. From right to left: As the correlation threshold ߩ decreases from ߩ = 1 to ߩ ≈ 0.5 the 
number of links in the route decreases as links become more clustered. From ߩ ≈ 0.5 to 0.3 the cluster size 
increases and the number of clusterlinks in the route remains stable. From ߩ ≈ 0.3 to 0 the relative cluster size 
further increases and the number of clusterlinks in the route decreases. Note that not all links are clustered as ߩ 
decreases and that for ߩ → 0 the route is not completely clustered. 

Estimation accuracy 

To see the effect of clustering on the estimation of statistical parameters, the variance of 
route travel times is calculated using both approaches and in function of ߩ. Let ߪ௡ଶ denote the 
variance calculated using the naïve approach and ߪ௖ଶ(ߩ) the variance calculated using the 
clustering approach for a certain correlation threshold ߩ. The fraction ߪ௖ଶ(ߩ)/ߪ௡ଶ has been 
calculated for ߩ ∈ ሾ0.02,1ሿ for each route. The results are averaged over all 6 routes and are 
displayed in Figure 6. Because data gaps are excluded in the naïve approach, ߪ௡ଶ 
overestimates the real variance. This is seen in the results since the fraction ߪ௖ଶ(ߩ)/ߪ௡ଶ is 
always smaller than 1. For ߩ = 1, no links are clustered. Consequently all statistical 
dependencies in the travel time data of subsequent links are ignored. This results in an 
underestimation of the route travel time variance. 
The variance ߪ௖ଶ varies almost monotonically in function of ߩ between these 2 extremes. 
Because of this, the clustering method always gives better estimates for ߩ < 1 as when 
correlations are ignored (i.e. ߩ = 1). However for ߩ ≈ 0, the fraction ߪ௖ଶ(ߩ)/ߪ௡ଶ does not 
converge to 1 because not all links are clustered in 1 clusterlink. The clustering approach 
copes more efficiently with data gaps than the naïve approach and does not overestimate the 
variance in the limit ߩ → 0 as much as the naïve approach. 
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Figure 6: Plot of relative variance. 

In Figure 7, a comparison of the histograms calculated under different settings is made. The 
histograms are calculated using the naïve approach and the clustering approach with ߩ = 0.02 and ߩ = 1. Since this comparison is similar for all 6 routes, 1 route was selected. 
The histogram bins are wider for larger ߩ. This is because as ߩ increases, more correlations 
are ignored, and thus a wider range of travel times is possible. All histograms contain 100 
bins, but the range of travel times has been cropped to ሾ4.10ଷ, 10ସሿ seconds since this region 
contains all the large bins. 
Because in the naïve approach it is implicitly assumed that all links are correlated, the 
resulting histogram is noisier. Ignoring the smallest correlations (i.e. ߩ = 0.2), the obtained 
histogram is much smoother, but still has approximately the same shape as the noisier naïve 
histogram. This is not the case if all correlations are ignored. The histogram for ߩ = 1 gives 
more weight to small travel time values and less weight to large travel time values. Moreover, 
the centre of the distribution is shifted to larger travel time values. Because of this, the 
expected travel time and route reliability will always be overestimated. These errors are 
reduced by minimizing the correlations between subsequent links, as this results in a better 
estimation of the histogram shape and thus a better estimation of percentiles. 
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Figure 7: Plot of histograms: for the naïve approach (Top) and for the clustering approach with ߩ = 0.2 (Middle) 
and with ߩ = 1 (Bottom). 

Route reliability 

The results obtained from the clustering approach with ߩ = 0.2 are used to calculate the 5%, 10%, 25%, 50%, 75%, 90% and 95% percentiles for each of the six routes. The routes are 
compared in Table 2, based on their percentile travel time values. This illustrates the 
applicability of the clustering methodology to robust route guidance, in which route reliability 
is important. A route with a low 95th travel time percentile is for example more reliable for risk 
averse drivers than a route with a higher 95th travel time percentile but maybe a lower 
expected travel time. 
Route 4 has the best 50% travel time estimate. However, while route 4 would be chosen by 
risk neutral drivers, it is not at all a reliable route for risk averse drivers, since 4 of the 6 
routes have a better 95% travel time estimate. This means that over all route 4 performs well, 
but that it is sensitive to delays. The most risk-averse route is route 2, which will be the best 
option in case of extreme events. In all other situations faster alternatives exist. Following 
this reasoning, route 1 and 5 are never a good option, and the best choice is a trade-off 
between route reliability and overall route travel time. In this view, route 3 and route 6 give 
the best results. For practical applications, reliability should be cast into a reliability measure 
depending on a user’s preferences. 
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Table 2: Comparison of route performance based on the travel time estimates per percentile. The values in the 

table are route numbers. The first column indicates the percentile. Each row is ordered (left-to-right) from small to 
large percentile travel time value. For risk averse drivers, route 2 is the most reliable route. Contrary, route 4 is 
the most reliable route for risk neutral drivers since it has the lowest median travel time. In a trade-off situation, 

route 3 and 6 are both reliable and fast. Routes 5 and 1 are never a good option. For practical applications, 
reliability should be cast into a reliability measure depending on a user’s preferences. 

  Prctl.  Route number  

 95%   2  3  6  5  4  1 

 90% 3 2 6 4 5 1 

 75%   3  6  4  2  5  1 

 50%   4  6  3  2  5  1 

 25% 4 6 3 2 5 1 

 10%   4  6  3  2  5  1 

 5%   4  6  3  2  5  1 

CONCLUSIONS 

The clustering approach presented in this paper is able to efficiently calculate route travel 
time statistics on-line. This is done by shifting part of the calculations off-line. Not only it is at 
least an order of 10ଶ more efficient as a naïve approach, it also improves the estimation 
accuracy by taking statistical dependencies into account. It is shown that the clustering with 
low correlation thresholds does not result in a completely clustered route. Rather, the route is 
divided in several almost uncorrelated clusterlinks. Hence, it deals more efficiently with 
incomplete data, which resulted in the naïve approach in an overestimation of the route travel 
time variance. The calculation of the route travel time histogram using the clustering 
approach is a coarse-grained approximation of the histogram calculated using the naïve 
approach. The shape is well reproduced, incorporating a long tail of higher travel time events 
with non-zero probability. It was shown that neglecting correlations results in a histogram in 
which long travel time events are underestimated. Testing the clustering approach on the 
Belgian road network shows that the method is sensitive enough to discriminate between 
routes, even if these are only slightly different. Moreover it shows that routes can be very 
different in terms of speed and reliability. 
This research concentrated on the development of a novel method to calculate stationary 
route travel time statistics based on historical travel time data. The method assumes 
instantaneous travel times. The next step in the research is the development of different 
clustering heuristics and the study of their effect on the total network size and the size of the 
statistics database. Future research will also concentrate on the calculation of dynamic route 
travel time statistics making use of time-integrated travel time data. This will make it possible 
to calculate a histogram of route travel times for a certain time of the day, with the possibility 
to incorporate real-time travel time observations. 
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