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ABSTRACT 

In this paper, we propose a new multi-objective control algorithm based on reinforcement 

learning for urban traffic signal control, named multi-RL. A multi-agent structure is used to 

describe the traffic system where vehicles are regarded as agents. Reinforcement learning 

algorithm is adopted to predict the overall value of optimization objective given vehicles’ 

states. The policy which minimizes the cumulative value of optimization objective is regarded 

as the optimal one. In order to make the method suitable to various traffic conditions, we also 

introduce a multi-objective control scheme in which optimization objectives are selected 

according to the real-time traffic state. The Optimization objectives include the number of 

vehicle stops, the average waiting time and maximum queue length of the next intersection. In 

addition, we also introduce the priority control of buses and emergent vehicles into our model. 

The simulation results indicate that our algorithm could perform more efficiently than 

traditional traffic light control methods. 

 

Keyword: Traffic Signal Control, Multi-Agent System (MAS), Reinforcement Learning, Multi- 

objective Control 

1. INTRODUCTION 

Increasing traffic congestion on the road network makes the development of more intelligent 



Multi-Objective Reinforcement Learning for Traffic Signal Coordinate Control 
YIN Shcengchao; DUAN Houli; LI Zhiheng; ZHANG Yi 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 

2 
 

and efficient traffic control systems an urgent and important requirement. However, traffic 

system is a typical complex large-scale system mixed of a great number of interacting 

participants, which makes it very difficult to use traditional control algorithms to get satisfied 

control effect. Thus, intelligent algorithms have been used in attempts to build an efficient 

traffic control system, such as fuzzy control technology [1-2], artificial neural network [3-4] and 

genetic algorithm [5-6], which greatly improve the efficiency of traffic control. 

Reinforcement learning is a category of machine learning algorithms including Q learning, 

temporal difference, SARSA algorithm and so on [7-9]. Reinforcement learning is to learn the 

optimal police by a trial-and-error process including perceiving states from the environment, 

choosing an action according to current states and receiving rewards from the environment. 

The policy which maximizes the expected long-term cumulative reward is considered as the 

optimal one. Reinforce learning is a self-learning algorithm which doesn’t need an explicit 

model of the environment. Thus it can be applied in traffic signal control effectively to 

response to the frequent change of traffic flow and outperform traditional traffic control 

algorithm. Thorpe studied reinforcement learning for traffic light control in 1997. He used a 

neural network to predict the waiting time for all cars standing at the intersection and selected 

the best control policy using Sarsa algorithm [10]. Abdulhai et al. presented a basic framework 

of applying Q-learning to traffic signal control and got encouraging results while applying it to 

an isolated intersection [11]. MIKAMI el al. combined evolutionary algorithm and 

reinforcement learning for cooperative traffic signal control [12]. However, the above methods 

used traffic-light based value functions which means a large number of states need to be 

handled. Therefore, these methods suffer from the “dimension curse” and met with limited 

success when applied to large-scale road network. Wiering et al. utilized a car-based value 

function to solve this problem [13-14]. They made a predictor for each car to estimate the 

overall waiting time given possible choices of a traffic light using reinforcement learning, and 

selected the decision which minimized the sum of waiting time of all cars in the network. This 

method effectively reduced the states space and thus can be applied to large network control. 

Experiment in a network with 12 edge nodes and 16 junctions proved the effectiveness of this 

method. 

However, Wiering’s method used the overall waiting time as the optimization goal which is 

mainly suitable for the medium traffic condition. In practical traffic system, we should consider 

different optimization objectives in different traffic situation, which is called multi-objective 

control scheme in this paper. In the free traffic condition, we try to minimize the overall number 

of stops of vehicles in the network; while in the medium traffic condition, the overall waiting 

time is regarded as the optimal goal. In crowed traffic situation, queue spillovers must be 

avoided to keep the network from large-scale congestion, thus the queue length must be 

focused on [15]. Therefore, multi-objective control scheme can adapt to various traffic 

conditions and make a more intelligent control system. Therefore, we propose a 

multi-objective control strategy based on the Wiering’s model. In our model, data exchange 

between vehicles and roadside equipments is necessary. Thus vehicular ad hoc network is 

utilized to build a wireless traffic information system. 

This paper is organized as follows: in the second section, we will introduce how to describe 

the road network with a agent-based structure; section 3 describes how to exchange traffic 

data using the vehicle ad hoc network; in section 4, multi-agent traffic control using 

reinforcement learning is proposed; in section 5, the proposed method is applied to a road 
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network with eight intersections to prove its effectiveness; finally, in section 6, we draw the 

conclusion of this paper.   

2. AGENT-BASED MODEL OF TRAFFIC SYSTEM 

We use an agent-based model to describe the practical traffic system. Vehicles and traffic 

signal controllers in the road network are regarded as two types of agents. Data will be 

exchanged among these agents. A typical road network is built based on the Wiering’s model 

[14] as shown in figure 1. There are six possible settings for each traffic controllers to prevent 

accidents: two traffic lights from opposing directions allow cars to go straight ahead or to turn 

right (2 possibilities), two traffic lights at the same direction of the intersection allow the cars 

from there to go straight ahead, turn right or turn left (4 possibilities). Road lanes are 

discretized into a number of cells at each different traffic light. The capacity of each road lane 

is defined according to its practical length. At each time step, new cars are generated with a 

particular destination and enter the network from outside. After new cars have been added, 

traffic light decisions are made and each car moves to the subsequent cell if it is not occupied 

or the car’s predecessor is moved forward. Thus, each car is at a specific traffic node (node), 

a direction at the node (dir), a position in the queue (place) and has a particular destination 

(des). Thus we can use [node, dir, place, des] ([n, d, p, des] for short) to denote the state of 

each vehicle [13]. As mentioned before, a multi-objective control scheme is adopted in this 

method. The optimization objectives include waiting time, stops and queue length, which will 

be selected according to the traffic condition. We use ([ , , , ], )Q n d p des action  to denote the total 

expected value of optimized indices for all traffic lights for each car until it arrives at the 

destination given its current node, direction, place and the decision of the light. The optimal 

action of node j  is determined by the following formulation: 

( , , , )

argmax ([ , , , ], ) ([ , , , ], ) (1)
j

j i

opt

j
A i A n d p des queue

A Q n d p des red Q n d p des green
 

                 

It should be noticed ([ , , , ], )Q n d p des action  doesn’t only refer to the waiting time but also stops 

and queue lengths. This is the most import difference between our model and Wiering’s model, 

which will be introduced in detail in section 4.  

 

Figure 1 –  Agent-based traffic model illustration  
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3. TRAFFIC INFORMATION EXCHANGE SYSTEM 

We need to exchange a lot of information during the control process. Thus, a wireless traffic 

information exchange system based on vehicular Ad hoc network is built to exchange data 

between vehicles and signal controllers. The illustration of such an information exchange 

system is showed in figure 2. Vehicles in the network all have the ability of communicating 

with each other and the controllers. Thus necessary information can be collected through the 

intercommunication of vehicles and controllers. The data to be collected includes: 

 Traffic flow through each intersection in each time step; 

 Queue length at each traffic light in each time step; 

 Type of each vehicle (car, bus or emergent vehicle); 

 Destination of each vehicle; 

 Node where each vehicle stands at; 

 Direction each vehicle moving towards; 

 Position in the queue where each vehicle stands at; 

 Total waiting time each vehicle used to pass through the network; 

 Total number of stops each vehicle used to pass through the network.  

 

Wireless 

Network

Controller

Traffic Control 

Center

 

Figure 2 – Illustration of Traffic Information Exchange System 

4. MULTI-OBJECTIVE CONTROL ALGORITHM BASED ON 

REINFORCEMENT LEARNING (MULTI-RL ALGORITHM) 

We extend the control algorithm to a multi-objective scheme by selecting optimization 

objective according to real-time traffic condition. In addition, we think some special vehicles 

such as buses and ambulances need a priority control and thus should be considered 

separately. 

The multi-objective control algorithm considers three types of traffic conditions as follows. The 

method to estimate traffic conditions should be defined carefully according to the actual 

situation of road network.   
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1) Free traffic condition 

Under this condition, we aim to minimize the number of stops, in other words, we expect to 

make the vehicles pass through the network with the fewest stops. Thus, the cumulative 

number of stops is selected as the optimization objective. 

The number of stops will increase when a vehicle moving at a green light in current time step 

meet a red light in the next time step. Therefore, we denote ([ , , , ],Green)Q node dir pos des  as 

the expected cumulative number of stops since this number will not change when the traffic 

light is red in current time step. The iterative formulation of ([ , , , ],Green)Q node dir pos des  is 

shown as follows.    

( ', ', ')

([ , , , ],Green) (Red | [ ', ', ', ])

( ([ , , , ],[ ', ', ', ]) ([ ', ', ', '],Green)) (2)

node dir pos

Q node dir pos des P node dir pos des

R node dir pos des node dir pos des Q node dir pos des






 

Where [ ', ', ', ]node dir pos des means the state of a vehicle in next time step; 

(Red |[ ', ', ', ])P node dir pos des  gives the probability that the traffic light turns red in next time step; 

([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  is a reward function as follows: if a car stays at the 

same traffic light, then 1R  , otherwise, 0R   (the car gets through this intersection and 

enters the next one);  is the discount factor( 0 1  ) which ensure the Q-values are 

bounded. The probability that a traffic light turns red is calculated as follows. 

([ , , , ],Red)
(Red | [ , , , ]) (3)

([ , , , ])

C node dir pos des
P node dir pos des

C node dir pos des
  

Where ([ , , , ])C node dir pos des is the number of times a car in the state of [ , , , ]node dir pos des , 

([ , , , ],Red)C node dir pos des  is the number of times the light turns red in such state.  

2) Medium traffic condition 

Under medium traffic condition, we focus on the overall waiting time of vehicles, which is the 

same as in Wiering’s model [13-14]. ([ , , , ],action)Q node dir pos des is used to denote the total 

waiting time for all traffic lights for each car until it arrives at the destination given its current 

state and the action or the light. ([ , , , ])V node dir pos des denotes the average waiting time 

(without knowing the traffic light decision) for a car at , ,node dir pos until it reaches its 

destination. ([ , , , ],action)Q node dir pos des  and ([ , , , ])V node dir pos des  are iteratively updated as 

follows.  

([ , , , ]) ( | [ , , , ]) ([ , , , ], ) (4)
L

V node dir pos des P L node dir pos des Q node dir pos des L  

( ', ', ')

([ , , , ], ) ([ , , , ], ,[ ', ', ', ])

( ([ , , , ],[ ', ', ', ]) ([ ', ', ', '])) (5)

node dir pos

Q node dir pos des L P node dir pos des L node dir pos des

R node dir pos des node dir pos des V node dir pos des






  

Where L  is the traffic light state (red or green), ( | [ , , , ])P L node dir pos des  is calculated in the 

same way as equation 3, ([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  is defined as follows: if a 

car stays at the same place, then 1R  , otherwise, 0R  (the car can move forward). 
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3) Congested traffic condition  

Under congested traffic condition, we must do out best to avoid the queue spillovers, which 

will degrade the traffic control effect and probably cause large-scale traffic congestion [15]. 

Therefore, the queue length is taken into consideration when we design the Q learning 

procedure. Denote the maximum queue length at the next traffic light 'tl  as 'tlK , shortly 

written as K . When traffic light is red, no vehicle will pass through to the next light. Thus the 

equations at red light doesn’t change, we focus on the function when light is green. Then 

equation 5 can be rewritten as follows.   

( ', ', ')

([ , , , ],Green) ([ , , , ],Green,[ ', ', ', ])

( ([ , , , ],[ ', ', ', ]) '([ , , , ],[ ', ', ', ])

([ ', '

node dir pos

Q node dir pos des P node dir pos des node dir pos des

R node dir pos des node dir pos des R node dir pos des node dir pos des

V node dir













, ', '])) (6)pos des

 

( ', ', ')

([ , , , ],Red) ([ , , , ],Red,[ ', ', ', ])

( ([ , , , ],[ ', ', ', ]) ([ ', ', ', '])) (7)

node dir pos

Q node dir pos des P node dir pos des node dir pos des

R node dir pos des node dir pos des V node dir pos des






 

Where ([ , , , ], )Q node dir pos des L  and ([ , , , ])V node dir pos des  have the same meanings as under 

medium traffic condition. Compared equation 6 with equation 5, another reward function 

'([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  is added to indicate the influence from traffic 

condition at the next light. ([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des is the reward of vehicles’ 

waiting time while '([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  indicates the reward from the 

change of the queue length at the next traffic light.   is an adjusting factor. 

([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  is defined as follows: if a car stays at the same place, 

then 1R  , otherwise, 0R  (the car can move forward). 

'([ , , , ],[ ', ', ', ])R node dir pos des node dir pos des  is defined as follows: if a car passes through the 

current intersection to the next traffic light, which means the queue length at the next traffic 

light will increase by 1 in a short time, then 1R  , otherwise, 0R  . 

Given the capacity of the lane of next traffic light is L , then the adjusting factor   is 

determined by the queue length 'tlK  as follows. 

'

'

'

'

0 0.8

10( 0.8) 0.8 (8)

2

tl

tl

tl

tl

if K L

K
if L K L

L

if K L







   




 

Through the definition we can find that   will increase sharply when the queue length 

approaches the capacity of the lane, which means queue spillovers would like to happen. 

Thus, under such a situation, ([ , , , ],Green)Q node dir pos des  will increase sharply and make the 

gain of this police decrease. Therefore, the green phase length and the number of vehicles 

allowed to pass through will be decreased until the queue at the next light has been dispersed. 

The largest value of   is set to 2 in this paper, but you can adjust its value according to the 

practical traffic condition. 
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4) Priority control for buses and emergent vehicles 

When buses or emergent vehicles (fire trucks or ambulances) enter the road network, they 

should have priority to pass through. It is necessary to realize the priority control of these 

special vehicles with least disturbance to the regular traffic order. Thus, we revise the 

equation 5 as follows. A priority factor  is added to describe the emergent degree of these 

special vehicles, which need be determined uniformly by the traffic management department.   

( ', ', ')

([ , , , ], ) ([ , , , ], ,[ ', ', ', ])

( ([ , , , ],[ ', ', ', ]) ([ ', ', ', '])) (9)

node dir pos

Q node dir pos des L P node dir pos des L node dir pos des

R node dir pos des node dir pos des V node dir pos des 






 

5. CASE STUDIES 

We have done some case studies to prove the effectiveness of our model. Since it is very 

hard to apply a signal control model to real traffic system management, traffic simulation was 

chosen to do the case studies. Paramics V6.3 was selected as the simulation platform 

because it is a professional traffic simulation tool which is recognized by traffic engineers all 

over the world. A practical road network within Beijing Second Ring Road was modeled in 

Paramics as shown in figure 3. This is a network with 7 intersections (N1-N7) and 8 OD zones 

(Zone1-Zone8). Intersections N1-N7 corresponds to the real intersections Xiaoweihutong, 

Dongdansantiao, Jingyuhutong, Dengshidongkou, Dengshikou, Wangfujingbeikou and 

Taiwanfandian.     

N5

N4

N6

N3

N7

N2

N1

Zone1

Zone2 Zone3

Zone8

Zone7 Zone6

Zone5

Zone4

 

Figure 3 –Sketch diagram of a practical road network in Beijing 

The simulation ran for 10000 time steps, the former 4000 steps was the learning process, and 

the latter 6000 steps was used to collected the simulation results. Factor   is set to be 0.9 

and   is set to be 3. The lanes in the network are divided into cells with length of 7.5 m. The 

capacity of the lanes equals to the number of the cells.   

We compared our method with fixed control, actuated control and also Wiering’s method. The 

set of fixed control is: the cycle is 2 minutes and the green time is equally assigned to each 

phase. In the actuated control strategy, the minimum green time is 10s, the maximum green 
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time is 50s, the extension of green time is set to 4s. Parameters of Wiering’s method are the 

same as our model under the medium traffic condition. 

We wanted to estimate of effectiveness of the multi-objective scheme, thus we estimate the 

control effects of these four algorithms under different traffic conditions. So we changed the 

traffic volume entering the network from 30 to 270, and estimated the average waiting time, 

number of stops and maximum queue length of these four methods. 

In our model, when the traffic volume entering the network in a minute is less than 90, it is 

regarded as free traffic; when the volume is larger than 90 but less than 180, it is regarded as 

medium traffic; when the traffic volume is larger than 180, it is regarded as congested traffic 

condition. 

1) Comparison of average waiting time 

The comparison of average waiting time with respect to the increasing of traffic volume is 

shown in figure 4. Fixed means the fixed control strategy, actuated means the vehicle 

actuated method, RL means the algorithm proposed by Wiering [13-14] and multi-RL means 

the model proposed in this paper.  

It is obvious to see when the traffic volume is less than 90, which means the traffic state is free, 

number of stops under the multi-RL control will be less than those under other control 

strategies. This is because the multi-RL is the only one who aims to minimize the number of 

stops. However, with the increase of traffic volume, the multi-RL method changes its objective, 

and the actuated control gets the minimum stops.   
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Figure 5 –Control effects comparison estimated by average stops 

2) Comparison of number of stops 

The comparison of average waiting time with respect to the increasing of traffic volume is 

shown in figure 5. Since the multi-RL is the same as RL method under the medium traffic 
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condition, they have the same average waiting time in the middle. Under the free traffic state, 

RL gets the minimum waiting time because this is its optimization objective. It should be 

noticed multi-RL gets the minimum waiting time when the traffic is congested. That indicates 

although the RL aims to minimize waiting time, the queue spillover which is not considered will 

decrease the traffic efficiency and increase the waiting time.    
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Figure 5 – Control effects comparison estimated by average waiting time 

3) Comparison of maximum queue length 

The comparison of average waiting time with respect to the increasing of traffic volume is 

shown in figure 6. 
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Figure 6 – Control effects comparison estimated by maximum queue length 
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The maximum queue length exceeds 40 under fixed control, which indicates there must be 

some queue spillovers. This is taken into consideration in the multi-RL thus we get a short 

queue under congested traffic condition.  

6. CONCLUSION 

In this paper, we have presented the multi-objective control algorithm based on reinforcement 

learning. The simulation indicated that: the multi-RL got the minimum stops under free traffic, 

although not the minimum waiting time; the multi-RL had the similar performance with the RL 

method under medium traffic, which was better than fixed control and actuated control; under 

congested condition, multi-RL could effectively prevent the queue spillovers to avoid large 

scale traffic jams. It also should be noticed multi-RL is a car-based algorithm, which is less 

time-consuming than the light-based reinforcement learning algorithms [13]. 

However, there are still some system parameters that should carefully be determined by hand. 

For, example, the adjusting factor   indicating the influence of the queue at the next traffic 

light to the waiting time of vehicles at current light under congested traffic condition. This is a 

very important parameter, which we should further research its determining way based on 

traffic flow theory. In addition, some phenomenon in real traffic system such as the lane 

changing of cars will influence their travel time. We should further take these into 

consideration and build a model more close to the real traffic system.  
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