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ABSTRACT 

The European Directive 2008/101/EC, including aviation in the European Emissions Trading 

Scheme (ETS), was approved on November 18, 2008, defining the main features of the 

system to be entered into force starting 1st of January 2012. The aim of the rule is to keep 

CO2 emitted by all operators landing at and taking off from European airports at the level of a 

predetermined base year. 

This base year emission level is legally defined as the average of CO2 emissions on the 

2004, 2005 and 2006 years. Then, it raises the problem of calculating emissions made in the 

past and verifying the level of accuracy of the result. The philosophy of emissions trading is 

based on a cap and trade mechanism to start the granting of free permits and the trade of 

the rest of amounts. Therefore, a correct quantitative base is of paramount importance for 

the performance of the system and has great economic repercussions. This paper discusses 

the different alternatives to model the emissions for the base year estimation and cover the 

existing data gaps while keeping the calculation within a reasonable level of accuracy. 

Some improvements with respect to existing methodologies are suggested in order to 

improve the process of working with a huge data base of several million flights, as 

EUROCONTROL uses for emission inventory. A methodology to cover data gap and 

calculate their magnitude is also proposed. 

The last part of the paper advises on ways of action in case of changes in the geographical 

scope of the problem either by increasing the EU members or by building agreements with 

other countries with similar emissions trading mechanisms. 
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1. CIVIL AVIATION IN THE EUROPEAN UNION EMISSIONS 
TRADING SYSTEM 

The European Union (EU) adopted an Emissions Trading Scheme (ETS) in 2003 (ref. [1]) as 

the most cost efficient market mechanism, intended for optimizing the cost of reducing 

Greenhouse Gas Emissions (GGE) from different industrial sectors (energy generation, oil 

refining, steel industry, timber, cement and ceramic, paper), all of them coming from fixed 

sources and representing roughly 50% of European emissions. The EU ETS started on 1st of 

January, 2005, with the purpose of helping EU Member States to comply with the target 
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established in the Kyoto Protocol for the EU as a whole (a reduction of 8% GGE in 2012 with 

respect to the 1990 levels). Each country was assigned an individual goal, according to its 

present emission levels, the aggregation of which, leads to the global 8% reduction target. 

As international civil flight emissions, on the contrary than domestic ones, were not included 

in the Kyoto Protocol, but left in the hands of the International Civil Aviation Organization 

(ICAO), this body initiated different analysis to determine the best way to control emissions 

produced by those flights on a worldwide basis. In the ICAO 37th General Assembly, held in 

September-October 2007, some recommendations on market based measures were 

adopted, outlining Emissions Trading as the most efficient way forward in terms of 

environmental cost/benefit analysis, after evaluations comparing this tool versus Voluntary 

Agreements, environmental charges and taxes. 

However, it was not possible to reach an agreement on a worldwide system for emissions 

trading in the international aviation sector and the European Union decided to take the 

initiative of including the civil flights making a stop at its airports in the already working 

European Emissions Trading Scheme. An evaluation of possible European strategies to fight 

aviation GGE, reinforcing the findings of ICAO that point out Emission Trading as the one 

having the minimum cost/benefits results, is included as ref. [2].  

On legal grounds, the European action raises some doubts and a number of non EU 

countries are challenging the inclusion of non EU operators in the system, pointing out that 

the ICAO recommendation on emissions trading systems requires State level agreement for 

its application. In December 2009, three US airlines (American, Continental and United) 

launched a legal challenge to the rule in a British Court that might modify the reach of the 

rule. 

On November 18, 2008 Directive 2008/101/EC, in ref. [3], was approved, amending the 

existing ETS Directive (2003/87/EC), with the purpose of adding civil aviation to the sectors 

allowed to trade CO2 emission permits. 

The amended Directive considers EU civil aviation as a whole sector where operators 

(commercial airlines or other aircraft users) are the subject of emission limits and, therefore, 

the entities allowed to trade permits, starting on January 1, 2012. The maximum level of 

emissions (the cap of the trading system) is established at 97% of the historical emissions, to 

be understood as the average of the annual CO2 emissions in the calendar years 2004, 2005 

and 2006 from aircraft performing an aviation activity included in the amended Directive. 

After reserving a 3% of the permits for protecting new entrants or operators with a high level 

of growth, the rest of the emissions cap will originate an equivalent amount of permits, to be 

distributed for free among the operators, proportionally to their Revenue Ton-kilometers 

(RTK) performed in the year 2010. The 97% cap will pass to be 95% in 2013. The long term 

objective is a continuous reduction of the cap until reaching a situation with no free permit at 

all, always as a single sector, independent of national goals. 

This system will have important economic repercussions for the affected operators. Those 

emitting more than their free permit quotas in 2012 and beyond, will be forced to buy 

additional permits in the open market to compensate the exceeded amount. On the contrary, 

if an operator emits less than its quota, the operator is allowed to sell the unused permits and 

make a profit. Then, the calculation of historical emissions plays a key role in the efficiency of 

the system. If the number is too small, the amount of distributed emission allowances would 

be insufficient and there would be a high demand for purchasing permits, which price would 
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increase with heavy financial effects on the operators’ economy. However, an over-estimate 

of the historical emissions might put in danger the environmental impact of the regulation, 

demanding very minor actions for compliance by the individual carriers. 

According to a cooperation agreement between the EU and the European Organisation for 

the Safety of Air Navigation (EUROCONTROL), signed on December 30, 2008, 

EUROCONTROL will, among other things, lead the work to provide an accurate calculation 

of the historical aviation emissions. In March 2009, a proposal by the Innaxis Research 

Institute and the Polytechnic University of Madrid (UPM) was selected by EUROCONTROL 

for helping in the development of the optimum methodology for the estimation of those 

emissions and review the precision of the calculation and the error margin of the results in 

the reference terms of ref. [4]. 

EUROCONTROL selection by the EU responds to the availability of a huge data base of 

several million flights operated in the 2004-2006 period, used for emission inventory 

purposes. This information allows the calculation of individual flight emissions, eliminating the 

need of aggregated estimations of insufficient accuracy, but needs a deep analysis of the 

completeness of the data, an estimation of the magnitude of possible losses in the available 

data and an adequate methodology to fill those gaps. 

This paper discusses the different alternatives considered for approaching the problem and 

describes the improvements adopted with respect to existing methodologies and the results 

obtained in this case application, measured in terms of accuracy and error margins. 

Additionally, it provides some advice on ways of action in case of future changes in the 

geographical scope of the problem either by changing the number of EU members or by the 

adoption of agreements with other countries with similar ETS mechanisms or wishing to 

participate in the European Scheme. This last possibility has become real in December 2009, 

when Iceland, Lichtenstein and Norway signed a treaty with the EU with that purpose (ref. 

[5]). 

One additional product of this exercise is to produce an input for the Monitoring, Reporting 

and Verification mechanism (ref. [6]), needed to check whether the operators’ data are 

correct. EUROCONTROL has identified around 6000 operators to be subject to EU ETS. The 

surveillance functions are attributed to the EU State in which the operator is registered or, if it 

is registered in a non-EU country, to the EU State in which the operator produces the most of 

its CO2 emissions, as figures in ref. [7].   

 

2. PREPARATION OF THE DATABASE 

EUROCONTROL, as the body that manages the provision of Air Navigation Services in the 

airspace of 38 countries, including the 27 members of the EU, has different data sources to 

identify or estimate the air traffic to be used in the historical emissions calculation. The most 

complete of those sources is PRISME (Pan-European Repository of Information Supporting 

the management of EATM), whose data are obtained primarily from CRCO (Central Route 

Charging Office) and CFMU (Central Flow Management Unit). CRCO gathers the traffic 

information required for billing the operators and collects the money for further redistribution 

to each one of the States providing Air Navigation Services. The CFMU data are used for the 

https://research.innaxis.org/display/ETS/2.+Preparation+of+the+database
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purpose of Air Traffic Flow and Capacity Management (ATFCM) and includes the actual four 

dimensional data of all flights in EUROCONTROL air space. 

A preliminary analysis of the available data showed that the data of four EU countries 

(Estonia, Latvia, Lithuania and Poland) were not available in PRISME. Estonia and Latvia are 

not EUROCONTROL members and Poland and Lithuania joined recently the Organisation, 

after the study years. At the same time, some flights arriving to or departing from French 

overseas departments (French Guiana, Guadeloupe, Martinique and Reunion) did not pass 

through the EUROCONTROL airspace and there were no registered data. 

At EUROCONTROL request, national civil aviation authorities of those countries provided the 

missing data in time, with the exemption of Lithuania. This country entered in the CRCO 

zone on January 1, 2008 and the data from that year was available, but not those of the 

historical emission period. The only information for the 2004-2006 period were the scheduled 

flight programs contained in the OAG worldwide database and collected by EUROCONTROL 

WISDOM (World Interconnected Sources Database of Operational Movements). Then, 

WISDOM data was used for scheduled flights and an estimation was built for non-scheduled 

ones, based on 2008 data: 

 

Fns200x = Fns2008 x (Fs200x / Fs2008 )                                                (1) 

 

where  Fns are non-scheduled flights in years 2008 and 200x 

            Fs are scheduled flights in years 2008 and 200x 

 

The EU Directive includes in the ETS all flights which arrive at or depart from an aerodrome 

situated in the territory of a Member State, with some exemptions covering up to 10 flight 

categories, designed by small letters (a) to (j) (ref. [3]). A second part of the process was to 

filter those flights out of the CO2 calculation, using the flight type identification registered in 

the CRCO data base. The following four types were fully identified and eliminated: 

- (b) military flights performed by military aircraft and customs and police flights, 

identified by code letters M, X and P; 

- (d) any flights performed exclusively under visual flight rules (VFR) as defined in 

Annex 2 to the Chicago Convention, identified by code letter V; 

- (e) flights terminating at the aerodrome from which the aircraft has taken off (circuit 

flights) and during which no intermediate landing has been made, identified by 

code letter O; 

- (f) training flights performed exclusively for the purpose of obtaining a licence, or a 

rating in the case of cockpit flight crew where this is substantiated by an 

appropriate remark in the flight plan provided that the flight does not serve for the 

transport of passengers and/or cargo or for the positioning or ferrying of the 

aircraft, identified by code letter T. 

Two other types of flights show small possibilities of misidentification: 

- (h) flights performed by aircraft with a certified maximum take-off mass of less than 

5700kg may suffer problems of rounding if the MTOW communicated to 

EUROCONTROL was close to the limiting figure; 

- (j) flights which, but for this point, would fall within this activity, performed by a 

commercial air transport operator operating either: 
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o fewer than 243 flights per period for three consecutive four-month periods; 

or 

o flights with total annual emissions lower than 10000 tonnes per year. Flights 

performed exclusively for the transport, on official mission, of a reigning 

Monarch and his immediate family, Heads of State, Heads of Government and 

Government Ministers, of a Member State may not be excluded under this 

point. 

This requirement is based on the knowledge of all traffic; however, there is a 

small part of the traffic that is estimated at macro-level because the data is 

unavailable, and for this traffic, the De-minimis requirement cannot be applied. 

Two more exemptions were covered partially: 

- (c) flights related to search and rescue (code letter R), fire fighting flights, 

humanitarian flights (code letter H) and emergency medical service flights 

authorised by the appropriate competent authority. 

Some or these flights may not be rightly codified at all times. 

- (g) flights performed exclusively for the purpose of scientific research or for the 

purpose of checking, testing or certifying aircraft or equipment whether airborne or 

ground-based (code letters E and N). 

Same than in the previous case. 

Finally, it was not possible to filter two types of flights: 

- (a) flights performed exclusively for the transport, on official mission, of a reigning 

Monarch and his immediate family, Heads of State, Heads of Government and 

Government Ministers, of a country other than a Member State, where this is 

substantiated by an appropriate status indicator in the flight plan.  

As a general rule, occupants of those flights are not identified and it is impossible 

to determine whether are included or not in the exemption 

- (g) flights performed in the framework of public service obligations imposed in 

accordance with Regulation (EEC) No 2408/92 on routes within outermost regions, 

as specified in Article 299(2) of the Treaty, or on routes where the capacity offered 

does not exceed 30 000 seats per year. 

While there is a list of public service obligation imposed in UE routes, it will take an 

exhaustive work to eliminate manually all these flights and route capacity data are 

not always available 

This lack of information may artificially increase the accounted emission levels by a small 

amount as it will be indicated in the next chapter. All details are included in ref. [8].  

3. EMISSIONS CALCULATION AND CORRECTION SCHEME 

The CO2 emissions of a flight are directly proportional to its fuel consumption. An 

overwhelming majority of the aircraft affected by the EU ETS is consuming kerosene type 

fuel, specifications Jet A and Jet A1 and the Directive establishes an emission factor of 3.15 

kg of CO2 per kilogram of kerosene. 

As according to ICAO rules all flights operating under Instrumental Flight rules (IFR) must 

submit a flight plan, detailing operating weights, intended trajectories and forecasted fuel 

burn, before taking off, the CRCO and CFMU combined data contain flight distances and a 
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first approach to the amount of fuel to be consumed. The proposed calculation method has to 

be used in accredited calculation ways for passing from a weight, type of aircraft, covered 

distance group of data to fuel consumption and, consequently, emitted CO2. 

The following diagram depicts the process of the reconciling methodology: 
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Figure 1. Methodology 

 

Among the different ICAO accepted models, the choice was between the fast calculation, low 

accuracy, ANCAT-3 methodology and the more detailed AEM simulator. The first calculates 

fuel burn based in flown distance and aircraft type, while the second takes into account flight 

plans details like actual aircraft weight, and has a wider data base in terms of type of aircraft 

and model of installed engines.  

For the vast majority of the data needed to be analyzed, there was sufficient information for 

the implementation of both methodologies. However, none of them are able to account for 

certain factors that have an influence on the fuel consumption, hence on the CO2 emissions. 

In order to increase the accuracy of the historical emissions estimation, making it as close as 

possible to its actual value, there is the need of evaluate a number of relevant factors not 

included in the model options. To this purpose, it was proposed the collection of actual fuel 

consumption information from volunteer aircraft operators, its analysis, and the establishment 

of a reconciling methodology for the adjustment of actual fuel consumption to those obtained 

from the selected methodology. This kind of correction has been previously tested and has 

been proven to offer good results, as in ref. [9]. As this process would need to be done 

independently of the model choice, ANCAT-3 was selected due to its calculation speed and 

its higher flexibility in order to accommodate data changes, taking the so called Detailed 

Methodology, including data of the 19 most used aircraft types.  

The ANCAT-3 methodology can be consulted in ref. [10]. It does not take into account a set 

of relevant parameters that have an impact on fuel consumption. The following factors were 

distinguished as the most influential: 

- actual take-off weight of the flight, 

- non optimal flying altitude; 

- holding in the airport terminal area (TMA), 

- meteorological conditions, 

- actual taxi times on the ground, 

- engines de-rating level, related with the actual take-off weight; 

- fuel consumed by the Auxiliary Power Unit (APU). 
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Figure 2. Fuel consumption influencing factors not included in ANCAT (source: EUROCONTROL) 

 

The sample data received from the operators comprised the fuel consumption from a gate-to-

gate perspective (from starting the engines to put them out); and thus, allowed to quantify the 

main factors that influence the fuel consumption. The only lost consumption may occur if the 

APU is running with engines off, for supplying electricity and air conditioning. While many 

airlines and most of private operators include this consumption in their flight data, others 

account for it in maintenance practices.  

Maintaining the analysis at a macro-level and checking the representativeness of the sample 

ensured that the fuel data sample was descriptive enough to provide an overall correction 

that included all different factors present in the European aviation network, since the actual 

data captured the influence of different airports (congested, non-congested), meteorological 

conditions, different airlines strategies, route deviations or different holding patterns. The 

methodology is described hereunder. 

3.1        Adjustment of the fuel consumption coefficients 

3.1.1         Calibration sample representativeness check and removal of the 
insufficient or non-representative sample data. 

The sample data was statistically analyzed to check its representativeness, verifying that the 

conclusions of the calibration process could be extrapolated to the whole set of flights 

included in the database. This depended on the amount of data provided by the aircraft 

operators, and also on their quality in terms of aircraft type and operation environment 

coverage. 
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3.1.2         Trajectory correction factor (for flights where there is no distance in the 
CFMU database). 

For flights for which there was no information on distance (from the CFMU database or from 

the information provided by National Authorities, as applicable), it was necessary to estimate 

the flown distance. 

The proposed solution for this estimation was to study the relationship between orthodromic 

(shortest trajectory between origin and destination airports) distance and flight plan distance, 

which was done by means of a linear regression of known distances of flights and their 

corresponding orthodromic distance. The slope of the linear regression represented the 

distance correction factor coefficient to be applied. 

3.1.3         Calculation of fuel consumption coefficients for aircraft types included in 
the sample. 

For those aircraft types for which the sample has passed the representativeness check 

defined in 3.1.1, an analysis of the fuel consumption per aircraft type as a function of the 

flight distance was carried out. 

Fuel consumption coefficients for a given aircraft type was calculated by computing the 

regression line, so that:  

 

  xy 10        (2) 

 

where y is the fuel consumption and x is the distance flown. 

For each aircraft type regression, the correlation coefficients β0 and β1 were calculated. 

Aircraft samples for which R2 < 0.70 were discarded. 

For the retained aircraft types (valid samples), equation (2) was used to estimate fuel 

consumption on a flight by flight basis. 
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In the function above, the coefficients β0 and β1 accounted in an aggregated manner for the 

different factors influencing the fuel consumption (meteorological conditions, airline strategy, 

taxiing, holding...). 

3.1.4         Assimilation of the rest of aircraft types. 

The results of 3.1.3 allowed the researchers to develop fuel consumption functions for a set 

of aircraft types, the actual consumption of which was provided by the volunteer operators. 

Similar correction factors were applied to the other types not included in the data sample, but 

integrated in the ANCAT-3 data base. For the rest of aircraft types, however, an assimilation 

methodology was needed to estimate their fuel consumption coefficients. 

The purpose of the assimilation methodology was to define a set of formulae that, by 

entering an aircraft type's Maximum Take Off Mass (MTOM), resulted in a fuel coefficient that 

multiplied by the distance travelled allowed to compute the total fuel consumed, hence CO2 

emissions. 

In order to complete this task, the following steps were followed: 

1. For each aircraft type of the valid sample1, the average distance flown and the 

average MTOM were calculated for the 2004-2006 period.  

2. Using the formula obtained in section 3.1.3, the fuel consumption was calculated for 

the average distance travelled by each aircraft type of the sample. 

3. For each aircraft type, the result of (2) was divided by the average distance 

travelled, acquiring the real average fuel consumption per nautical mile.  

4. Using ANCAT-3 Methodology, the fuel consumption was calculated for the average 

distance travelled by each aircraft type of the sample. 

5. For each aircraft type, the result of (4) was divided by the average distance 

travelled, acquiring the theoretical average fuel consumption per nautical mile. 

6. The aircraft types were segregated into three subsets: 

a. jets over 80 tons, covering all the long range types 

b. jets below 80 tons, for business jets, regional and short/medium range aircraft 

c. turboprops. 

The rationale for this segmentation was based on the methodology developed by 

EUROCONTROL and explained in ref. [11], and relied on the empiric observation 

that, for each of these three subcategories, fuel consumption per nautical mile 

showed a strong linear dependence with MTOM. 

 

                                                 
1 Only those aircraft types for which the sub-sample has been considered valid according to the criteria 
defined in section 3.1.1 and 3.1.3 are retained. 
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Figure 3. Jets over 80tn assimilation regression 

 

7. Two linear regressions were done for each subset. The first was the regression of 

the average MTOM and the result of (3), this regression is referred to as real 

regression. The second regression was that of the average MTOM and the result of 

(5), this regression is referred to as theoretical regression. 

8. The real regression and the theoretical regression were analyzed against each 

other, to find the correction factor of each subset. 

9. A confidence interval for the real regression was determined. 

10. Depending on the aircraft type, the coefficients used for the calculation of fuel 

consumption were selected as follows: 

- The data of the sample was considered to be more exact than ANCAT; 

therefore, the coefficients to be used when an aircraft was present on the 

sample were those calculated in 3.1.3. 

- The assimilated aircraft in ANCAT maintained the assimilation factor, 

unless both, the primary and the assimilated, were in the sample, in which 

case, the coefficients calculated as per 3.1.3 were applied to both types. 

- For those aircraft not included in the sample, but defined by ANCAT, the 

ANCAT fuel consumption coefficients were corrected (shifted) by the 

correction factor acquired in (8), i.e. by the ratio between real regression 

and the theoretical regression for that MTOM value. 

- For those aircraft not included in the sample, but belonging to the same 

family of one of the aircraft types included in the sample, the fuel 

consumption coefficients of the aircraft included in the sample were used, 

with a correction obtained from the ratio between the MTOM of the two 

models. 
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- For the rest of aircraft neither in ANCAT-3 nor in the sample, the real 

regression equation was used to calculate the fuel consumption 

coefficient. 

3.2        Recalculation of CO2 historical emissions 

The output of the previous subsection was a new set of fuel consumption coefficients that 

accounted for the additional fuel consumption influencing factors, as well as a correction 

factor for unknown flight plan distance between aerodromes. 

These new factors needed to be implemented into the methodology developed by 

EUROCONTROL and described in ref. [8] in the following manner: 

1. Acquisition of Data: No change was necessary on this section. 

2. Calculation of actual route length: For those flights where the flight plan route was 

unknown, the trajectory correction factor was implemented following the 

methodology described in section 3.1.2. 

3. Calculation of emissions on a flight-by-flight basis: Depending on the type of 

aircraft, the fuel consumption coefficients acquired as per section 3.1.3 or section 

3.1.4 (as applicable) was implemented. The confidence interval for each individual 

flight was calculated for a given confidence level. 

4. Directive exemptions: It was necessary to recalculate the emissions of the directive 

exemptions. 

5. Gap emissions estimation: Gap emissions estimation was recalculated based on 

the new fuel consumption coefficients. 

6. De minimis Exemption Filtering: This section needed to be recalculated since the 

emissions estimation had changed. 

7. Total CO2 historical emissions: Recalculation was needed to compute final 

estimation of total CO2 historical emissions. 

8. Calculation of global confidence interval: The confidence level of the resulting value 

for total CO2 historical emissions was calculated. 

4. PRECISION ANALYSIS 

4.1. Gap analysis 

The following figures show how the gaps of the database affect the overall estimation of the 

historical emissions. 

In table 1 we can appreciate the first gap, traffic estimated for Lithuania, which is very small, 

since most of the traffic is accounted for by CRCO and the neighboring states. 
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Table 1. Distribution of CO2 per source of data (after exemptions): 

% CO2 SOURCE 

YEAR CRCO ESTONIA LATVIA POLAND UPR_AGM UPR_REU LITHUANIA Total  

2004 99.7753% 0.0090% 0.0129% 0.0552% 0.0651% 0.0752% 0.0074% 100% 

2005 99.7734% 0.0092% 0.0251% 0.0541% 0.0621% 0.0669% 0.0091% 100% 

2006 99.7858% 0.0103% 0.0271% 0.0567% 0.0541% 0.0560% 0.0099% 100% 

 

 

Graph 1. 2004 Source distribution. 

 

 

Graph 2. 2005 Source distribution. 
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Graph 3. 2006 Source distribution. 

 

The following tables and graphs show the distribution and impact of the different exemptions. 

The exemptions are labelled as it was explained in section 2. 

 

Table 2. CO2 emissions distribution. 

 

   Included Exempted 

Total  

% of 

CO2 Exemption a in s_eu27 j b c D e f g h 

YEAR 

2004 0.0289% 96.4159% 0.0339% 1.1493% 2.2798% 0.0004% 0.0052% 0.0388% 0.0078% 0.0038% 0.0363% 100.% 

2005 0.0279% 97.0876% 0.0298% 0.9632% 1.7956% 0.0002% 0.0044% 0.0452% 0.0061% 0.0034% 0.0364% 100.% 

2006 0.0246% 97.5447% 0.0328% 0.7560% 1.5242% 0.0003% 0.0052% 0.0610% 0.0059% 0.0050% 0.0403% 100.% 

 

 

Graph 4. 2004 CO2 emissions distribution per exemption. 
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 Graph 5. 2005 CO2 emissions distribution per exemption. 

 
Graph 6. 2006 CO2 emissions distribution per exemption. 

4.2 The representativeness of the sample 

The methodology described in section 3 needed to follow certain principles to ensure the 

procedure had a strong scientific basis. 

It was necessary to determine whether the samples were representative of the whole 

population of data or, on the contrary, if the data samples showed any bias or gap. While 

some of the above factors were simply expected to add a random noise to the theoretical fuel 

consumption, other factors were likely to introduce a bias in the theoretical estimation if they 

were not properly taken into account. It was therefore necessary to ensure that the sample 

was representative of the whole population of flights as far as these influencing factors were 

concerned.  
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4.2.1 Linear Regression 

The objective of this task was to adjust the parameters of a model function so as to best fit a 

data set. In our case, a linear regression model is proposed. 

Given the collection of points  ii yx , , where ix  is the flight distance and iy  is the fuel 

consumption, for ni ,...,1 , being n the total number of flights performed with a specific 

aircraft type included in the sample, we determined the regression line that best fitted the 
collection points. This regression line was as follows: 

xy  10                             (3) 

Correlation coefficient 

Prior to obtaining the regression coefficients, we confirmed the existence of a linear 

dependence between x and y. For this purpose, we obtained the linear Pearson correlation 

coefficient r, whose expression is: 

yx

xy

bb

b
r                                (4) 

where the moments to the centre bx and by were calculated as follows: 
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              (5) 
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                         (6) 

This coefficient can be 11  r . 

The correlation is 1 in the case of an increasing linear relationship, -1 in the case of a 

decreasing linear relationship, and some value in between in all other cases; indicating the 

degree of linear dependence between the variables. The closer r² is to 1, the stronger the 

linear relationship between the variables. Therefore, r² provides an indication of the error 

between the variable y and its regression (for example, if r² is 0.95, then 95% of the variance 

of y can be explained by changes in x): 

 if r² is close to 1, it indicates that the variable y has a strong linear dependence on x 

and the error between the variable y and its regression is low. 

 if r² is close to 0, the variables are not related and the error between the variable y 

and its regression is high. 

For the purpose of our study, those aircraft samples for which r2 < 0,70 were discarded. 

Calculation of linear regression coefficients 

Using the Least Squares Method, we found the  β0 and β1 that minimized the following sum 

of squares (SS): 





1

2

1010 )(),(
i

ii xySS                 (7) 
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The coefficients that minimized SS were calculated by using the following equations: 

xy  10                                      (8) 

21

x

xy

b

b
                                               (9) 

Calculation of confidence interval 

The confidence level and confidence interval were calculated at several levels throughout the 

methodology. First, we found the confidence level for each type of aircraft by analysing the 

amount of samples, and the amount of flights that took place with each type. Second, we 

found the confidence level for each subset of the assimilation methodology (turboprops, jets 

over 80 tonnes, and jets below 80 tonnes). Finally, we found the confidence level of the total 

amount of flights given in the sample provided by the AOs, and the total amount of flights 

affected by the Directive (about 23 million flights). 

Finally, we computed the confidence intervals on parameters: 

Confidence interval for β1: 

12,211)(  StCI en            (10) 

Confidence interval for β0: 

02,200 )(  StCI en                         (11) 

where the standard deviation of the coefficients were:  
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To compute these coefficients we needed: 
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where y(xi) was the regression evaluated at xi distance. 

It can be proved that: 
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i.e., the above variables follow a Student’s T distribution with n-2 degrees of freedom. 

2/;2 ent   is determined by the relationship 

  etTP en   12/;2                       (16) 
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Graph 7. Normal Distribution Confidence Interval 

The Confidence Interval estimate for the mean of y (lineal regression) given a particular x is 

as follows: 
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The Confidence Interval estimate for an individual value of y given a particular x is as follows:  
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4.2.2 Distance Correction 

Using the Least Squares Method, we found the coefficients 0 and 1 that minimized the 

following sum of squares: 

   



n

i

orth

i

real

i xxSS
1

2

1010 ,    (19) 

and using the method described in 4.2.1, we obtained the correction function: 
orthorthreal xxCFx 10)(     (20) 

This function described the relationship between the orthodromic distance and the flight plan 

distance, and allowed to estimate the actual route length xreal as a function CF (xorth) for those 

flights whose actual route length was not available.   

4.2.3 Error Propagation 

Propagation of error (or propagation of uncertainty) is the effect of variables' uncertainties or 

errors on the uncertainty of a function based on them. 

In our case, we needed to estimate several quantities (corresponding to the emissions of 

different aircraft types) and then add them together to get the final result. Error propagation 

was used to combine the errors due to the different estimations and get the confidence 

interval of the total estimated historical emissions. 

Being q the total emissions calculated from the addition of the emissions of different subsets 

of flights  nTi xxxxeix  ...:.. 21  where each xi corresponds for example to the 
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emissions due to a certain aircraft type and has an associated confidence interval I, we 

needed to calculate the absolute uncertainty for q. 

 nxxxfq ,...,, 21                 (21) 

As the errors are independent and random in each variable, then the error is given by: 
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As we have: 

  nn xxxxxxfq  ...,...,, 2121               (23) 

The total error is obtained by adding the absolute uncertainties in quadrature: 

     22

2

2

1 ... nxxxq                     (24) 

Confidence interval (for one year): ± 0.02% 

Adjusted fuel consumption: 2.6% above theoretical ANCAT results 

 

 2004 2005 2006 

Error Rate 0,0204% 0,0198% 0,0193% 

 

This analysis assumes there is no systematic error in the methodology that may make the 

errors additive.  

The two major uncovered gaps go in opposite directions: The impossibility of filtering Public 

Obligations flights slightly increases the historical emissions, while the airlines not reporting 

APU consumption with engines off reduces the calculation numbers. In both cases the 

differences are clearly below 0,1% of the total emissions. 

5. FUTURE DEVELOPMENTS 

A modification of Member States entails the recalculation of Historical Aviation CO2 

Emissions, since the cap of emissions is based on that value, and would not be logical to 

base the reduction of emissions on a different scope. 

The main factor that affects the methodology for including a State into the ETS is the source 

of air traffic information used to calculate the Historical Aviation CO2 Emissions. As explained 

in the methodology used by EUROCONTROL (ref. [8]), the information is fully reliable after 

the State has become a contracting State to the EUROCONTROL Multilateral Agreement for 

Route Charges. 

The CRCO governs the EUROCONTROL route charges system and becomes the main 

source of flight information data for the calculation of the Historical Aviation CO2 Emissions. 

The different methodologies applied will depend on the level of information available, 

contingent on whether the entering State is in the EUROCONTROL Multilateral Agreement 

for Route Charges, and since when, as described bellow: 
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Case 1 - EUROCONTROL CRCO Multilateral Agreement Contracting State since 
or before January 1st, 2004 

In this case, EUROCONTROL has the flight information of the years 2004, 2005, and 2006; 

and the developed methodology should be used for the direct calculation of Historical 

Aviation CO2 Emissions. 

Case 2 - EUROCONTROL CRCO Multilateral Agreement Contracting State after 
January 1st, 2004 

In the case of an adherence of a EUROCONTROL member with incomplete information, the 

following methodology should be applied: 

The new Member State shall provide, if available, IFR air traffic information of 2004, 2005, 

and 2006. If this data is provided, it is cross-checked with CRCO data for reliability. If the 

data is found reliable, it shall be used for the calculation of Historical Aviation CO2 Emissions. 

If the data is found unreliable or it is not provided by the State, the next steps shall be 

executed: 

- Since the entering State is a EUROCONTROL Member, there will be CRCO data 

for the previous years before the accession into the ETS. The emissions 

represented by the gap shall be weighted for those years, and averaged in 

percentile. 

- The percentile found in the previous paragraph shall be applied to the CRCO data 

for the years 2004, 2005, and 2006 to estimate the gaps and calculate the 

Historical Aviation CO2 Emissions. Any source of information available to improve 

the estimation should be considered for this task. 

Case 3 - Non-EUROCONTROL CRCO Multilateral Agreement Contracting State 

In the case of an adherence of a non-EUROCONTROl Member, only information of flights 

entering Eurocontrol airspace for the years 2004, 2005, and 2006 will be available. Hence, 

the following methodology should be applied: 

The entering State shall provide, if available, IFR air traffic information of 2004, 2005, and 

2006. If this data is provided, it shall be cross-checked with CRCO data for reliability. If the 

data is found reliable, it shall be used for the calculation of Historical Aviation CO2 Emissions. 

If the data is found unreliable or it is not provided by the State, the next steps shall be 

coordinated between the entering State and EUROCONTROL: 

- A monitoring period shall be applied to weight the gap in percentile (Emissions of 

flights entering the EU-27 EUROCONTROL airspace vs. other flights' emissions to 

which the Directive applies). 

- The percentile found in the previous paragraph shall be applied to the CRCO data 

for the years 2004, 2005, and 2006 to estimate the gaps and calculate the 

Historical Aviation CO2 Emissions. 
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6.  CONCLUSIONS 

The main conclusion of this study is that the methodology used by EUROCONTROL to 

calculate the CO2 emissions as described by the Directive, represents a very good 

approximation given the data available, once the suggested adjustments have been 

introduced. 

The reconciling methodology accomplishes the purpose of identifying improvement 

opportunities in the methodology used by EUROCONTROL. The main approach taken to 

achieve these improvements is a macro-scale correction of the fuel consumption coefficients 

of the ANCAT 3 Methodology used by EUROCONTROL. The proposed statistical approach 

relies on the representativeness of the fuel consumption sample submitted by the operators. 

The result is a set of correction factors depending on the type of aircraft. Although these 

factors has been calculated based on 2007-2008 actual consumption data, it is assumed that 

the European flight space structure has not changed significantly between the 2004-2006 

period and the two following years. Therefore, the aggregated difference between calculated 

and actual consumptions remains the same. 

The reconciling factors do not vary the fundamental principles of the initial methodology; 

however, allowed to improve the accuracy of the assessment thus reducing the risk of 

underestimating or overestimating the total emissions for 2004-2006. 

The methodology presented for the possible change of scope of the Emissions Trading 

Scheme ensures that this change does not suppose unfairness among the Member States, 

or unbalance the aircraft operators’ economic market, while maintaining a continuous 

reduction of emissions allowances. 
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