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Abstract

This paper analyzes the slot-auction approach to management of airport conges-
tion. The rationale for the approach is that first-best pricing leads to tolls that are
differentiated across carriers and therefore seems to be hard to implement; the hope
is that slot-auctioning would lead to the first-best while avoiding the problems of per-
ceived unfairness. By using an airline duopoly model with general demand and cost
conditions, I show that slot-auctioning will not necessarily lead to the efficient out-
come, contrary to previous results in the literature. Specifically, I show that: (i) slot
auctioning does not lead to the exit of carriers that would be active in the first-best
yet, if a carrier exits, the remaining carrier can and will exert market power (unless it
has none), leading to social welfare losses (ii) even if slot auctioning does not lead to
market foreclosure, it will not be efficient unless airlines have no market power, or are
completely symmetric (iii) slot auctioning might lead to outcomes that are worse from
a welfare point of view than doing nothing.
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1. INTRODUCTION

Traffic growth has outpaced capacity increases at major airports around the world and for
the last several years airlines and passengers have increasingly been suffering from flight
delays. Other than capacity expansions, perhaps the most suggested and discussed con-
gestion remedy has been the pricing mechanism, where the social planner works to correct
congestion externalities by setting congestion tolls. In the context of airports, recent liter-
ature has recognized the importance of air carriers’ market power (Brueckner, 2002; Pels
and Verhoef, 2004; Zhang and Zhang, 2008; Basso, 2008): on one hand, as is typical in
Pigouvian tolls, the optimal airport charge would need to take into account uninternalized
congestion; yet, with non-atomistic airlines the airport would charge a carrier only for the
congestion it imposed on other carriers, owing to internalization of self-imposed conges-
tion. Thus, this congestion effect will increase the optimal toll above airport’s marginal
cost, but below the level for atomistic carriers. On the other hand, since a carrier with
market power restricts output, the optimal charge would include a term that decreases the
toll, as a way to induce a lower marginal cost for airlines stimulating traffic. This subsidy
to airlines is known as the market power effect. Clearly, which effect dominates depends
on the case, but note that if it is market power, then actually there is no congestion prob-
lem but one of too little traffic. And since optimal pricing requires massive amounts of
information and charging differentiated tolls to airlines, it is quite clear that implementing
first-best prices may be quite controversial and complex.

In addition to pricing, other widely discussed congestion remedy has been auctioning
the airports’ slots. In fact the FAA proposed a move in this direction for the three New York
airports, which are among the most congested and delay prone in the US, although the
idea was eventually defeated (see Bernardino, 2009) . Proponents of these solutions have
argued that by setting a number of slots, congestion problems would be obviously solved
while by auctioning them it would be ensured that each slot goes to the airline which
values it most. Therefore, these mechanisms would circumvent the information problem
and perceived unfairness that congestion pricing has, while using secondary markets to
achieve efficiency.1 Yet, the exact way in which slot auctioning would take into account
both congestion and, specially, the market power effect is unclear. Intuition borrowed from
the input-preemption literature may help here to show how market power might lead to
inefficiencies if one auctions slots: since slots are an essential input for production, it is
clear that for any available slot that may become available, a monopoly incumbent carrier
can outbid an entrant, since monopoly profits are higher than duopoly profits, leading to
decreased competition. Can this be the case in the problem we consider? Three things
are important to note: first, that in the case depicted there would not be a congestion

1For example Starkie (2008) argues that “The allocation of airport slots is frequently is sub-optimal. It is a
situation that can be rectified however, by allowing airlines to trade slots in secondary markets”.
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problem because market power dominates. Second, that Brueckner (2009) recently showed
analytically that first-best congestion pricing and slot auctioning are equivalent in terms of
both the amount of traffic generated and total social welfare, as long as the fixed number
of slots is optimally chosen; however, in Brueckner’s model airlines did not have market
power. Third, that in Verhoef (2010) indeed one airline left the other out of the market but
in his model it was optimal –from the social planner’s point of view– to actually allow only
one airline (the low-cost one) to operate.

Thus, the research questions that drives this paper are: In an environment with perfect
information, where the objective function is unweighted social welfare, is it possible that
while having a congestion problem, market power from the part of the airlines make slot
auctioning inefficient in terms of the allocation of slots to carriers and total traffic? if the
answer is yes, can it worsen the situation with respect to the laissez-faire situation? And
furthermore, can it happen that slot auctioning lead to anticompetitivemarket foreclosure?
By using a general model for airlines demand and costs I show that: (i) slot auctioning
does not lead to the exit of firms that would be active in the first-best yet, if firm exits,
then the remaining firm can and will exert market power (unless it has none), leading to
large social welfare losses (ii) even if slot auctioning does not lead to market foreclosure,
it will not be efficient unless airlines have no market power, or are completely symmetric
(iii) slot auctioning might lead to outcomes that are worse from a welfare point of view
than the laissez-faire. I conclude then, that going ahead with slot auctioning assuming
that secondary markets would achieve efficiency, without a clear analysis of the situation
of the airlines using the airport and their market power (on a route by route basis!), is not
a wise course of action.

2. THE MODEL: FIRST-BEST AND LAISSEZ-FAIRE SITUATIONS

Consider two airlines, which I denote by i and j, offering services out of a congestible
airport and let me use h for expressions that are valid for both airlines. Each airline faces
a demand given by qh(ρi, ρj), where qh represent number of travelers per unit of time and
ρh represents the full price they face, which here is given by the sum of the air ticket plus
congestion costs, namely ρh = th + αD( fi + f j) with α being travelers value of time and fh

being the number of flights per unit of time that each airline offers.
The relationship between the number of travelers and the number of flights is given by

qh = fhSh, where Sh is the product between aircraft size and load factor. For simplicity –
and is it is common in the airport pricing literature– I will assume that Si = Sj and without
further loss of generality I set the common value to one. With this I can invert the system
of direct demands to obtains inverse demands: ρh( fi, f j) ≡ dh( fi, f j) and then, from the
definition of the full price, get:
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th( fi, f j) = dh( fi, f j)− αD( fi + f j) (1)

Note that equation equation (1) is quite general in that, in addition to allowing for the
externality problem through the congestion term, it allows for both market power and
product differentiation. For example, we can consider a linear demand system (LDS):
di( fi, f j) = ah − bh fi − e f j where bh ≥ e indicates market power,e = 0 implies that air-
lines operate in different markets, e = 1 apply for perfectly homogeneous products, while
intermediate values apply for imperfect substitutes.

The cost functions of airline h is then given by:

Ch( fi, f j) = ch( fh) + βhD( fi + f j) fh + P fh (2)

where P is any charge the airport makes that is non discriminatory. From (1) we can
get revenues of airline i as ti fi and therefore, using (2) we obtain airline h profit function
as:

πh( fi, f j) = dh( fi, f j) fh − ch( fh)− [α + βh] D( fi + f j) fh − P fh (3)

The final ingredient we need for the objective function is consumer surplus, which is
given by:

CS =

ρ∫
ρ

∑
h=i,j

fh(ρi, ρj)dρh (4)

Then, we obtain SW( fi, f j) = πi + πj + CS by simply using (11) and (4).

SW( fi, f j) = ∑
[
di( fi, f j) fi − ci( fi)− [α + βi] D( fi + f j) fi − P fi

]
+ CS

The social optimum is obtained by taking first-order derivatives. If the optimum is interior,
that is, both airlines produce flights, then the first-order condition for airline i is:

∂SW
∂ fi

=
∂di

∂ fi
fi + di − c′i( fi)− [α + βi] D( fi + f j)− [α + βi] D′( fi + f j) fi (5)

−
[

P +
[
α + β j

]
D′( fi + f j) f j −

∂dj

∂ fi
f j −

∂CS
∂ fi

]
= 0

while, the first-order condition for the second airline is analogous. As mentioned be-
fore, there will be conditions on the parameters and functions so that the first-best is in-
terior, that is, for the values f ∗i and f ∗j obtained from ∂SW

∂ fi
= 0 and ∂SW

∂ f j
= 0 to be positive.
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For example, one case in which the first-best is not interior is the one that Verhoef (2010)
analyzes, namely, homogeneous airlines –which for the case of LDS happens when e = 0
and bi = bj), identical congestion costs βi = β j = β, and constant but different marginal
costs ch. In that case, it is optimal that only the airline with smaller marginal costs produce
everything, while the other airline is (optimally) left out of the market.

The Laissez-Faire situation means that airlines can place as many flights as they desire,
for a given price P per flight. In this case, the number of flights of each airline is given
by the Cournot-Nash equilibrium.2 This scenario can also be understood as slot sales, as
in Brueckner (2009) and Verhoef (2010) or simply, the absence of congestion pricing.; in
the end, this is just non-discriminatory pricing. This equilibrium is obtained by talking
first-order conditions on airlines profits:

∂πi

∂ fi
=

∂di

∂ fi
fi + di − c′i( fi)− [α + βi] D( fi + f j)− [α + βi] D′( fi + f j) fi − P = 0 (6)

An interior Cournot-Nash equilibrium is obtained when ∂πi
∂ fi

= 0 and ∂πj
∂ fi

= 0 and the
resulting traffic levels are positive. I denote the result by f C

i ≥ 0and f C
j ≥ 0.

Now, comparing equations (10) and (6) it is easy to see that an airline will take into ac-
counts less aspects when pricing than what it is optimal. These effects have been discussed
in detail before in the congestion pricing literature; see Brueckner (2002), Pels and Verhoef
(2004) and Basso (2008). Hence, in order the achieve the first best, the planner would need
to charge airline i the following three elements in addition to the airport marginal’s cost:

∙ The congestion effect:
[
α + β j

]
D′( fi + f j) f j > 0. This is charged in order to make airline

j internalize the congestion it imposes on airline i’s flights.

∙ The business stealing effect: − ∂dj
∂ fi

f j > 0. This is added to make airline i realize that
when it increases its number of flights, it is partially taking business away from air-
line j.

∙ The consumer surplus effect:− ∂CS
∂ fi

< 0. This subsidy decreases airline’s i marginal
cost in order to induce an increase in production and fight allocative inefficiencies
generated by market power.

As it is evident, the first two of these effects push the price to be larger than marginal cost
while the third pushes in the the other direction. But, as one can easily suspect, it can be
proven that the consumer surplus effect it is always larger that the business stealing effect,

2The assumption of Cournot competition between airlines is common in the airline economics literature
and has some empirical support. See Basso and Zhang (2007) for details.
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and actually, the sum of these two terms simplifies to something useful: ∂dj
∂ fi

f j +
∂CS
∂ fi

=

− ∂di
∂ fi

f j. 3 It is then the sum of the business steeling effect plus the consumer surplus effect what
we call the market power effect, and it always tend to decrease the airport charge. With this,
we can rewrite the first-order conditions in the first-best case as:

∂SW
∂ fi

= di − c′i( fi)− [α + βi] D( fi + f j)− [α + βi] D′( fi + f j)
[

fi + f j
]
− P = 0 (7)

Now, as explained in the introduction, it is not always true that an airport faces a con-
gestion problem: It is perfectly possible that airlines choose collectively a total number of
flights that is smaller than the total traffic there would be in the first-best case; and if
that happens, then the problem is obviously not one of rationing a scarce input anymore.
Here, we will say that there is indeed a congestion problem when f C

i + f C
j > f ∗i + f ∗j and,

obviously, this problem will exist for some parameters and functional forms but not oth-
ers. For example, a sufficient condition for a congestion problem to emerge is that the
market power effect is dominated by the congestion effect for both airlines and all lev-
els of traffic, namely [α + βh] D′( fi + f j) fh > ∂dh

∂ fh
fh for h = i, j, which would ensure that

f C
h > f ∗h . A particular case of this is what Brueckner (2009) studies, where the market

power effect is always zero. Yet, it is quite clear that this is far from being a necessary
condition. For example, one can envision cases in which it happens, simultaneously, that
f C
i + f C

j > f ∗i + f ∗j while f C
i > f ∗i > 0 and f ∗j > f C

j > 0. Moreover, it is perfectly possible
for the Cournot Nash equilibrium to be interior, while in the first-best only one airline op-
erates, as in Verhoef (2010): since he consider homogeneous airlines but different marginal
costs, it happens that, in the first-best, only the most efficient airline should operate, while
being heavily subsidized since the market power effects is at its maximum. The total traffic
under laissez-faire though, is larger than in the first best, and has both airlines operating.

Obtaining general conditions under which a congestion problem exists with a non-zero
market power effect is not possible without considering specific functional forms and even
in that case it is no easy to graph the relevant parameter space without making further sim-
plifying assumptions. For example, even if one assumes a linear demand system, constant
marginal costs and a linear delay function D, the conditions obtained are rather not infor-
mative nor intuitive. Hence, what I will do instead of finding the conditions in general is
to check and then impose the conditions for a congestion problem to exist in the examples
that I use below, when studying the efficiency of slot auctioning.

3Proof: Taking derivative of equation (4), we get ∂CS
∂ fi

= − fi
∂ρi
∂ fi
− f j

∂ρj
∂ fi

= − fi
∂(ti+αD)

∂ fi
− f j

∂(tj+αD)
∂ fi

. Then,

replacing ti and tj with (1), we finally get ∂CS
∂ fi

= − fi
∂di
∂ fi
− f j

∂dj
∂ fi

from where the result follows.
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3. EFFICIENCY OF SLOT AUCTIONING: INTERIOR EQUILIBRIA

In the slot auctioning mechanism, the airport authority decides ex-ante the number n of
slots it will auction. Hence, if all slots are used, airlines already know what delays to expect
when bidding for slots, irrespective of how the slots end up being split between them.
This idea is part of the central reasoning on the efficiency conjecture of slot auctioning: by
fixing the number of slots before the auction, the externality is avoided. Now, with respect
to the auction process itself, there is indeed large literature on multi-units auctions and
how asymmetric information and strategic behavior may affect the outcome. But since
Brueckner (2009) and Verhoef (2010) considered a perfect information environment, I shall
consider one as well; the idea is to show how market power affects efficiency even without
considering informational aspects. Now, with complete information, the bidding behavior
of airlines for each slot is quite simple, as explained in Brueckner (2009) and Verhoef (2010):
for each additional slot airlines are willing to bid up to the marginal profit of acquiring that
slot, namely:

∂πSA
i

∂ fi
=

∂di

∂ fi
fi + di − c′i( fi)− [α + βi] D(n) (8)

where SA stands for Slot Auctioning. In the first-best each airline’s traffic level is given
by f ∗i and f ∗j ; it follows that a necessary condition for the SA equilibrium to be efficient
is that the total number of slots has to be such that n = f ∗i + f ∗j ≡ n∗ and that all of
this slots are actually used, meaning that a congestion problem as define above actually
exists; I therefore make the assumption, from the time being, that the number of slots is set
to the first-best total traffic while the total traffic under the laissez-faire would be larger.4

Now, observe from (8) that the marginal benefit is decreasing in the number of slots an
airline already has as long as marginal costs do not decrease too sharply and the demand
function is not too concave. In particular, a linear demand system and constant marginal
costs are sufficient conditions for (8) to decrease with fi. This imply that the willingness
to pay for an extra slot most likely diminishes as airlines acquire more and more slots. It
is then easy to find the conditions for an interior allocation of slots after the auctioning
process, irrespective of the specifics of how it took place. For the SA equilibrium to lead
to a situation where both airlines end up with a positive number of slots, the equilibrium
allocation has to fulfill that airlines have equal (and positive) marginal profits, namely:

4The two assumptions are important: first, if n∗ is larger than the laissez-faire total traffic, the airlines will
simply stop bidding before all the slots are gone. Second, if a congestion problem do exist but from the start
the number of slots is not set to the first-best total traffic, then the SA equilibrium simply cannot be first-best.
A different question, related to the second point is, if SA does not lead to the first- best, what would be the
best choice of n? This question is tacked later.
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∂di

∂ fi
f SA
i + di − c′i( f SA

i )− [α + βi] D(n∗) =
∂dj

∂ f j
f SA
j + dj − c′j( f SA

j )−
[
α + β j

]
D(n∗) > 0 (9)

f SA
i > 0 , f SA

j > 0 , f SA
i + f SA

j = n∗

Note that this equilibrium is trading-proof, in that airlines have no incentives to trade
slots. In what remains of this section I assume that the conditions for the SA equilibrium
to be interior hold. I can thus move to the comparisons with the first-best allocation and,
in fact it is enough to look at interior first-best equilibrium: if the first-best is not interior,
then slot auctioning cannot be efficient. From (10) an interior first-best has to fulfill the
following two conditions:

dh − c′h( fh)− [α + βh] D(n∗) = [α + βi] D′(n∗)
[

fi + f j
]
+ P (10)

Noting that the right hand side of (10) has the same value for both conditions, it follows
that an interior first-best fulfills:

di − c′i( f ∗i )− [α + βi] D(n∗) = dj − c′j( f ∗j )−
[
α + β j

]
D(n∗) (11)

A careful look at what makes equation (9) different from (11) lead to the first proposi-
tion in this paper:

Proposition 1. If an a situation where there is a congestion problem, that is f c
i + f c

j > f ∗i + f ∗j ,
the slot-auctioning process ends up with a positive number of slots for both airlines, then the slot-
auctioning equilibrium is efficient only if (i) for both airlines the market power effect is nil, that is
∂dh
∂ fh

= 0, or (ii) airlines are completely symmetric, both in terms of cost functions and demands.

Hence, in general, slot-auctioning will not be efficient and there are only two excep-
tions. The first exception –when airlines have no market power– is the main finding in
Brueckner (2009); the second case has not been described before and it is also very specific:
airlines have to be completely symmetric, both in demand and cost functions. Note that in
this case, while slot auctioning would lead to an efficient outcome, given the symmetry of
the case and that a congestion problem exists, a positive uniform positive price would also
achieve the first best.

The next important issue relates to the relevance of Proposition 1, something that can
be framed through two questions: First, how often can SA be inefficient, that is, how large
is the parameter space where this happens? The reason why the answer is not direct is
because, in addition to market power, we need a congestion problem to exist, which puts
restrictions on parameter values. Second, even if is slot-auctioning does not lead to the
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first-best allocation, is it always better than the laissez-faire? This is important from a
policy point of view because it might be the case that SA does not lead to the first-best yet
it is still a desirable policy because, on one hand it is implementable in reality, and on the
other hand it does improve the situation.

It happens that it is not hard at all to create examples where the conditions in Propo-
sition 1 for SA to be inefficient hold, showing that the scope for inefficiency is quite large.
And the additional conditions require for SA to be welfare worsening with respect to the
laissez faire are not too stringent either.Consider the following example, whose algebra is
simple to manage and is therefore omitted:

Example 2. We assume that airlines provide service in markets that are unrelated in de-
mand terms, and only one airline face a non-perfectly elastic demand, that is, inverse de-
mand functions are given by d1 = k a− b1 f1, d2 = a. Also suppose that both marginal costs
are constants, equal and without further loss of generality equal to zero, that βi = β j = β,
and that the delay function is linear, namely D(x) = x. Then airlines traffic, obtained by
first-order conditions for the first-best and the laissez faire, and by equation (9) for slot-
auctioning, are given by:

f ∗1 =
a(k− 1)

b1
f ∗2 =

a (b1 − 2(k− 1)(α + β))

2b1(α + β)

f C
1 =

a(2k− 1)
4b1 + 3(α + β)

f C
2 =

a (2b1 − (k− 2)(α + β))

(4b1 + 3(α + β)) (α + β)

f SA
1 =

a(k− 1)
2b1

f SA
2 =

a (b1 − (k− 1)(α + β))

2b1(α + β)

Sufficient conditions (necessary for the case of the first-best) for these traffics to be strictly
positive are k > 1 and b1 > 2(α + β)(k − 1). If these conditions hold, then it is direct
to check that

(
f c
i + f c

j

)
−
(

f ∗i + f ∗j
)

= a(2k−1)
8b1+6(α+β)

> 0, and therefore there is indeed a
congestion problem, and therefore slot trading will not be efficient since the conditions of
Proposition 1 are not met. It is then quite clear that the scope for SA to be inefficient, in
terms of the parameter space, is quite large, even if one focus only on two parameters.

To understand where the inefficiency comes from, one can easily check that: f C
1 <

f ∗1 and f ∗2 < f C
2 , which means that it is the airline 2 the one actually congesting, while

airline 1 is exerting market power. However, after slot auctioning it is always the case that
f SA
1 < f C

1 , namely, airline 1 contracts his output further, something that moves in the exact
opposite direction of the first-best allocation. Furthermore, if k > 3

2 ,then it is also true that
f ∗2 < f SA

2 < f C
1 which shows that the congesting airline will have even more flights than

before.5

5The reader may have noted that as b1 approaches 0, we do not obtain that SA coincides with the first-best.
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Next, replacing the obtained traffic values for SA and the laissez-faire, one can easily
compute and then compare social welfare levels. It is a matter of algebra to show that,
whenever b1 > b̄(k, α, β), with b̄ given by:

b̄ =
(4k− 5)

4
(α + β) +

√
(2k− 1)2(16k− 17)(α + β)2

16(4k− 5)

SA will lead to a smaller welfare level value than the laissez-faire. The value of b̄ is increas-
ing in k and, for example, when k = 2 one obtainsb̄ =

3(1+
√

5)
4 (α + β). Hence, in terms of

the parameter space, the scope for SA to decrease welfare below what it is obtained in the
laissez-faire is large, and this is not even including the costs associated to implementing a
policy of slot auctioning. .

An idea that may be lingering in the reader’s mind is that, if SA is no longer efficient
in the first-best sense, then assigning n∗ = f ∗i + f ∗j to the number of slots is not really the
optimal thing to do. Could it be the case that if the number of slots is optimized instead
of being set to the total traffic in the first-best, SA improves and does always better than
the laissez-faire? The answer is also no. For instance, in Example 2 above, if the planner
optimizes n given the airlines behavior (i.e. Equation (9) but with a variable n), what one
obtains is in fact that nSA = n∗ and therefore6, in this case, SA is still worse than the
laissez-faire even after optimizing the number of slots. Obviously, since in some cases SA
can be efficient, there are also many cases in which SA does in fact perform better than the
laissez-faire.

Finally one may wonder if, in fact it may not be the case that an optimized uniform
price –a second-best pricing policy– actually improves things much over the laissez-faire;
it happens however that for the example considered, the optimal uniform price is always
negative, something that may be considered as non-implementable.

4. EFFICIENCY OF SLOT AUCTIONING: NON-INTERIOR EQUILIBRIA

In Section 3. we showed that when market power is present, it is perfectly possible for a
slot-auction process to be less than efficient and furthermore, it may actually worsen the
situation as compared to the laissez-faire. Yet, that analysis was explicitly made for situa-

But this happens because, in a setting of low b1 and constant marginal costs, the SA equilibrium is not interior.
I treat non-interior SA equilibrium in Section 4.but, in nay case, if i were to consider linear and increasing
marginal cost instead of constant, then it is indeed true that that as b1 approaches 0, SA approaches the first-
best. That case, while simple, is cumbersome in terms of algebra so I sided with simplicity of exposition.

6It is not true in general that nSA = n∗; in the case of Example 2 it is enough to make βi ∕= β j to obtain
nSA ∕= n∗. The example with identical β was chosen precisely because it shows the point without introducing
further calculations and ensures second-order conditions in the first-best.
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tions in which the SA equilibrium is interior and, therefore, it does not address the issue
of market foreclosure, that is, a situation in which one airline overbids the other for all slots
that are auctioned. We know in fact that a situation like this can happen, as documented by
Verhoef (2010): he considered two airlines offering perfect substitutes, but differing both
in marginal and congestion costs, and indeed it happen that the efficient airline outbid
the other, leaving it outside the market. In the case of perfect substitutes, however, when
airlines only differ in efficiency, it is also true that in the first-best only the most efficient
airline would produce.

It seems then reasonable to ask whether market foreclosure under SA is always effi-
cient, in that the foreclosed airline would also be out in the first-best, or it could be ineffi-
cient, in that it leaves out of the airport an airline that would be active in the first-best. The
answer is as follows:

Proposition 3. If the slot-auctioning process leads a carrier to exit the market, then in the first-best
that carrier will be inactive as well, irrespective of the degree of product differentiation.

Proof. What we need to prove is: if ∂πSA
i ( fi , f j,n)

∂ fi
>

∂πSA
j ( fi , f j,n)

∂ f j
∀ fi, f j and ∀n such that fi +

f j = n, then ∂SW( fi , f j)
∂ fi

>
∂SW( fi , f j)

∂ f j
∀ fi, f j. This means that if irrespective of the number of

slots chosen by the planner, airline j never obtains a slot, then it has to be also true that it
is never optimal to assign traffic to airline j in the first-best .

Recall then that the marginal revenue of an extra slot under SA for an airline is given

by (8), that is ∂πSA
h

∂ fh
= ∂dh

∂ fh
fh + dh − c′h( fh) − [α + βh] D(n) , and assume that ∂πSA

i ( fi , f j,n)
∂ fi

>
∂πSA

j ( fi , f j,n)
∂ f j

∀ fi, f j, fi + f j = n holds. Then, in particular the inequality holds for fi = n
and f j = 0. We then obtain:

∂di(n, 0, n)
∂ fi

n + di(n, 0)− dj(n, 0)− c′i(n) + c′j(0) +
[
β j − βi

]
D(n) > 0 (12)

Note that, in order for (12) to hold for all n it has to be true that β j ≥ βi, otherwise
the inequality would not hold for large values of n.7 Next, we need to show that if (12)
holds, then ∂SW( fi , f j)

∂ fi
>

∂SW( fi , f j)
∂ f j

∀ fi, f j. But since from (7) we can see that ∂SW
∂ fh

decreases
with fhas long as the cost function is not too concave –that is, economies of scale are not too
pervasive– it is actually enough to show that ∂SW( ft,0)

∂ fi
> ∂SW( ft,0)

∂ f j
holds for all values of ft,

as this imply the previous inequality. Hence, using (7) for ∂SW
∂ fh

what we need to prove is:

di( ft, 0)− dj( ft, 0)− c′i( ft) + c′j(0)−+
[
β j − βi

]
D( ft) +

[
β j − βi

]
ftD′( ft) > 0 (13)

But since ∂di
∂ fi

< 0 and equation (12) holds ∀n, then di( ft, 0)− dj( ft, 0)− c′i( ft) + c′j(0)−
7Under non-stringent conditions, the SA marginal profit of an airline is decreasing as the number of slots

it has increases, so one could actually assume that the inequality holds for fi = n and f j = 0, which would
imply that it holds ∀ fi, f j, fi + f j = n.
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[
βi − β j

]
D( ft) > 0. And since

[
β j − βi

]
ftD′( ft) is also positive, then (13) always holds,

which finishes the proof.

What Proposition 3 tells us is that it will not happen that an airline who would be active
in the first-best will be left out of the market by an auctioning process so, this generalizes
Verhoef (2010) result to different demand and cost conditions. Clearly, the parameter space
where market foreclosure may occur is large, but that has to be intersected with the param-
eter space where there is indeed a congestion problem (or SA, for the purposes of solving
congestion would not have been called for). The remaining parameter space is still fairly
large. If for example we consider:

Example 4. (a) Inelastic and unrelated demands, i.e. di = ai, dj = aj < ai, βi = β j = β, a
linear delay function D(x) = x, and constant and equal marginal costs, or (b) di = ai− bi fi,
dj = aj < ai, and constant and equal marginal costs, we obtain market foreclosure under
SA (and in the first-best), while having a congestion problem under laissez-faire.

Note that in these two examples, airlines produce completely differentiated products
since e = 0, that is, foreclosure occurs despite the fact that airlines are not really competing
in the market, they just compete for space in the airport.

Now, perhaps the most concerning issue about possible foreclosure is that, if a slot
auctioning processes put in place to attack a congestion problem, nothing will stop the
remaining airline from exercising market power: as each slot is made available, it will
always be airline i the one that wins the slot since it has a higher marginal profit. And
when its marginal profit equals zero, and therefore the willingness to pay is zero, the other
airline will have a negative willingness to pay. But the number of slots airline i has is the
one that makes its marginal profit equal zero, that is, the monopoly number of slots. It is
then clear then that, because of market power welfare losses can be very large, unless of
course the airline has zero market power in as Example 4a.

5. CONCLUSIONS

For airports, perhaps the most suggested and discussed congestion remedy has been the
pricing mechanism. As the literature developed, it became clear the importance of air car-
riers’ market power: on one hand because non-atomistic airlines would partly internalize
congestion. On the other hand because a carrier restricts output to exert market power
making the congestion problem less acute than when airlines are atomistic or face elastic
demands. Overall, it is clear by today that first-best pricing requires both massive amounts
of information and differentiated airport tolls making its implementation quite controver-
sial and complex if not impossible.

12



In the light of this discussion –and certainly of many other problems of allocation of
airport capacity–, many authors and authorities have argued that a slot -auctioning pro-
cess might be able to restore the first-best; the only real complexity the planner would face
is setting the number of slots to be auctioned to the right level, while the auction process
would ensure an efficient outcome. Importantly, the mechanism would circumvent the
information problem and perceived unfairness that pricing has. In fact the FAA proposed
a move in this direction for the three New York airports, which are among the most con-
gested and delay prone in the US, although the idea was eventually defeated.

Some important papers have shown theoretical support for the claim yet they did not
really took into account market power, –which is in fact what complicates the matter–
while another did considered market power, but in a homogeneous product framework,
something that may not seem to be realistic because airlines may share the airport but
do not compete necessarily in all city-pair markets. By using a quite general model for
airlines demand and costs I show that: slot-auctioning does not lead to the exit of firms
that would be active in the first-best yet, if firm exits, then the remaining firm can, and will
exert market power (unless it has none). Social welfare losses can be large in this case. On
the other hand, even if slot-auctioning does not lead to market foreclosure, it will not be
efficient unless airlines have no market power, or are completely symmetric. Furthermore
slot-auctioning can be worse than the laissez-faire, that is, implementing the policy (which
is costly) may well end up decreasing welfare. It follows that a general policy of slot-
auctioning at an airport does not seem a wise thing to do without a clear analysis of the
situation of the airlines using the airport and their market power (on a route by route
basis!)
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