
Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

1

LOADING TRAFFIC ON BOTTLENECKS
AN EVENT BASED APPROACH

Nicolas Wagner,
Université Paris Est, LVMT, UMR T9403 INRETS ENPC UMLV.
19 rue Alfred Nobel, Champs sur Marne, 77455 Marne la Vallée Cedex 2, France.
Tel : +33 1 64 15 21 39
Fax: +33 1 64 15 21 40
E-mail: nicolas.wagner@enpc.fr

ABSTRACT

This paper deals with the Dynamic Network Loading Problem. A general formulation is
presented for which existence and uniqueness is guaranteed under five physically sound
assumptions on the arc travel time models. An efficient computation method is then
proposed and applied to networks of bottlenecks. Two important features of the approach
are: (1) assuming that demand is described by piecewise linear cumulated volumes on each
routes, the computation is exact; (2) time is treated continuously. Numerical illustrations are
given.

Keywords: traffic loading, dynamic traffic modelling, bottleneck congestion.

INTRODUCTION

Dynamic traffic assignment aims to find in a network subject to congestion, time-varying
traffic volumes on routes that are consistent with the route travel costs. Yet, computing the
travel times from given route volumes is both essential, as it's the main step in estimating the
travel costs, and challenging, as the problem has both a temporal and network dimension.
The problem boils down to derive the traffic volumes on each arc from the route volume
vector. It is usually referred to as the Dynamic Network Loading Problem (DNLP).

Although Friesz et al. (1993) pointed out its importance for the analytical formulation of
dynamic assignment models, the literature is quite restricted. Most of the existing solutions
rely on simulations. They can be either microscopic (e.g. DYNASMART in Mahmassani et al.
1995), with an explicit representation of users behaviours on arc and nodes, or macroscopic,
the demand being divided into packets of users (Tong and Wong, 2000). Analytical forms of
the DNLP are not as frequent. Wu et al. (1995) first formulated the loading problem as a
system of functional equations and derived a solution method based on finite dimensional
approximation. Xu et al. (1999) and later Rubio-Ardanaz et al. (2003) proposed a radically

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

2

different approach that can be considered as an event based simulation, and showed it
improves significantly the computation speed. Both methods apply to volume-delay travel
time models. Yet volume-delay travel times have been shown to be generally unphysical
(Daganzo, 1993) and an important number of operational assignment models rather assume
bottleneck travel times (e.g. Kuwahara and Akamatsu, 1993 or Leurent, 2003). DNLP for the
bottleneck model has never been treated explicitly, despite the fact it is regarded as an
important category of models combining analytical simplicity, computational robustness, and
experimental correctness.

In this paper, we propose a general solution paradigm, inspired by discrete event simulation,
and applied it to a network of bottlenecks. The first section is devoted to a formal
presentation of the DNLP. The second section presents the global philosophy of the solution
method, while the third gives a formal statement of the algorithm. Finally the fourth section
gives an example of applications on a network of bottlenecks and numerical experiments.

PROBLEM STATEMENT

Notations

The road network is modelled as an oriented graph ��, �� with � the set of nodes and � the
set of arcs �. The set of acyclic routes of ��, �� is denoted �. We aim at formalizing the
loading a volume of traffic described as cumulated vehicle flows on each route of the
network. In order to do so, let us first define precisely the basic objects of our problem.

Cumulated volumes and instantaneous Flows. Consider a time interval 	
 �0; ���, .
Cumulated volumes of traffic are represented by non decreasing and differentiable almost
everywhere function on I. They have the following interpretation: ���� is the number of
vehicles that went through a point before �. The set of such functions is denoted ��	�. The
following operation is defined on ��	�: the restriction of a cumulated flow � � ��	� on �0; �� is
the function �� defined by ������
 ����� for �� � �0; �� and ����’�
 ����. It is denoted ��|�.

Instantaneous flows will be systematically denoted by the lower case letter corresponding to
their cumulated equivalent.

A vector of cumulated flows �
 ������� is called a route volume vector and a vector of
cumulated volumes �
 ������ is called an arc volume vector. The derivative of a
cumulated volume at an instant � of 	 is an instantaneous flow.

Travel time functions and models. Denote !�	� the set of continuous map from 	 to "#. An
arc travel time function on 	 is an element of !�	� and gives the time to go through an arc a
when entering it at a time � � 	. Each arc of the network is endowed with an arc travel time
model $�. An arc travel time model $� is a function taking as input a flow and returning an arc
travel time function. In other words, it is a map from ��	� to !�	�. Physically, an arc travel
time model is simply a compact notation for traffic models; given the flow entering into an arc

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

3

over a period 	 it allows deducing the resulting travel time over 	, denoted $����. The travel
time for a departure time � is then denoted $�������.

Let us assume the following properties on arc travel time models:

Assumption 1. [Continuity]
$�: ��	� & !�	� is continuous with respect to the uniform norm.

Assumption 2. [No infinite speed]
There exists $'() * 0 such that for all � � ��	� and all � � ", we have
$������� * $'().

Assumption 3 [Finiteness]
There exists a continuous map $'�+: "# & "# such that
$������� , $'�+������� for all � � "# and � � ��	�.

Assumption 4 [Strict fifoness]
Let � � ��	�. The map � & � - $������� is non decreasing. Moreover, for �. / �0 in such
that ���0� 1 ���.� 2 0, we have �. - $������.� / �0 - $������0�.

Assumption 5 [Causality]
For all � � "# and � � ��	�, we have $����|�����
 $�������.

Assumption 1 simply states that a small variation on the cumulated flow on an arc leads to a
small variation of the arc travel time. Assumption 2 amounts to say that the time needed to
travel along an arc is bounded from below. The finiteness condition (Assumption 3) assumes
that if we wait for a sufficient long time, there will be no user left on any arc. The FIFO
condition (Assumption 4) states that if two users enter an arc in a given order, they leave it in
the same order. Finally, Assumption 5 simply implies that the arc travel time depends on the
users that have already entered this arc, but not on the ones that will.

The dynamic network loading problem

Consider a road network ��, �� and endow each arc with a travel time model $� satisfying
Assumptions (1-5). Given a route volume vector �, let us define the resulting volumes on the
arcs �.

Definition 1. [Outflow of a route volume vector on a network]. The outflow of a route
volume vector �
 ������� is an arc volume vector �
 ������ if there exists a collection of
route volume vectors ��
 3��,�4���, such that for any �, ��
 ∑ ��,���� that satisfies the

following functional system :
 for every route 6
 �., . . . , �)

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

4

��8,�
 �� �2�
��:,� ; <�:=83��:=84
 ��:=8,� �3�

��,�
 0 �4�

with <�����:
 @AB - $����

The interpretation of Definition 1 is the following. ��,� is the cumulated flow of vehicles
entering � while following route 6. In other words the quantity ��,���� represents the volume

of vehicles following route 6 that entered arc � before �. Equations (1-3) are essentially
volume conservation equations. Equality (1) states that the volume of vehicles entering the
first arc of a route 6 is the number of vehicles entering on route 6. Equality (2) expresses that
the volume of vehicles entering on arc �(before h is the volume of vehicles leaving arc �(C.
before �. Equality (3) simply states that if a vehicle does not follow a route including arc a, it
will never go through a. As there might be confusion between the cumulated volume entering
an arc and following a route ��,� and the volume on a route ��, we will sometimes refer to the

latter as the volumes at origin.

It has been shown in Meunier & Wagner (2010) that for each route volume vector there is a
unique outflow. The DNLP as we understand it in this paper is to find this outflow for a given
network and a given route volume vector.

PHILOSOPHY OF THE SOLUTION METHOD

Restrictive assumptions

The proof in Meunier & Wagner is constructive and thus the paper gives an algorithm to load
traffic on a road network satisfying to the Assumption (1-5). In a few words the general idea
is to proceed recursively. Assume you know a collection of cumulated volumes ���,��D �E,F�G

satisfying equations (1-3) until the instant �, then by Assumption 2, 4 and 5, you can deduce
a new collection cumulated flows ���,��D �E,F�G satisfying the same equations until � - $'().

Assumption 3 guarantees the termination of the recursion. In the general case this algorithm
is possibly the most efficient way of solving the problem and in fact in the literature most of
the existing algorithms follow more or less this same pattern. Yet by slightly restricting the
problem, it can be importantly simplified thus leading to a more efficient solution method.

In this paper only cumulated volumes at origins which are continuous piecewise linear
functions of time are considered. In addition, arc travel time models are assumed to lead to
piecewise linear travel time functions when applied to continuous piecewise linear route
volume vectors.

The primitives manipulated under these assumptions are piecewise linear (PWL) functions.
Note that they can easily be encoded under the form of an ordered list of elements �

 ��(, �(, H(�(where �(is the image of �(by the PWL function � in and H(is its derivative on the
right. Each element of the list is called a piece. Note that under this formalism it is easy to
define the operations of linear combination, composition and inverse. With an adequate

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

5

implementation there are essentially equivalent to a list traverse and thus in I�J� where J is
the number of pieces of the function considered.

Consequences for the loading problem

With the PWL assumptions, the main quantities of the problem are piecewise linear functions
of the time. Let us focus on the cumulated volumes 3��,�4�� ,��� and consider the set of

instants �(such that there exists a triplet ��(, K(, L(� that belongs to a cumulated volume ��,�.
They will be referred to as the critical instants. Now assume the cumulated volumes 3��,�4
are known until �, i.e. that ���,� �|�� are known. In terms of PWL format it means that all
elements ��(, �(, H(� of ��,� such that �(, � are known. Then if one could find the first critical
instant �’ after �, as well as the concerned cumulated volume and its new slope, ���,� �|�M� can

be deduced and the process can be iterated until completion.

Informally that is just saying that instead of seeing the cumulated functions as functions of
the times, we see them as a sequence of transitions from one slope to another occurring at
critical instants. The algorithm we proposed is simply to go from critical instants to critical
instants and correctly update the values of ���,� �|�M�. Our proposition is to formalize this

general idea under a discrete event system. Each event corresponds to a change of slope
and thus occurs at a critical time.

Example on a simple case

The punctual bottleneck model. We are going to consider a simple example using the
punctual bottleneck travel times (see for instance a presentation in Leurent 2003). Let us first
introduce its basic equations. Consider the derivation of travel time function $���� from an
incoming flow �. Travel along the arc is assumed uncongested except perhaps at a single
bottleneck of deterministic capacity N� located at the exit of the arc. If the entry flow coming
in bottleneck has rate in excess of N�, then a waiting queue develops where users wait to
leave queue according to a First In – First Out discipline. Let us define the travel time
function by the following relationship, in which)(hQ denotes the number of queued users at

h in the bottleneck, and $�,O is the free flow travel time:

 $�������
 $�,O - P���/N� (4)

where P stems from the following differential equation :

RS
R�
 TH��� 1 N� if P��� 2 0 or H��� 1 N� * 0

0 otherwise
� (5)

When � is continuous, the resulting travel time $���� is well defined, continuous and
differentiable nearly everywhere on 	. Also note that when � is a PWL function so is $����.

Resolution on a simple network for piecewise cumulated flows. Assume a simple
network of bottlenecks with two origins, I. and I0, two destinations .̂ and ^0 and five arcs
denoted �(, @
 1. .5. Only two routes are available, 6.
 �., �a, �b connects I. to .̂ while

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

6

60
 �0, �a, �c connects I0 to ^0. The only bottleneck is on �a with a capacity of N

1000 uvp\hour. The free flow travel times are of arc �., �0 and �a are given respectively by
$O

�8
 1 hour, $O
�d
 1.5 hour and $O

�d
 0. The network and its characteristic values are

depicted in Figure 1.

Figure 1 – A simple network

Consider a route volume vector �
 ���8 , ��d� defined on I=�6: 00,14: 00�. � is given by its
derivative. During �6: 00,9: 00�, the flow entering 6. is K�8
 1500 uvp/hour while the flow on
route 60 is K�d
 500 uvp/hour. On �9: 00,14: 00� we have K�8
 K�d
 250 uvp/hour.

The resolution can be made iteratively.
1. At 6:00 all the flows of the network are zero except on arc �. and �0 where H�8

K�8
 1500 uvp/hour and H�d
 K�d
 500 uvp/hour. This stay so until the route flows

reaches the end of arc �. and �0. This happens at �.
 6: 00 - $O.
 7: 00 for arc �.
and at �0
 � - $O0
 7: 30 for �0.

2. At �., the incoming flow on �a changes from H�h
 0 to H�h
 1500 uvp/hour. As the

flow outgoing from �a is bounded by the bottleneck in capacity, there is an exit flow

of H�h
C
 N
 1000 uvp/hour. A queue began to grow at the rate of

RSih
R�
 1500 1

1000
 500 uvp/hour. As all users on �a are following route 6. for the moment, the
exit flow is entirely disgorged on arc �b and H�j
 1000 uvp/hour.

3. At �0, the flow entering �a switches to H�h
 2000 uvp/hour. The queue growing rate

is now
RSih

R�
 2000 1 1000
 1000 uvp/hour and the travel time on that arc is

$�hk��hl��0�
 Sih��d�
m
 0.25 hour. Consequently the first user following route 60 to

exit arc �a will arrive on �c at �a
 7: 45.
4. At �a, the new incoming flows of arc �b and �c are H�j
 750 uvp/hour and H�n

250 uvp/hour respectively.
5. The change in route flow at 9: 00 provokes changes in the incoming flow of arc �a at

instants �b
 9: 00 and �c
 9: 30.

6. At �b, H�h
 1250 uvp/hour and
RSih

R�
 250. The travel time is now $�hk��hl��b�
 1,5.

The next change in the exit flow will be at �o
 10: 30.

7. At �c, H�h
 500 and
RSih

R�
 1500. The travel time is now $�hk��hl��c�
 1,625. The

exit flow will change at �p
 11: 07. The queue is now decreasing and will be empty
by �q
 12: 45.

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

7

8. At �o the entrance flows on �b and �c are H�j
 1000/3 and H�j
 2000/3

respectively.
9. At �p the entrance flows on �b and �c are H�j
 H�n
 500 uvp/hour.

10. At �q, the queue is completely cleared and the entry flows on arc �b and arc �c
corresponds to the exit flow of arc �. and �0 i.e. H�j
 H�n
 250 uvp/hour.

Figure 2 depicts the solutions of the loading problem by representing the cumulated volume
��h at the entrance of arc �a, the cumulated volume ��8,�h at the entrance of arc �a following
route 6., the cumulated volume ��h

C at the exit of �a (Figure 2, top) and the cumulated flow
��j at the entrance of arc �b (Figure 2, bottom). This example, albeit simple, is quite

instructive. First, relatively simple inputs in terms of both networks and route flows can lead
to much more complicated arc flows through the interaction at bottlenecks. Second it is
reasonably easy to deduce the impacts of a change in an arc incoming flow (i.e. an event
with our terminology) on the change of flows on the downstream arcs. Informally the
mechanism is the following: from each event can be deduced to a sequence of other
forthcoming events that needs to be treated chronologically. The main difficulty is to correctly
coordinate the actualization of the arc entering flows i.e. to handle each event in the right
(chronological) order. The algorithm presented in the following essentially addresses this
issue.

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

8

Figure 2 – Dynamic Network Loading solutions

GENERAL ALGORITHM STATEMENT

DATA STRUCTURES

First let us define the proper data structure to model the problem under a discrete event
system. Basically, we need to be able to describe a state of the system, to formalize the
concept of events and to treat events.

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

9

Instantaneous flow vectors and events. A flow vector is a vector of instantaneous flows
�K����� and has the following physical interpretation: it represents the superposition of the
flow of users following different route in a given point at a given instant. The sequence of flow
vectors rs+t
 �u���� is called the external state of the system, and represents flows,
decomposed according to the followed route, at the entrance of each arc of the network. The
term external refers to the fact that this description only focuses on arc incoming flows and
totally ignores what's happening inside the links, which we will later refer to as the internal
state of a system. Despite that, its knowledge over the simulation period (i.e. for every
instants) is exactly what’s required to solve the DNLP. Extending rs+t
 �u���� description
over the whole period of simulation is hence of interest and so we introduce the concept of
event as a change of vector flow at a specific instant and on a specific node.

Formally, an event is defined as:
Definition 1. [Event] An event is a pair ��, v� where:

- � is a clock time
- v is a map from � w � such that v��, 6� is either an instantaneous flow or the empty

set x.

Arc event functions. Let's now focus on the arc description. At this point of our exposition,
we remain general and only expose how to represent travel time model in an event based
perspective. First, one needs to be able to describe the state of an arc. Physically the state of
an arc describes at an instant � the traffic flows over the whole arc. In other terms, it is what
you cannot see by solely looking at the arc incoming and outcoming flows. In a
computational perspective, we would like the knowledge of the state of an arc to be enough
to compute all of the future values of the arc travel time and outgoing flows over an infinite
time horizon, assuming the route flow vector u at entrance remains constant. According to
the causality assumption, in the general case ���|� is enough to compute the travel time at �.
Consider the route flow vector ��� obtained by considering for each route ���,�y� and

prolonging it using the instantaneous flow following the corresponding route K�. The
knowledge of all the route volumes thus obtained is then sufficient to compute the travel time
for any instants assuming that the incoming flow remains constant. This discussion leads to
choose to represent the state of an arc simply by a route volume vector �. The inner state of
the system is then naturally defined as a collection of route volume vectors r()
 ��z��� ,
one for each arc of the network.

We denote the operation of prolonging a cumulated volume � by an instantaneous flow H
� {� H. Note that in PWL format, denoting �
 ��(, �(, H(�(|...) , it is equivalent to take the
sequence of pieces ��(, �(, H(� such that �(/ � and to add the piece ��, ����, H�.

Definition 2. [Event functions] For each arc travel time model $�, the following functions
are defined:

1. The next event function }�: ��, �� ~ ��M, v� , where v is the event representing the
first change in slope in the outcoming route volumes ��

C:
 �� ; <���� after �. Denote

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

10

�� the instant when this change occurs. Then for all 6: � � 6, consider �’ the first arc
after � in 6 and define v���, 6�:
 H �,�C . If �’ doesn’t exists, then �M
 -∞ and v
 x.

2. The handling function �� : ���, u, ��, v�� ~ �0 such that ��0:
 ��. {� v��, 6� if

v��, 6� 2 x and ��0:
 ��. otherwise.

Note that the expression �-∞, x� encodes the null event that indicates that no event is
generated by a function }�

For specific travel time models, such as bottleneck ones, using a route vector flow to
describe the sate of an arc might not be the most suitable choice. In this situation the event
functions will need to be adapted to feet this new model. Yet the global framework of the
algorithm will remain the same. This will be discussed later in the application on the networks
of bottlenecks.

ALGORITHM STATEMENT
Now the basic concepts have been settled the reader should begin to see the global picture.
At an instant �, we are now able to describe the system by an external state rs+t
 �uz���
and an internal state r()
 ��z��� , representing respectively the traffic flow between the
arcs and the traffic flows inside the arcs. Assuming the incoming flow on an arc remains
constant, the next event function of this arc enables us to deduce the next change in its
outgoing flow. Yet there are two reasons that might cause a change in the instantaneous
entrance flow of an arc: the instantaneous ouitgoing flow of another arc changes or the flow
leaving an origin changes. The first case is easy to handle: for a given state �r(), rs+t�
compute the next event for all arcs and only consider the first one chronologically. The
second type of events can be treated by a trick: the route volume vectors describing
cumulated volumes at origins can always be interpreted as a sequence of events, each of
them indicating the change at a given instant of the route flows from a value to another.
Combining this set of events, the events at origin, with the previous ones, the arc events,
allows determining which will be the next event.

The precise statement of our event-based loading algorithm is given below. The inputs are
simply the arcs described by their event functions and the route volumes at origin described
by a collection of events. The outputs are route volume vectors, one for each arc,
representing the cumulated volumes at the entrance. The algorithm can be summarized as
such. Consider the list of event formed by the merge of the events at origins and the events
on arcs and remove the first event. Then use the handling function to update the state of the
arc concerned with the event. Finally compute the new arc event list using the next event
functions of each arc of the network.

Algorithm : loadingTraffic

Inputs: - A list of arc �
 ��., … , �)� together with the corresponding
functions <� and }� for each � � �.

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

11

 - A list of events ��
 ��., v.� , … , ��(, v(�, …
Outputs : - A collection of route flow vector ��
Initialize: u� and �� to 0 for all � � � , � to the empty list and � to a suitable
initial instant.

While �� � � 2 x
 Get next event from �� � � and Set it to ��, v�.
 Forall ��, 6�: �v��, 6� 2 x �, set K�,�:
 v��, 6�
 Foreach arc � : �6 :�v��, 6� 2 x),
 Set �� := �����, ��, ���

 If }�3��, ��, ��4 2 �-∞, x� , add it to �

End While

APPLICATION TO A NETWORK OF BOTTLENECKS

General presentation

In this section we consider a network of bottlenecks where each arc � is described by two
parameters: its free flow travel time $O

� and its exit capacity N�. We are going to apply to this
network our general algorithm. To do so divide each arc in two parts: the free flow part and
the bottleneck part. It is this new network we are going to consider and thus two types of arc
time models and event functions have to be defined.

The treatment of the free flow part is straightforward and can be achieved by directly
applying the general method presented above. Concerning the bottleneck part, a
modification to the next event function is presented below and allows accelerating
computation by storing slightly more information in the bottleneck state.

Bottleneck part. As precised earlier, in this case using solely a route flow vector � to
describe the state of a bottleneck is not the best choice from a computational perspective. A
more suitable choice is to have some information about the queue evolution. To do so let us
add to the state of a bottleneck the function P. The quantity P is a positive function of the
time representing the queue volume with respect to the time as defined in Equation (5).

It is now necessary to adapt the event functions in order to exploit the additional information
given by P. Given an bottleneck state ��, P�, how can one compute the next event? Assume
the queue is not empty at an instant �. From the analytics exposed above, two cases can
arise:

1. The outgoing flow change because of a previous change in the incoming flow.
Denoting the corresponding incoming route flows K�, the new outgoing flows are
K�C:
 ��

∑ �������
 N�. Finding this instant corresponding to the change in the incoming

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

12

flow boils down to find an instant �’ such that �M - S���
mz

/ � and the derivative of a

route volume �� changes in �’.
2. The outgoing flows change because the queue vanishes. The new outgoing flows are

simply the incoming flows K�C:
 K�. Finding the instant �’ occurs is straightforward
knowing P.

The event functions for bottleneck are precisely defined below.

Definition 3. [Event functions for bottlenecks] Denote u�
 3K�,�4���the incoming route

flow on arc � and J��, 6� the first arc after � in route 6. The events functions of a bottleneck
are then defined as follow.

1. The next event function }�: ��, P, �� ~ ���, �� .
• Case 1: P���
 0

 - If K�,�
 R�i,�
R� then �M:
 -∞ and v:
 x.

 - else ��:
 � and for all 6 define v�J��, 6�, 6�:
 K�,�.
• Case 2: P��� 2 0

- Let �� the last change in slope of ��,� of such that �M - S���
mz

/ �. Then

for any 6 � �, let H� be the right derivative of ��,� in �’ and define
v�J��, 6�, 6�:
 +�

∑ +������
 N�.

- If there is no such ��, let �� be the first instant such that P��M�
 0.
Then for any 6 � �, let H� be the right derivative of ��,� in �’ and define
v�J��, 6�, 6�:
 H�.

2. The handling function <� : ���, P., ��, v�� ~ �0, P0 such that

��,�0 �
 ��,�0 {� v��, 6�. and P0
 P. {� �∑ R��d

R���� 1 N� �

We claimed that this latter implementation of the event function is more efficient than the
former one. Why is that? The general implementation proposed to seek the next event by
computing for each call of the function next event the travel time for the current state of the
arc. Consequently it does not use at all the information gathered through the previous calls of
this function. Yet for a bottleneck model this requires the integration of a first order differential
equation of PWL functions and thus a full list traverse. On the contrary, the adaptation for the
bottleneck model exploits this information by keeping in memory the queue. The most
computational intensive operation is to perform the operation described by the first item of
case 2 in Definition 3. Although in the worst case this operation also requires a list traverse, it
tends to be a simple scan forward on the last pieces of P.

Numerical illustration

In this subsection, a small but instructive example is presented. We consider the network of
four arcs and two OD pairs presented in Figure 1. Only the arcs I. 1 ^0 (arc 1) and I0 1 .̂
(arc 2) are subject to bottleneck congestion and they both have a capacity of N
 2000 pcu/h.
All the arcs have a free flow travel time of $O
 1. Only two routes are considered, the first

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

13

one being I. 1 ^0 1 I0 1 .̂ (route 6.) and the second one I0 1 .̂ 1 I. 1 ^0 (route 60). The
simulation period is 	
 �5: 00,20: 00� and the instantaneous flow on 6. and 60 are respectively
a discretized gaussian shaped curve centered in 10 and a simple constant flow of 1000
pcu/h. The inputs are plotted in Figure 2.

Figure 1 - Network for the numerical illustration

Figure 2 - Inputs

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

14

Figure 3 - Numerical results

This network configuration is especially interesting and complex from an event based
perspective. Assume that the instantaneous flow on route 6. increases then the travel time on
�. is going to increase and eventually the proportion of flows exiting �. and following route 6.
will also. This in turn results in a rise in K�h,�8 and finally in a decrease in K�j,�d and in the

incoming flow on �.. The network thus acts as a sort of feedback loop, inducing a decrease
in the flow on a route when the flow on the other route grows.

The travel times resulting from the loading of the traffic are plotted in Figure 3. The feedback
effect exposed a few line above can be seen on the travel time on �.. It results in oscillations
around the maxima of in travel time. Also note the shape of the travel time on �a where two
distinct maxima appear.

Benchmark

The running time of the event based algorithm applied on a network of bottlenecks is clearly
proportional to the number of events treated. Yet this latter quantity is impossible to compute
a priori. In this subsection a small numerical experiment is conducted in order to get some
insights about the sensitivity of the number of events with respect to the volumes at origin.

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

15

The setting is the following. A randomly generated network of 80 nodes and 200 arcs is
considered. Then routes of 10 arcs are randomly generated, each of them assigned with a
Gaussian shaped flows discretized in 20 pieces. This experiment has been conducted
several times with a number of routes varying between 5 and 80.

Why is this numerical experiment relevant? One of the main applications of the DNLP is its
integration in dynamic traffic assignment algorithms. Yet in most numerical schemes for
dynamic traffic assignment, on progressively discover new routes to serve an origin
destination and assign part of the traffic on them. Thus the further the algorithm goes, the
more routes are loaded with traffic. Another alternative would have been to try networks of
different size. But in the DNLP, the size of the network, on the contrary to many other graph-
based algorithms has little influence. The dimensioning quantity is rather the number of
routes and the way they overlap themselves.

Figure 5 shows the evolution of the number of events with the number of routes. At first the
evolution is roughly linear. Around 50 routes the slopes quickly switch to a much higher
value. Around 70 routes it seems that evolution becomes linear again.

Figure 5 – Number of events variation with the number of assigned routes

A possible explanation for this behaviour is given by the way the events propagate
themselves over the network. When the number of routes assigned with traffic is low on a
network, those routes tends not to intersect. Consequently the number of event is roughly the
number of pieces of the volumes at origin times the average number of arcs on a route.
However as the number of routes increases, more routes intersect and quickly an event
occurring at given place of the network tends to propagate all over the network. This
phenomenon is depicted on Figure 6.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50 60 70 80 90

N
um

be
r

of
 e

ve
nt

s

Number of routes

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

16

Figure 6 – Event Propagation.
In this simple network, two routes are going through �O. If an event occurs on route 6’,

upstream arc �O, it will cause an event on arc �O and thus on all downstream arcs of route 6.

Note that the number of events is a good proxy for the running time of our algorithm, but also
of the actual “complexity” of the result of the dynamic loading. Indeed the number of event
treated is essentially the number of pieces of the resulting cumulated flows on the arcs. In
that perspective our results can be interpreted in two ways. On one hand, it is good news, as
the running time seems to be asymptotically linear with the size of the route flow vector in
input. But on the other hand, the practical number of events to deal with a reasonably small
example is quite high. For real size networks with an important number of an origin-
destination pairs, an efficient exact algorithm seems to be difficult. This is a strong argument
for approximate loading procedure.

CONCLUSION

In this paper a generic algorithm for the dynamic network loading problem has been
presented and an application to a network of bottleneck has been presented. It was also an
opportunity to gives a theoretical insight of the traffic flowing on a network in a dynamic
context. Among our findings, we have seen that the outputs of the loading problem quickly
grow in complexity due to the complex interaction of the route flows on the networks.

Although the example of application presented here were rather simple, this event based
algorithm is an interesting first step toward a much more generic framework for dynamic
network loading. The concept of events was here restricted to a change in the incoming flow
of an arc. But one could introduce a wide variety of events modelling various physical
phenomena. For instance queue spillback could be considered by adding an event type “arc
� is full” and updating the upstream arcs in consequence. In the same order of idea dynamic

Loading traffic on bottlenecks
WAGNER, Nicolas

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

17

traffic regulation schemes such as dynamic traffic regulation techniques could be modelled in
an event based perspective. This offers vast possibilities for future works.

BIBLIOGRAPHY

Daganzo, C. F. (1995). Properties of Link Travel Time Functions under Dynamic Loads,
Transportation Research 29B, 95-98.

Friesz, T. L., D. Bernstein, T. E. Smith, R. L. Tobin and B. W. Wie (1993). A Variational

Inequality Formulation of the Dynamic Network User Equilibrium Problem Operation
Research 41:179-191.

Kuwahara, M. and T. Akamatsu (1993). Dynamic Equilibrium Assignment with Queues for a

One-to-Many OD Pattern. Transportation and Traffic Theory, 12, 185-204.

Leurent, F. (2003). On network assignment and supply demand equilibrium: an analysis

framework and a simple dynamic model. Proceedings of the European Transport
Conference.

Mahmassani, H. S., Hu, T. and R. Jayakrishnan (1995). Dynamic traffic assignment and
simulation for advanced network informatics (DYNASMART), Urban traffic networks:
Dynamic flow modeling and control. Springer, Berlin/New York.

Meunier, F. and N. Wagner (2010). Equilibrium results for dynamic congestion games.

Accpeted for publication in Transportation Science.

Rubio-Ardanaz, J. M., J. H. Wu and M. Florian (2003). Two Improved Numerical Algorithms

for the Continuous Dynamic Network Loading Problem. Transportation Research,
37B, 171–190.

Tong, C. O., and S. C. Wong (2000). A predictive dynamic traffic assignment model in

congested capacity-constrained road networks, Transportation Research, 34B, 625-
644.

Wu, J. H., Y. Chen and M. Florian (1998). The Continuous Dynamic Network Loading

Problem: A Mathematical Formulation and Solution Method. Transportation Research
32B, 173–187.

Xu, Y. W., J. H. Wu, M. Florian, P. Marcotte and D. Zhu (1999). Advances in the Continuous

Dynamic Network Loading Problem. Transportation Science 33, 341-353.

