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ABSTRACT 

Distance-based methods have been recently improved to evaluate the geographic 
concentration of economic activities. For these methods, the measurement of 
distances between all pairs of establishments is crucial. The Euclidean metric is 
systematically retained in the economic literature even though the location of 
activities is clearly constrained by the network (roads) or natural advantages (like 
rivers). In the article, we discuss the relevance of the Euclidean distance as a proxy of 
the actual network-based distance at an urban scale. It is shown on the Lyon area 
(France) that the significant relative geographic concentration or dispersion of stores 
is systematically underestimated when the Euclidean metric is used. 
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1. INTRODUCTION 

The question on the best way to evaluate the geographic distribution of economic 

activities has known a renewed interest in the last decade. The recent economic literature has 

underlined that the frequently used Gini or Ellison and Glaeser (1997) indexes are less powerful 

than alternative tools called “distance-based methods” (Combes et al. 2008). The latter rest on the 

point pattern theory (Diggle, 1983). They were initially imported from other scientific fields and 

then improved to be tractable for evaluating the distribution of activities (Duranton and 

Overman, 2005; Marcon and Puech, forthcoming). Distance-based methods offer a complete and 

precise analysis of the spatial distribution of entities (industrial establishments, stores…). The 

geographic concentration is not estimated from any administrative or predefined zoning but from 

bilateral distances between precise location of entities. The distance measurement between pairs 

of entities is thus crucial for providing an exact and detailed location pattern of activities. 

However, as far as we know, the definition of distance has rarely been discussed and the 

Euclidean metric is systematically chosen in economic studies (Arbia and Espa, 1996; Jensen 

2006; Ó hUallacháin and Leslie, 2007; Arbia et al., 2008; Fratesi, 2008; Arbia et al., forthcoming). 

Nonetheless, it clearly appears that a good evaluation of the actual attraction or repulsion of 

stores constitutes an important stake to explain, in second time, the more accurately economic 

phenomena (like the real scope of agglomeration economies).1 

 

Our paper completes recent developments made on distance-based methods for the appraisal of 

the geographic concentration of retail activities. Our aim is to check the robustness of the 

Euclidean distance as a proxy for the real distance on urban network. Modeling the 

potential attraction or repulsion of stores calls for the more accurate estimation of distances 

existing between them. At a city level, “as the crow flies” gives the first and naïve impression that 

it can not be the best candidate. The main reason is that interactions between individuals are 

constrained by various elements. The first issue is that stores are located on the street network. If 

one goes from one shop to another, he has to move on the urban network. Thus, joining any two 

network-constrained stores is more naturally captured by a network distance than a Euclidean 

one. The second issue is that every part of the network is definitely not accessible. This limitation 

                                                 
1 Because technological externalities appear when people communicate, such externalities should theoretically be 
more important in the very close environment and their intensity should rapidly attenuate with distance. This result 
has empirically been verified by Jaffe et al. (1993) or Rosenthal and Strange (2001) with cluster-based methods and by 
Rosenthal and Strange (2003) using Euclidean distances. As far as we know, no study has used network-based 
distance to gauge the scope of agglomeration externalities. 
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refers for example to the existence of authorized access roads. A driver can not move freely: he 

has to avoid pedestrian streets or going up one-way streets. In what follows, an empirical analysis 

is provided to quantify how much geographic concentration results deviate according to the 

distance definition. Our aim is to test whether the use of the actual network significantly 

improves the evaluation of agglomeration or if “as the crow flies” is a good proxy of the network 

distance. Our work explores the agglomeration of non-eating retail stores in Lyon-Villeurbanne 

(France).2 The real road network was simulated for any motorized vehicle trip. This 

transportation mode was chosen for two reasons. Firstly, travels by car face the most important 

number of constraints on a network (in comparison with pedestrian travels for example). Thus if 

differences exist, they should be greater by retaining the car-network movements. Secondly, it has 

also been proved that the share of the car mode for shopping purpose is far from being 

insignificant on the Lyon-Villeurbanne area.3 

 

Our study consistently finds that the definition of distance matters in the evaluation of 

agglomeration of retail stores at the city-level. We go further by proposing consistent 

explanations to expound disparities in estimates. The remainder of the article is in four 

parts. It begins with the state of the art on distance-based methods. Then, we provide a 

presentation of the data and give an intuitive empirical example of the possible deviations 

depending on the distance definition. The next part contains the empirical approach and the 

explanation on how much distance definition influences the estimation of the agglomeration of 

stores. The last section concludes. 

 

2. STATE OF THE ART 

2.1. IN ECONOMICS 

The use of distance-based methods for evaluating the geographic concentration of economic 

activities can be explained in two steps. 

Firstly, several authors imported in economics measures largely employed in other scientific fields 

like ecology (see for example Barff, 1987; Arbia and Espa, 1996; Sweeney and Feser, 1998; 

Marcon and Puech, 2003). Those statistical methods are based on the point pattern analysis 
                                                 
2 The Lyon-Villeurbanne area corresponds to the CBD of the Lyon metropolitan area (see Figure 1, page 8). 
3 According to the Household Travel Survey 2006 (Enquête ménages déplacements), a quarter of “house-shopping” 
travels over Lyon-Villeurbanne is made by car (SYSTRAL, 2007). 
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which the most famous tool is undoubtedly the Ripley’s K function (1976, 1977). The geographic 

concentration is evaluated by counting the average number of neighbors of stores on a disk of a 

given radius r. The basic idea of this cumulative function is to test the observed spatial structure 

of a distribution against a random one (complete spatial randomness). If the actual distribution is 

more clustered at this radius than what it should be under the null hypothesis, the distribution is 

“spatially concentrated” (at this radius). On the opposite, if the distribution is more regular (at 

this radius r) than what we could expect under randomness, the distribution is defined 

“geographically dispersed”. Finally, to characterize the complete structure of the stores 

distribution, this operation is then repeated for all possible radii. 

Unfortunately, Ripley’s K function does not respect all criteria for being a good measure of spatial 

concentration of activities. According to Duranton and Overman (2005), any measure should be 

able to (i) compare the geographic concentration results across industries, (ii) control for 

industrial concentration, (iii) control for the overall aggregation patterns of industries, (iv) test the 

significance of the results and, (v) keep the empirical results unbiased across geographic scales. 

The K function does not fulfill the properties (ii) and (iii). The first one because Ripley’s 

K function is defined in homogenous space. This assumes the same density of neighbors all over 

the study area (hypothesis of a completely spatial random distribution of establishments: plants 

are distributed uniformly and independently). The hypothesis of homogeneity is not sustainable 

in the field of economics because human activities greatly aggregate in areas, towns etc.: complete 

spatial randomness is consequently not the best benchmark. Thus, property (ii) calls for a relative 

index to gauge the geographic concentration of industries. The property (iii) ensues from the (ii): 

Since the article of Ellison and Glaeser (1997), economic literature has steadily underlined all the 

importance for controlling industrial concentration (Combes and Overman, 2004). However, the 

K function does not integrate such quality. 

For all of these reasons, after having imported distance-based methods, in a second step several 

authors improved existing tools. They introduce not topographic but relative concentration4 

measures to get round the homogeneous space problem. Both issues are then solved and a large 

use in economics of these relative tools can now be considered. For example, Marcon and Puech 

(forthcoming) introduced the M function, as a generalization of the K function in non-

homogenous space. The idea is as follows. Let us denote by Nt the total number of stores on the 

                                                 
4 “Topographic concentration” is defined as in Brülhart and Traeger (2005): the spatial distribution of activities is 
evaluated according to physical space. The “relative concentration” is taken in the sense of Haaland et al. (1999) that 
is considering the distribution of another variable as a benchmark. 
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territory and by Ns the one of a given sector S. Around each plant i of the sector S, a disk of 

radius r is drawn. The M function compares the average local proportion of S-stores in the 

aggregate activity within a distance r, NS(Ai,r)/Nt(Ai,r), against the same proportion but defined 

on the entire territory NS/Nt. We can easily prove (Jensen and Michel, forthcoming) that the 

M function can be defined as: ∑−
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At this radius r, the S-sector is said geographically concentrated (respectively dispersed), if the 

average proportion of the S-stores compared to the whole industry is greater (respectively lesser) 

than the one on the entire territory. The construction of a confidence interval of the null 

hypothesis allows testing the significance of the results: we check whether around S-stores, the 

relative location of S-stores follows the same pattern as the one observed on the entire territory. 

Duranton and Overman (2005) have also recently proposed a distance-based method in non-

homogeneous space, called the K-density function. Their measure is not a cumulative function 

but a probability density function. Counting neighbors at a radius r (and not on a disk) is here 

privileged. This function, smoothed and normalized, have a strong potential to be largely 

employed in economics (Duranton and Overman, 2008; Ellison et al., forthcoming). To sum up, 

the M and K-density functions constitute two complementary measures to evaluate accurately the 

geographic concentration of economic activities (see Marcon and Puech (forthcoming) for 

theoretical examples). 

2.2. IN GEOGRAPHY 

Geographers (or people specialized in geographic issues) are logically at the leading edge of 

progress for capturing space. The first distance-based method for evaluating network constrained 

distributions was proposed in that field by Okabe and Yamada (2001). They called it the 

“network K-function”. The three main characteristics of this measure are as follows. Firstly, it 

constitutes an extension of the original Ripley’s K function. Thus the Okabe and Yamada’s 

measure is defined as a cumulative function. Secondly, the distance between any two entities is 

not evaluated thanks to the Euclidean distance but the shortest path on the network. Lastly, the 

construction of the null hypothesis is obtained by simulating entities independently distributed 

over the network according to a uniform probability. 

Yamada and Thill (2005) show recently that the network has a significant impact on the 

evaluation of the spatial structure of network-constrained distributions. To prove this, they 
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simulate random distributions of traffic accidents in three large regions in the State of New York. 

The network K-function confirms the random location of accidents on the network. However, 

Yamada and Thill empirically show that possibly Ripley’s K-function computed with Euclidean 

distance “mistakenly detects a clustered pattern even though the observed pattern is actually random with 

respect to underlying network” (p.155). This result invites to proceed with attention for evaluating 

the spatial structure of any network-constrained distributions. 

2.3. RECONCILE BOTH APPROACHES 

As far as we know, the street network has never been included in the field of economics to 

evaluate the geographic concentration of activities with distance-based methods. One explanation 

is that economists generally analyze the distribution of activities with distance-based methods at 

larger scale than the city-level. They then generally justify the use of Euclidean distance thanks to 

two arguments (Duranton and Overman, 2005). The first one is that the incidences of the 

curvature of the earth are not enough to create a bias at the scale of interest. The second one 

rests on the findings of Combes and Lafourcade (2005). In that paper, authors prove that there is 

a very high correlation (0.97) between Euclidean distances and generalized transport costs 

computed from real truck transport data on a simulated network containing 5,000 arcs on the 

French metropolitan territory. We can expect that the curvature of the earth’s problem is all the 

more insignificant at the city level. However, increasing the precision of the network has an 

unclear impact on the pertinence of the Euclidean distance proxy. On one hand, the more the 

number of arcs, higher the number of constraints for moving from one location to another. In 

that case, the real network distance for joining any two locations should be longer than Euclidean 

one. On the other hand, if the number of arcs is very high, the shortest path between two 

locations could be closer to a straight line. In the latter case, Euclidean distance should be a good 

proxy. In what follows simulated trips will be done on the real motorized car network at the city-

level including more than 12,000 road sections. The results shall bring a first answer to that 

dilemma. 

To conclude, we have shown that economists have recently improved the intrinsic properties of 

distance-based methods to gauge agglomeration more precisely. At the same time, geographers 

progress on the apprehension of the real distance. In the next section, we reconcile both 

approaches by retaining economists and geographers’ advances to test the robustness of the 

results of the geographic concentration of economic activities in non-homogeneous space. As we 
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previously underlined, estimates obtained on an unconstrained network (with Euclidean 

distances) will be confronted to a constrained one (by considering motorized vehicles distances). 

3. DATA  

Several databases are used to estimate the real car-accessibility of retail stores in Lyon-

Villeurbanne. In the following sub-sections, we explain the construction of the network in the 

Lyon metropolitan area and we present data on retail stores. 

3.1.  URBAN NETWORK 

Simulations are made by MOSART (© LET), a powerful decision making tool for private and 

public urban mobility authorities.5 The main objective of this project is measuring and viewing 

services levels offered by different transport networks in the whole Lyon metropolitan area. The 

road data is highly detailed: more than 12,000 road sections are included on Lyon-Villeurbanne. 

Every type of communication routes is taken into account (from alleyways to highways) and 

traffic flows are simulated considering network constraints (one/two-way streets, pedestrian 

streets…). Retail stores are localized at their exact position. They are then fixed to the road 

network by a connector. 10,167 connectors are activated on the studied area. In our analysis, we 

only simulate movements for motorized vehicles. Any travel by car can be simulated from any 

starting point in the Lyon metropolitan area. The shortest path between two retail stores is 

chosen and every movement is estimated by its length (in meters). 

3.2. RETAIL STORES 

The database comes from the Chamber of Commerce and Industry of Lyon. It registers the exact 

geographic position of all stores in Lyon-Villeurbanne for the year 2005. From this database, we 

retain individual information on the industrial classification and the precise location of stores 

(given by the Lambert coordinates of the French projection system). The focus is made on the 

spatial distribution of the non-eating retail trade industry. The database is composed of 3,389 

non-eating retail shops belonging to 19 sectors (corresponding to the French industrial NAF 

classification 52.3 and 52.4). The description of the sectors and several summary statistics on the 

intra-sectoral distribution of stores are given in Table 1. Figure 1 illustrates the Lyon-

                                                 
5 MOSART (MOdelling and Simulation of Accessibility to netwoRks and Territories) is a numerical platform of 
modelling based on a traffic allocation model (VISUM from PTV), a highly detailed network (NAVTEQ) and GIS 
analysis and databases. 
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Villeurbanne area where the non-eating retail stores are located. There is a high density of shops 

in the peninsula especially near the City Hall. The relief is particularly interesting in terms of 

network constraints because the Rhône and Saône rivers cross the area and two hills overhang 

the city of Lyon (namely the “Croix-Rousse” in the north of the City Hall and “Fourvière” in the 

west of the peninsula). 

Figure 1 : Study area: Lyon-Villeurbanne 
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Table 1 : Summary statistics on the 19 non-eating sectors in the Lyon-Villeurbanne area 

Intra-sectoral distance (meters) 
Median Mean NAF 

Code Sector Nb. stores Eucl. Car Eucl. Car 

52.3A Dispensing chemists 220 2,974 3,856 3,161 4,106 

52.3C Retail sale of medical and orthopaedic goods 71 2,986 3,911 3,106 3,990 

52.3E Retail sale of cosmetic and toilet articles 111 2,293 3,037 2,472 3,233 

52.4A Retail sale of textiles 100 1,685 2,417 2,053 2,756 

52.4C Retail sale of clothing 927 1,567 2,156 1,758 2,370 

52.4E Retail sale of footwear 169 1,598 2,205 1,836 2,440 

52.4F Retail sale of fine leather goods and of travel articles 38 1,687 2,250 1,701 2,304 

52.4H Retail sale of furniture 146 1,896 2,515 2,142 2,753 

52.4J Retail sale of household equipment and articles 199 1,971 2,741 2,324 3,123 

52.4L Retail sale of electrical household appliances and radio and television goods 173 2,513 3,347 2,776 3,596 

52.4N Retail sale of hardware 62 2,762 3,540 2,915 3,804 

52.4P Retail sale of do-it-yourself (DIY) 5 688 878 804 1,008 

52.4R Retail sale of books, newspapers and stationery 229 2,429 3,237 2,659 3,484 

52.4T Retail sale of optics and photography 143 2405 3,152 2,572 3,369 

52.4U Retail sale of floor-covering and wall-covering 22 1,758 2,388 2,206 2,804 

52.4V Retail sale of clocks and jewellery 122 1,747 2,424 2,012 2,670 

52.4W Retail sale of sport and leisure articles 108 2,180 2,939 2,377 3,160 

52.4X Retail sale of flowers 174 2,850 3,724 3,025 3,945 

52.4Z Sundry retail sale in specialized stores 370 2,086 2,805 2,355 3,085 
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4. HOW MUCH DISTANCE-NETWORK REALLY MATTERS? 

4.1. AN EMPIRICAL EXAMPLE FOR A MOTORIZED VEHICULE TRIP 

Let us start with a simple example to shed the light on the relevance of the distance definition. 

Figure 2 zooms on the City Hall area in Lyon. The urban network can easily be recognized: 

dotted lines show pedestrian streets or footbridges and plain black lines indicate roads or bridges 

authorized for cars and urban transportation. As we pointed out (section 3.1), car-travel 

simulations take into account the direction of streets even if it is not shown in Figure 2. Non-

eating retail shops are represented by green circles (whatever the sector) and they are located at 

their exact position on the network. 

Figure 2: Example of a 666m car-accessibility from a given shop 

 

Case 1- We firstly simulate all travels of 666 meters that can be reached by car from a starting 

point located in the west of the peninsula (at the bottom of Fourvière hill). These routes are 

indicated in red in Figure 2. One can easily observe that all feasible trips on the car-network do 

not draw a disc centered on the starting point. This result somewhat intuitive is not without 

consequences. On one hand, the network constraints consistently limit the number of paths 

accessible by car. For example, the south area of the point of departure is unapproachable by car 
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(“Vieux Lyon” pedestrian area). As a result, even if shops are closely located to the starting point, 

they could be inaccessible by taking into account network constraints. On the other hand, natural 

advantages seem potentially important to the stores accessibility. From the starting point for 

instance the only possibility to have an access to the peninsula is to go over a bridge authorized 

for motorized cars. 

Case 2- Let us now consider all accessible stores in a radius equal to 666 meters from the starting 

point. This case is illustrated in Figure 2 by all shops located inside the dotted black disk. The 

comparison of stores accessibility clearly emphasized important differences considering the car-

travel distance (case 1) or the Euclidean distance (case 2). Retaining the Euclidean distance leads 

to an obvious overestimation of the actual number of stores that can be reached from the starting 

point. This leads to a first observation: the number of shops (absolute concentration) will be 

higher in Case 2 because the Euclidean distance is unconstrained. In other words, the 

Euclidean metric goes “too far” than the real accessibility permits. However, as we 

underlined in section 2.1, one criterion for evaluating the geographic industrial concentration 

states that a relative concentration measure is more pertinent. It is very difficult to assess if that 

overestimation still remains to the naked eye on a simple map of activities because firstly there 

are numerous shops belonging to various sectors located in the city center and secondly network 

constraints are the same whatever the sector. The analysis given in the following section provides 

the answer. 

4.2. EMPIRICAL ROBUTESS OF DISTANCE-BASED MEASURES 

We compute the M function (as defined in the section 2.1.) to evaluate the relative concentration 

of the 19 non-eating activities in Lyon-Villeurbanne area. In a first step, Euclidean bilateral 

distances between each pair of shops are retained. Then, we consider the shortest path by car 

between every pair of establishments respecting car-network constraints. The M function has 

been computed every 100 meters up to the median distance between any two shops on the 

studied area (2,766 meters) as recommended by Duranton and Overman (2005).6 The 

significance of the results is given by the construction of a confidence interval of the null 

hypothesis. As we previously underlined, the global tendency of the non-eating retail stores 

location constitutes the benchmark distribution against which the spatial structure of the sub-

                                                 
6 Results of the M functions are shown from a 200m radius and not 100m because the average length of the 
connectors that join up stores to the urban network is 47m. This may induce an imprecision at the first radius 
(100m). Estimates are thus given from the second step of computation (200m). 
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sectors are compared to. To investigate the significance of the results of the M function for this 

sector, the Monte-Carlo method is used. We carry out as follows. Consider a particular non eating 

retail activity. A series of random and independent distributions of stores (included in our 

database) is generated on the actual locations of stores. Then we choose a threshold (α) and we 

define a (1-α) confidence interval of the M function associated for each distance. In the paper, 

the confidence interval is computed by 1,000 simulations at a 95% confidence level. We only 

investigate location pattern of sectors that present a significant departure from randomness 

(concentration or dispersion). The comparison of both Euclidean and car-M plots per sector 

provides a series of interesting results. 

OBSERVATION 1: EUCLIDEAN DISTANCE UNDERESTIMATES THE ACTUAL RELATIVE INDUSTRIAL 

CONCENTRATION OR DISPERSION 

Eight sectors show a significant geographic concentration for both definitions of distances: the 

retail sales of cosmetic and toilet articles (52.3E), clothing (52.4C), footwear (52.4E), furniture 

(52.4H), electrical household appliances and radio and television goods (52.4L), hardware 

(52.4N), flowers (52.4X) and specialized stores (52.4Z). One sector depicts a mix pattern of 

localization: dispensing chemists (52.3A) are significantly dispersed at short distances and 

concentrated at larger distances. M plots for several sectors are given in the following figures.7 

Figure 3 : M plots for furniture (52.4H) Figure 4 : M plots for clothing (52.4C) 
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7 In order to save space, M plots for the other sectors are given in the appendix. 
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Figure 5 : M plots for cosmetic and toilet articles (52.3E) Figure 6 : M plots for footwear (52.4E) 
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What can we learn from these examples? In Figure 2, we underlined that in absolute terms, the 

Euclidean distance overestimates the real number of accessible stores on the urban network. This 

result is in line with Yamada and Thill (2004) where they highlight that Ripley’s K function 

increases the over detection of clustering patterns. However, in relative terms for all sectors 

that present a significant pattern of location, the Euclidean-M plot systematically 

indicates lower level of agglomeration. Graphically Euclidean M-plots are below car-M plots 

whatever the scale of observation. In other words, M plots reveal that the Euclidean metric 

systematically underestimates the real level of the relative concentration or dispersion 

phenomenon. The explanation is straightforward. As we previously underlined, the Euclidean 

metric could be understood as an “unconstrained distance” (straight line) unlike the network path 

that respects at the same time the network structure and the feasible movements over it. For a 

given travel, the Euclidean distance is thus superior or equal to the one over the network. As a 

result, switching from the Euclidean distance to the network one implies that the Euclidean 

distance has to be multiplied by a factor superior or equal to one. In Figure 7, this is illustrated 

for two simple theoretical M plots: a decreasing one and an increasing one.  

Figure 7: Two theoretical M plots 
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Switching from a given Euclidean distance (reucl) to its corresponding network distance (rnetw) 

implies a translation of the plots on the right. In case of a positive slope of the M-plot, the value 

of M will be lower if the network distance is used. On the opposite, the value of M will be greater 

if the network distance is employed in case of a negative trend of the M-plot. Excepting for the 

Dispensing chemists sector (52.3A) shown in Figure 21, significant M-plots present only one 

main trend. A negative one is observed for agglomeration whereas a positive slope is shown for 

dispersion.8 In both cases and, as expected, this leads to an underestimation of the actual 

concentration or dispersion if the Euclidean distance is used. Moreover, the fact that the 

Euclidean M-results underestimate the actual level of agglomeration or dispersion of stores 

reveals that the real stores-accessibility is better captured by distance-based methods that take 

into account the network. This result is important for economic issues for instance if one want to 

gauge the determinants of agglomeration of stores. Our results support that urban space has not 

to be considered as homogeneous (as the Euclidean distance does): the urban network tends to 

“distort” the territory and in consequence may have an influence on the geographic 

concentration appraisal. 

Finally, for the non-retail stores agglomeration on Lyon-Villeurbanne, M estimates do not 

generally greatly differ from one or the other definition of distance. This encourages us to 

calculate approximately differences in the results according to the distances used. 

OBSERVATION 2: DIFFERENCES IN ESTIMATES ARE ROUGHLY EXPLAINED BY A FACTOR EQUAL 

TO 2 . 

Is it possible to find a unique correction factor to switch from the Euclidean to the network 

distance? The answer is far from being easy.9 Several features may create a gap in the estimates. 

First of all, the configuration of the network has a decisive impact on the results. To make things 

clearer, consider two stores. If they are positioned at two opposite angles of a square-block or a 

rectangular-block, the factor correction will not be the same. Additionally, in the real life, things 

may be worse because the actual network could be partly composed of a mix of square, 

rectangular, circum-radial and other grid-structures! The second reason that could explain a gap 

between the Euclidean and network distances is the existence of constrained movements on the 
                                                 
8 Firstly because M is a cumulative function so positive/negative local variations may exist but they never reverse the 
main decreasing or increasing trend of the curve. Secondly, the more the distance (r) raises the nearer M curve from 
the benchmark value (1). 
9 There is an important literature on the best way to estimate distances on the network with mathematical functions 
(see for example Perreur and Thisse, 1974; Love and Morris, 1979; 1988; Love and Walker, 1994; Brimberg et al., 
1995, 2007). 
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network (one way street for example). Let us consider two stores on the network and the shortest 

path to link them. Due to movements constraints for joining both stores, imagine that a detour is 

compulsory. For example, the trip begins on the opposite direction of the target (say the other 

store) in order to take an authorized street. This introduces a gap in the inter-stores distance 

measurement using the straight line (Euclidean distance) or the network-based travel. As a 

consequence, the correction factor is difficult to estimate. 

After proceeding by trial and error, our estimations give some support that car-travel estimations 

are well-explained by increasing the Euclidean distance by a correction of 2 . This “first-order 

factor” is somewhat a good correction on the network-configuration of the Lyon-Villeurbanne. It 

rests on the regularity of the urban network given by the Manhattan metric (all called rectilinear 

metric). The intuitive explanation is as follows. Consider two stores located on a network and the 

shortest path to join them. If the grid of the network is based on square-blocks, get though 

rectilinear distance to the diagonal distance implies a inflating correction factor of 2 . For the 

nine retail activities that present a significant departure from randomness, both Euclidean and 

car-M plots and the one obtained by inflating the Euclidean distance by 2  are represented 

below. 

Figure 8 : M plots for dispensing chemists (52.3A) Figure 9 : M plots for cosmetic and toilet articles (52.3E) 
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Figure 10 : M plots for clothing (52.4C) Figure 11 : M plots for footwear (52.4E) 
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Figure 12 : M plots for furniture (52.4H) Figure 13 : M plots for electrical household appliances 
and radio and television goods (52.4L) 
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Figure 14 : M plots for hardware (52.4N) Figure 15 : M plots for flowers (52.4X) 
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Figure 16 : M plots for specialized stores (52.4Z) 
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As we can observe, for a great number of activities, the M-car plot and the one obtained with the 

inflating Euclidean distance meet more or less. Cases of dispensing chemists (52.3A), clothing 

(52.4C), cosmetic and toilet articles (52.3E), furniture (52.4H) or hardware (52.4N) are 

particularly striking. It is noteworthy that since there is no difference in the estimates of M-car of 

M-Euclidean for specialized stores (52.4Z), this operation was unsuitable. In that case, the 

proposed correction (if it is done) introduced an overestimation of the results. 

 

An insight to the deviations of two other specific cases is not without interest. The first one is 

given by the M plots for footwear (52.4E, see Figure 11). The 2  correction factor undoubtedly 

improves the Euclidean geographic concentration results. However on the interval 600m-1700m, 

the correction is not perfect. This sector has indeed a very specific location pattern because their 

retail stores are highly localized on the peninsula (see Figure 17). One can expect that rivers 

constraints may have a severe impact on estimates. To test this, our strategy is not to change the 

actual location of stores but the car urban network. On this modified network, footbridges can 

be taken by cars, bridges can be crossed in both ways and one more bridge was added in the 

South of the urban center to increase the accessibility to the peninsula in that area. The new M-

car is called “M all bridges” in Figure 18. The bridges effect on the agglomeration evaluation is 

clearly visible and, explains to a certain extent the observed gap between M plots on the 600m-

1700m interval. This sector really constitutes an exception because this modification of the 

network does not generally have a significant incidence on the estimates.



 - 18 - 

Figure 17 : Location of footwear retail stores in the Lyon 
Villeurbanne area. Figure 18 : M plots for footwear (52.4E) 
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The second case explored in details is the DIY retail stores (52.4P). This sector has the 

particularity to present non-significant results of concentration for almost all ranges of distances 

excepting for the car M-plot at very low distances (Figure 19). At a radius of 200m, a huge 

deviation in the estimates can be observed: the Euclidean M plot reaches 6 but is non-significant 

and the car-M plot is highly significant and reaches an approximate value of 20. 
Figure 19 : M plots for DIY stores (52.4P) 
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This gap can be easily explained by a detailed analysis of the data; the number of DIY stores (5) 

allows such a work. We focus on one particular DIY store (green star in Figure 20) located on the 

study area. Within a 200m-accessibility by car or “as the crow flies”, the number of accessible 

DIY stores is the same (green stores). However, the accessibility to the non-DIY stores greatly 

differs (comparison of blue and yellow stores). In relative terms, the level of concentration will 

consequently be markedly higher for the car travel in comparison to the Euclidean one. The 

M function, defined as the sectoral averaged value of individual relative concentration, perfectly 
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captures that phenomenon. As we can show in Figure 19, the Euclidean-M plot is below the car-

M plot at this distance. In Figure 20, we additionally represent all feasible car-travels within a 

283m-distance )2m200( ×≈ . All things being equal, the value of the car-M plot should decrease 

since (i) the number of non-DIY stores increases and (ii) the number of DIY-shops is the same. 

This is confirmed by our findings (Figure 19). 
Figure 20 : Zoom on the location on given DIY store accessibility 

 
 

To sum up, the analysis provided on our on data shows that a 2  correction factor generally 

improves the accuracy in estimating the actual travel car distances. However, several important 

warnings were underlined: 

 Firstly, the unique proposed correction factor (for all sectors and distances) has to be 

considered in better cases as a “rough correction factor”. In the Lyon-Villeurbanne area, the 

urban streets configuration is not a completely square-based network (existence of ring roads 

for example). 

 Secondly, as the deviation from Euclidean metric to car-travel metric can not be 

systematically distinguished, an empirical investigation of the agglomeration degree seems 

compulsory to be able to distinguish sectors for which differences in estimates remain. 

 Thirdly, a particular attention has to be drawn on any potential highly specific location 

pattern of activities. We illustrated that by two examples: the DIY shops and the retail stores 

of footwear. 
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5. CONCLUSION 

In this paper, we evaluate the importance of the notion of the distance used in the analysis of the 

geographic concentration of activities. We provide evidence that the definition matters at an 

urban scale if one wants to evaluate the agglomeration phenomenon thanks to distance-based 

methods. Nonetheless, a raw correction factor was proposed to switch from the Euclidian metric 

to the actual travel-car metric in the Lyon-Villeurbanne area. Our results certainly pave the way 

for further investigations. On one hand, our findings could be confronted to other studies that 

replicate our work in other cities (possibly with different urban networks). On the other hand, 

there are a possible number of extensions of our approach, for example, by taking into account 

the inter-stores travel time-distance. 
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APPENDIX 

Note: M plots of the Retail sale of cosmetic and toilet articles (52.3E), clothing (52.4C), footwear 

(52.4E), furniture (52.4H) and the DIY stores are given in the text. They are not reproduced in the 

Appendix. 
Figure 21 : M plots Dispensing chemists (52.3A) Figure 22 : M plots Retail sale of medical and orthopaedic 

goods (52.3C) 
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Figure 23 : M plots for Retail sale of textiles (52.4A) Figure 24 : M plots for Retail sale of fine leather goods 
and of travel articles (52.4F) 
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Figure 25 : M plots for Retail sale of household 
equipment and articles (52.4J) 

Figure 26 : M plots for Retail sale of electrical household 
appliances and radio and television goods (52.4L) 
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Figure 27 : M plots for Retail sale of hardware (52.4N) Figure 28 : M plots for Retail sale of books, newspapers 
and stationery (52.4R ) 
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Figure 29 : M plots for Retail sale of books, newspapers and 
stationery (52.4R ) 

Figure 30 : M plots for Retail sale of floor-covering and 
wall-covering (52.4U) 
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Figure 31 : M plots for Retail sale of clocks and jewellery 
(52.4V) 

Figure 32 : M plots for Retail sale of sport and leisure 
articles (52.4W) 

0,6

0,8

1

1,2

1,4

1,6

0 500 1000 1500 2000 2500
Distance (meter)

M

M Car
M Euclidean
CI Eucl. 5%
CI Car 5%

 

0,5

1

1,5

2

0 500 1000 1500 2000 2500
Distance (meter)

M

M Car
M Euclidean
CI Eucl. 5%
CI Car 5%



 - 26 - 

 
Figure 33 : M plots for Retail sale of flowers (52.4X) Figure 34 : M plots for Sundry retail sale in specialized 

stores(52.4Z) 
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