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ABSTRACT 

The spatial and temporal distribution of built-space supply plays an important role in shaping 

urban form and thus the general travel pattern in an urban area. Within an integrated 

framework, we are interested in modelling the decisions of a builder in terms of when, where, 

what type, and how much built-space to build. We present a discrete-continuous model 

formulation for the built-space supply decisions that are based on expected profit maximization. 

The framework is applied to estimate a model for supply of new office space in the Greater 

Toronto Area (GTA) for the duration of 1986 to 2006. To our knowledge, this work is the first 

that models the where, when, how much, and what type of office space to supply in a single 

framework at a fairly disaggregate spatial zoning system. The results indicates a risk taker 

behaviour on the builders‟ part, while market conditions and supply of resources (labour, 

construction cost etc.) are also found to be important factors in decision making. 

Keywords: Choice Bundle, Discrete-Continuous model, Profit Maximization, Office Space 

Supply 

mailto:bilal.farooq@utoronto.ca
mailto:miller@ecf.utoronto.ca
mailto:murtaza.haider@ryerson.ca


Modelling the Evolution of Office Space Supply 
Farooq, Bilal; Miller, Eric J.; Haider, Murtaza 

12
th
 WCTR, July 11–15, 2010 – Lisbon, Portugal 

2 
 

1. INTRODUCTION 

Understanding the factors that affect office location decisions plays an extremely important role 

in our greater understanding of travel behaviour in urban areas.  Since office location strongly 

influences the spatial distribution of morning and afternoon peak-period travel, where firms 

choose to locate their offices greatly influences short-term individual-level decisions such as 

mode of transportation, and long-term household-level decisions such as residential location. 

Conditions in the office-space market affect firms‟ location and relocation decisions, and hence 

influence the general travel patterns in an urban area. Moreover, modelling and understanding 

the office space market in general and office space supply in particular has high economic 

benefits. The large capital requirements and long development periods make office investment 

riskier than other types of built space (Tse and Webb, 2003). Using office space models for 

forecasting and understanding of the working of building industry could decrease these 

investment risks. 

Many aggregate (country, municipality or CBD-suburb level) office-space supply models can be 

found in the real estate and integrated land-use and transportation modelling literature. There 

are very few examples, however, of serious modelling efforts at the more disaggregate 

submarket level.  This is in spite of the fact that there is strong evidence to suggest that sub-

markets within a metropolitan area are temporally asynchronous from each other in terms of 

growth and are characterised by a high level of agglomeration by industry type. The availability 

of certain types of office floor-space has an effect on firm location and relocation decisions. 

Literature on modelling the quality of the new office-space supply is also relatively scarce.  

Another important dimension in the modelling of office space market is that the location, quality, 

and quantity are interconnected decisions. At anytime, a location may have excess stock of one 

type, but is under stocked in other type. Similarly, some locations are suitable for only a few 

specific types of built-space while not suited for others. For instance, the downtown Toronto has 

a high concentration of Type A and B office space, but rarely Type C space1. The quantity that 

could be built at certain location is also influenced by the neighbourhood characteristics (zoning 

by-laws, technological constraints). In the real estate literature, mostly the quantity is modelled 

at a very high level of aggregation. Operation integrated urban systems modelling frameworks, 

models these decisions at a lower level of aggregation (census tracts, small grids), but do not 

treat them as related decisions within a single framework. Instead the individual dimensions are 

modelled separately, and then some kind of simulation or rule based allocation is used to 

simulate the built-space evolution. In ILUTE for instance, Miller et al. (2010) used a separate 

model for the location choice probabilities for each type of dwelling and another model for the 

quantities to produce in the study area. These two models are then used in a Monte Carlo 

simulation to allocate the new stock to individual locations.  

                                                           
1
 The BOMA classification of office space type is explained in the Data Description section 
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The building industry generally, and in the case of the GTA in particular, is an oligopoly with 

very few firms and these firms move in and out of the market very frequently with the boom and 

bust cycles of the built-space market (Buzzelli and Harris, 2003). It is important to bring in the 

builders‟ behaviour within the decision modelling framework. Their attitude towards risk taking 

and the expectation of profit might vary among individual builders. A modelling framework that 

can incorporate these issues is currently missing in the literature. 

Farooq et al. (2010) reported a high spatial variation in the rent of office-space. It was also 

reported that there were not only inter-cluster variation, but also intra-cluster variations. Under 

the profit maximizing assumption for the builder of space, this variation in rent will influence the 

decision to select the best location for the new office space.  

In this paper, we propose a novel approach that explicitly ties the location, quality, and quantity 

decisions for new built-space supply together into a single dynamic framework based on 

expected profit maximization. As an application, we then estimate a model for new office space 

development at a fairly disaggregate spatial resolution. This paper treats the problem of building 

new built space as a situation in which a builder as the decision maker is faced with the decision 

of selection of a choice bundle and the associated quantities, while optimizing his expected 

profits. By doing so, we were able to incorporate not only the relation between various decision 

dimensions, but also captured the behaviour of the decision maker (builder) and influence of 

changing sub-market conditions and regional economy. 

There are various large scale demand models available in the choice modelling literature that 

model the choice of a discrete bundle of goods (e.g., types of activities in which to engage) and 

an associated continuous quantity (e.g., how much time to allocate to each activity) (Bhat, 2005, 

2008; Habib et al., 2008; Habib and Miller, 2009, Kim et al. 2002). These models predominantly 

use random utility modelling framework that assumes that the consumer is a utility maximizer. In 

terms of mathematical model formulation, the assumption of profit maximization by the producer 

(specifically builders in our case) is analogous to the utility maximization assumption in the large 

scale demand models. Moreover, profit from manufacturing a product is a more quantifiable 

concept than utility. Thus we can pose the problem of expected profit maximization in the same 

way as RUM does for the utility maximization of consumers faced with choice bundle selection 

and the associated quantities. This lets us use the same construct of optimization conditions 

(Kuhn-Tucker conditions) that is frequently used in the large scale demand models. 

The rest of the paper is organized as follows: we first present a brief review of the state of 

research in modelling built space evolution, in general, and office space supply in particular, that 

is available in the real estate and integrated urban systems modelling literature. We then 

introduce the model specification and estimation procedure. This is followed by data description 

and presentation of estimated model for the office space supply in the Greater Toronto Area. In 

the last section, we discuss the conclusions and future research direction. 
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2. LITERATURE REVIEW 

In the real estate literature on office-space markets, we see that most of the focus is on the 

analysis of valuation, absorption rates, and vacancy rates of the office space at the country or 

metropolitan area level. Another dimension that is frequently investigated in fair detail is the 

construction cycles involved in the office market. The studies that have addressed the supply 

side have mostly used a long-run equilibrium model in which supply is the result of a stock 

adjustment process to the time-lagged office sector employment growth and difference in the 

effective rent level from the natural level. There is, however, rarely any work available on the 

location choice decisions for new space at submarket or lower aggregation levels within a 

metropolitan area. In the integrated urban systems modelling literature, the decisions are 

modelled at higher aggregation, but the models there are lacking in terms of completeness and 

sound economic foundations. 

Rosen (1984) was the first to introduce a statistical modelling framework for the office space 

market. It was reported that the existing methodology to model the office space market was only 

rate-based and deemed it „inadequate‟ for investment and development decisions. The model 

forecasted vacancy rate, rent, and quantity of new floor space using separate linear regression 

equations. The model was estimated for San Francisco based on data from 1961 to 1983. 

Supply was assumed to be a function of vacancy rate, rent, interest rates, construction costs, 

and tax laws affecting commercial real estate. The model lacked any spatial representation and 

there was no differentiation in the quality of the office space. The model also lacked dynamics in 

that there was no investigation of lagged effects. 

Howarth and Malizia (1998) proposed strategies to improve our understanding of the office 

space market. It was recommended that more rigorous economic methods should be employed; 

the spatial variation should be incorporated in the model; and the long-term forecasting should 

incorporate the lag effects to capture the dynamics and the business and building cycles. It was 

also recommended to use changes in credit availability, trends in employment types, and that 

the regulatory environment should be taken into consideration. Product differentiation in terms 

of existing office space should be considered in decisions of differentiated new office space. 

The differences in the submarket dynamics should be incorporated in the location choice 

decision of new space. Risk and uncertainty faced by the builders should also be taken into 

account. This study provides a significant contribution in terms of exploration of the important 

explanatory measures of the office market dynamics. It didn‟t, however, indicate the probable 

statistical and econometric modelling frameworks that could be used to model the office space 

market. 

The Real Estate Econometric Forecast Model (REEFM), proposed by Viezer (1999) pooled the 

office space market data for fifty-one metropolitan areas in United States over the years 1985–

1996. The REEFM framework consisted of six stochastic equations for forecasting occupancy, 

real rents, capitalization rates, market value per square foot, net change in stock, and real 

construction costs.  Individual models were estimated using linear regression. The dynamics 
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was captured using lagged variables. It was reported that inflation rates and interest rates were 

insignificant in explaining the variation. Due to the highly aggregate nature of the REEFM model 

and very few explanatory variables, it was limited in use for behavioural and spatially detailed 

analysis of the office market. 

A comprehensive Walrassian Equilibrium based dynamic adjustment model of office market can 

be found in Hendershott et al. (1999). The relationship between supply and demand was used 

to link new construction, absorption, vacancies, and rent to employment growth and interest 

rates. Using structural equations, the model was estimated for the City of London for the twenty 

year duration of 1977 to 1996. As reported in previous studies, the difference between actual 

and natural vacancy rates affected the rents. The construction responded to lagged changes in 

rent. Absorption rate was negatively related to rent while positively related to growth of financial 

services employment growth. While the proposed model was economically consistent and a 

complete model of office space market, it lacked submarket dynamics and spatial variation in 

the supply and rent levels. 

Poterba's two-equation asset-market approach to modelling the housing market was adopted by 

Nanthakumaran et al. (2000) to model the office space market of the United Kingdom. This 

long-run equilibrium model treated supply as the “automatic stabiliser” to the changing rent 

level, resulting from changing demand. The parameter estimated for the capital value variable in 

the flow-supply equation was interpreted as price elasticity of supply. Other studies that used 

some variation of two-equations long-run equilibrium models for office space market include: 

Lentz and Tse (1977), McDonald (2000), Tse and Webb (2003), and Ho (2005). 

Fürst (2006) used a three-stage simultaneous equation model to analyse the office space 

market of Manhattan, New York. This study modelled the absorption rate, rent, and new supply 

of office space. Fuerst also investigated the existence of submarkets and their working as 

asynchronous autonomous economic units. This work is unique in the sense that it is the only 

study found in the real estate literature where the office market is analysed at a more 

disaggregate level than the generally-used metropolitan area level. The study divided 

Manhattan into 15 submarkets. 

In UrbanSim, developed parcels or gridcells are used as the basic unit of built space (Waddell et 

al., 2003, 2008). The built space development is modelled as a discrete choice decision in 

which the land owner of a site (parcel/gridcell) decides on changing the state of site. This 

decision is modelled as a multinomial logit model. Land owners are faced with twenty four 

choices that are a combination of built space type (residential, mixed use, commercial, 

industrial, government, vacant, developable, and undevelopable) and associated range of 

development intensity, in term of number of units or floor space (Waddell and Ulfarsson, 2003, 

2004). In the simulation, these probabilities are used in combination with random draws to 

update the yearly built space stock. The simplicity of this approach makes it easier to 

operationalize in the urban simulation context, but at the same time, makes it very limited in 

terms of its ability to capture the underlying behaviour and structure of built space evolution. In 

most of the cases, the development choices are rarely independent of one another. Haider and 
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Miller (2004) reported the phenomena of spatial inertia in which the existence of one type 

attracted the intensification of the same type of development at a location. The associated 

quantity for each type of development is also overly simplified by limited categorization in term 

of choices. The quantity of development is a continuous dimension which is influenced by the 

market conditions, built capacity and various other factors. Moreover, the assumption of 

homogenous decision maker is not behaviourally consistent. The landowner in downtown will 

have a different perspective of choices then a landowner in the suburbs. 

MUSSA (Martínez, 1996), like UrbanSim, assumes a homogenous builder, but its supply 

subsystem has a better economic foundation. The builder is faced with the decision of selecting 

the combination of built-space type and location to maximize his profit (Martínez and Hurtubia, 

2006). The probability of selection for each type and location combination is modelled using a 

multinomial logit model. MUSSA defines a linear profit function based on expected revenue and 

production cost function (Martínez and Henríquez, 2007). Using a strong equilibrium 

assumption, the share of each type of built-space is determined from the total difference in 

demand and available stock and the probabilities of selection. This model is only implemented 

for residential built-space. By imposing strong equilibrium and IIA assumptions, the solution for 

market clearing in the simulation becomes more tractable, but is not very representative of the 

actual built space markets. 

PECAS simulates the evolution of spatial economics using an aggregate zoning system under a 

strong equilibrium structure (Hunt and Abraham, 2003). The land use development for each 

year is determined in a multidimensional input-output table. These totals are then disaggregated 

using a set of logit models for each type of built space. Like MUSSA, PECAS also first 

determines the aggregate change in the built-space from a strong equilibrium assumption, but 

unlike MUSSA, here the representation of different types of built-space is more complete and 

there is some representation (at aggregate level) of the interplay between the share of each 

type of built-space. 

The current operational version of ILUTE (Miller et al., 2010), like the above mentioned urban 

simulations, first determines the total built-space and then allocates it to individual locations. But 

it doesn‟t impose any equilibrium assumption on the market to determine the aggregate totals. 

Instead, the aggregate supply for each type of built-space is determined using a dynamic 

econometric model that represents the builders‟ behaviour in different market conditions and the 

natural built cycles of the building industry (Farooq et al., 2008). Separate logit models for each 

type of built-space are estimated (Haider and Miller, 2004) that determine the probability of 

selection of a location by a type of built-space. For each simulation year, the totals are 

computed and probabilities are updated. A Monte Carlo simulation is then used to assign 

location to the individual unit of built-space (Farooq et al., 2008). Currently, only the new 

housing supply model is operational. ILUTE‟s land use evolution is economically more 

consistent as it incorporates various behavioural and market dimensions, including: risk taking 

attitude of the builders, spatial inertia, and lagged market conditions driving the new supply. 
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Here we only have discussed the more recent, operational, and widely used urban systems 

model. A more detailed review of urban space evolution within various integrated urban systems 

modelling frameworks is discussed in Wegner (1995), Timmermans (2003), Hunt (2005), and 

Miller (2006). 

In general it could be concluded that there a lack of a single large-scale built-space supply 

modelling framework that is spatially disaggregate, econometrically consistent, captures 

decision makers‟ behaviour and the associated heterogeneity, and is able to capture the 

interplay between various dimensions of decision making (where, when, how much, what type). 

Moreover, there is also a need of modelling framework that moves away from the conventional 

equilibrium based aggregate approach and towards a dynamic disequilibrium microsimulation 

approach which is more representative of the actual built space markets.  

3. MODEL STRUCTURE 

The decision makers here are a set of building construction firms that are active in the urban 

area at certain time “t”. They are faced with the decision of choosing the quantity of different 

types of built-space to be built, and the location where to build them. It is assumed that builders 

take these decisions so as to maximize their expected profit. Profit is determined by the 

difference of expected revenue and cost. 

3.1. Theoretical Framework 

The expected profit (Π) of a building construction firm, from N differentiated products that it can 

decide to build at certain decision point “t” could be represented by: 

 Π =  
𝛾𝑖

𝛼𝑖
  𝑓𝑟 𝑋𝑖

𝑟 − 𝑓𝑐(𝑋𝑖
𝑐) 𝜗   

𝑞𝑖

𝛾𝑖
+ 1 

𝛼𝑖
− 1  𝑁

𝑖=1 + 𝑓𝑧(𝑧)    (1) 

Where: 

𝑓𝑟 𝑋𝑖
𝑟  represents the expected unit revenue from selling product i 

𝑋𝑖
𝑟 is a vector of variables related to product attributes, location features, and built-space 

market conditions that influence the revenue 

𝑓𝑐(𝑋𝑖
𝑐) represents the expected unit cost in building product i 

𝑋𝑖
𝑐  is a vector of variables related to product attributes, location, state of regional 

economy, and conditions in various associated markets (labour, material etc.) that 

influence the cost 

 𝑞𝑖  is the quantity of product i that is decided to be built  

The formulation here treats the share of profit from individual type of floor-space i in the same 

manner as Bhat (2005) and Kim et al. (2002) treated the share of individual choices in their 



Modelling the Evolution of Office Space Supply 
Farooq, Bilal; Miller, Eric J.; Haider, Murtaza 

12
th
 WCTR, July 11–15, 2010 – Lisbon, Portugal 

8 
 

utility function for large scale demand systems. The translation parameter, 𝛾𝑖  makes sure that 

there a possibility of zero production of any given type of floor-space. The parameter, 𝛼𝑖  

represents the scale parameter and 𝜗 here represents the risk behaviour of the builder and the 

structure of space market in the region. In the simplest case 𝜗 could be a constant parameter, 

but in a more elaborate case it will be parameterized based on combination of the builder‟s and 

the market‟s characteristics. 

3.2. Concept of Hicksian Product 

As the builder has other options of investments besides the set of built-space types that we are 

interested to model, we introduce the concept of Hicksian/composite product in our general 

formulation, 𝑓𝑧(𝑧). Profit from the Hicksian product in (1) represents the expected loss that is 

avoided at a given interest rate at the decision time, by not building the floor-space that could 

have been built under the technological/zoning constraint. For this, we use a separate profit 

generation function similar to the one used by von Haefen and Phaneuf (2004), and Habib and 

Miller (2009) for the composite activity. 

If we assume that the revenue and cost functions are linear in parameters and the modeller‟s 

inability to perfectly observe builder‟s expected profit is represented by the error term 𝜀𝑖 , then (1) 

can be rewritten as: 

 Π =  
𝛾𝑖

𝛼𝑖
  𝛽𝑖

𝑟𝑋𝑖
𝑟 − 𝛽𝑖

𝑐𝑋𝑖
𝑐 𝜗𝑒𝜗𝜀 𝑖   

𝑞𝑖

𝛾𝑖
+ 1 

𝛼𝑖
− 1  𝑁

𝑖=1 +
1

1−𝑒𝜌 𝑧(1−𝑒𝜌 )   (2) 

The form of the profit function for composite product here guarantees a positive profit from a 

nonzero composite product (Habib and Miller, 2009). Note that there is no error term associated 

with the profit from the Hicksian product. The rational here is that the error terms from rest of the 

products in (2) are the differences from the Hicksian part.  

3.3. Estimation Problem 

Using (2) our optimization problem can be defined as: 

Maximize 

 Π =  
𝛾𝑖

𝛼𝑖
  𝛽𝑖

𝑟𝑋𝑖
𝑟 − 𝛽𝑖

𝑐𝑋𝑖
𝑐 𝜗𝑒𝜗𝜀 𝑖   

𝑞𝑖

𝛾𝑖
+ 1 

𝛼𝑖
− 1  𝑁

𝑖=1 +
1

1−𝑒𝜌 𝑧(1−𝑒𝜌 )   (3a) 

Subject to 

  𝑞𝑖
𝑁
𝑖=1 + 𝑧 = 𝐾𝑇          (3b) 

 𝑞𝑖 ≥ 0 i = 1, 2,…, N         (3c) 

 𝑧 > 0           (3d) 

𝐾𝑇 is the maximum possible space that could be built in the time interval under zoning 

and technological constraints 
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The Lagrangian function for the problem in (3) becomes: 

 ℒ =   
𝛾𝑖

𝛼𝑖
  𝛽𝑖

𝑟𝑋𝑖
𝑟 − 𝛽𝑖

𝑐𝑋𝑖
𝑐 𝜗𝑒𝜗𝜀 𝑖   

𝑞𝑖

𝛾𝑖
+ 1 

𝛼𝑖
− 1  𝑁

𝑖=1 +
1

1−𝑒𝜌 𝑧 1−𝑒𝜌    

 −𝜆  𝑞𝑖
𝑁
𝑖=1 + 𝑧 − 𝐾𝑇          (4) 

 𝜆=Lagrangian multiplier 

The Khun-Tucker (KT) first order conditions for optimal allocations here will be: 

 
∂Π

∂𝑞𝑖
− λ ≤ 0   for i = 1,2,…n       (5a) 

& 

 
∂Π

∂𝑧
− λ ≥ 0          (5b) 

(5a) ensures that for the selected levels of the product bundle, any further increase in the 

quantity of product i will have no further positive effect on the total profit. (5b) ensures that the 

quantity of the composite product (not investing) is at the level where it has no negative effect 

on the profit. 

Form (5a) and (5b) 

 
∂Π

∂𝑞𝑖
≤

∂Π

∂𝑧
    for i = 1,2,…n 

  𝛽𝑖
𝑟𝑋𝑖

𝑟 − 𝛽𝑖
𝑐𝑋𝑖

𝑐 𝜗𝑒𝜗𝜀 𝑖  
𝑞𝑖

𝛾𝑖
+ 1 

(𝛼𝑖−1)
≤ 𝑧−𝑒𝜌

       (6) 

We can show that 
∂2Π

∂𝑞𝑖 ∂𝜀𝑖
 is a i×i non-singular matrix and 

∂2Π

∂𝑧 ∂𝜀𝑖
 is a zero valued vector. Thus 

using explicit function theorem (Habib and Miller, 2009), we can express the error term as: 

𝜀𝑖 ≤ 𝑔𝑖(𝛽𝑖
𝑟 ,𝑋𝑖

𝑟 , 𝛽𝑖
𝑐 ,𝑋𝑖

𝑐 , 𝑞𝑖 , 𝜗, 𝛾𝑖 , 𝛼𝑖 , 𝜌)  

𝜀𝑖 ≤
1

𝜗
  1 − 𝛼𝑖 𝑙𝑜𝑔  

𝑞𝑖

𝛾𝑖
+ 1 − 𝜗𝑙𝑜𝑔 𝛽𝑖

𝑟𝑋𝑖
𝑟 − 𝛽𝑖

𝑐𝑋𝑖
𝑐 − 𝑒𝜌 𝑙𝑜𝑔 𝐾𝑇 −  𝑞𝑗

𝑛
𝑗=1   , ∀𝑖   (7) 

3.4. Econometric Model Structure 

If the joint probability density function,  𝑓 𝜀1 , 𝜀2 , … , 𝜀𝑛  of the error terms is known then the 

probability associated with the quantities of a certain bundle of product that is selected by the 

building firm for construction is given by: 

𝑃 𝑄 =  … 𝑓 𝑔1 ,𝑔2 ,…𝑔𝑚 , 𝜀𝑚+1 ,… , 𝜀𝑛  𝐽 𝑑𝜀𝑚+1 …𝑑𝜀𝑛
𝑔𝑛

−∞

𝑔𝑚 +1

−∞
    (8) 

Where 
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𝑄 = [𝑞1
∗,𝑞2

∗, … , 𝑞𝑚
∗ , 0,0… 0] is the vector of quantities of each type selected by the builder to 

build. 

 𝐽  is the determinant of m×m Jacobian matrix, whose individual elements are defined by: 

𝜕𝜀𝑖/𝜕𝑞𝑖  (Kim et al., 2002; Bhat, 2005; and Habib and Miller, 2009). 

 𝐽 =  
1

𝜗
 

(1−𝛼𝑖)

(𝑞𝑖+𝛾𝑖)
+

𝑒𝜌

(𝐾𝑇+𝑞𝑖)
 𝑁

𝑖=1   

Most of the discrete-continuous large scale demand models including (Bhat, 2005, 2008; Habib, 

2008, 2009; Pinjari and Bhat, 2009), have assumed the error terms to be IID with Type I 

extreme value distribution. This assumption simplifies (8) and gives a closed form solution for 

the calculation of choice probabilities. The estimation of model parameters also becomes 

computationally manageable in cases where the size of choice-set is large. 

However, we think that this assumption is not valid in the case of new built-space. Most of the 

time, the types of the space that are built by the builder are highly correlated to each other. 

Builders are localized in terms of their operations (Buzzelli and Harris, 2003). Moreover, builders 

and their associated contractors/sub-contractors are specialized in building certain types of 

space only. The builder that builds detached dwellings is more likely to build semi-detached and 

attached dwellings then building high rise apartment building. The location case is similar: A 

zone (business node) that primarily has Type-A office space will unlikely to get built an inferior, 

Type-C office space. A more appropriate assumption, therefore is that the error terms are jointly 

normally distributed with a mean of 0 and covariance matrix of Ω. Hence:  

𝑃 𝑄 = 
1

 2𝜋 𝑛/2 Ω 1/2  …
+∞

−∞   … 𝑒𝑥𝑝  −
1

2
Ε′Ω−1Ε  𝐽 𝑑𝜀1 …𝑑𝜀𝑛

𝑔𝑛

−∞

𝑔𝑚 +1

−∞

+∞

−∞
   (10) 

Where Ε = [𝜀1 ,… , 𝜀𝑚 , 𝜀𝑚+1 …𝜀𝑛 ] 

Equation (10) involves computing an (n–m) dimensional integral of the function that will have a 

high computational cost associated for large choice sets. In the case of built-space however, the 

builder is faced with very few choices (e.g. 3 in case of office space and 4 to 5 in the case of 

housing). Thus the evaluation of (10) remains computationally viable. 

The resulting likelihood function from (10) for all the builders thus becomes: 

𝐿 𝑄 𝛽𝑖
𝑟 , 𝛽𝑖

𝑐 ,𝜗, 𝛾𝑖 , 𝛼𝑖 , 𝜌, Ω =  

   
1

 2𝜋 𝑛/2 Ω 1/2  …
+∞

−∞   … 𝑒𝑥𝑝  −
1

2
Ε′Ω−1Ε  𝐽 𝑑𝜀1 …𝑑𝜀𝑛

𝑔𝑛

−∞

𝑔𝑘+1

−∞

+∞

−∞
𝐵
𝑏=1   (11) 

3.5. Parameter Estimation  

The likelihood maximization based parameter estimation process involves two basic steps, the 

generation/evaluation of the candidate parameter values, and the evaluation of the likelihood 

function. In the logit-based conventional discrete choice models, the likelihood function has a 

closed form, so the evaluation of likelihood, gradient, and hessian of the function is trivial. 

Gradient based search methods like Newton-Raphson (NS), Broyden–Fletcher–Goldfarb–
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Shanno (BFGS), Berndt–Hall–Hall–Hausman (BHHH), David–Fletcher–Powell, Polak–Ribiere 

conjugate gradient, and simulated annealing (Ben-Akiva and Lerman, 1985; Washington et al., 

2003; and Train, 2009) are used to estimate the parameters and their statistical properties. 

In case of parameter estimation for probit models, the evaluation of the likelihood function 

becomes non-trivial, because of the involvement of the multi-dimensional integral. In case of the 

classic probit model the multidimensional integral involved in the likelihood function is 

approximated using one of several methods: numerical integration, tabulation, numerical 

approximation, and Monte Carlo simulation (Sheffi et al. 1982). MC Simulation is most widely 

used in which the likelihood function is evaluated using various simulation techniques like 

Accept–Reject (AR), smoothed AR, and Geweke–Hajivassiliou–Keane (GHK). The resulting 

approximate log-likelihood function is called as Simulated Log-Likelihood (SLL). The gradient of 

the function required for optimization problem can be approximated by dividing the change in 

SLL by the change in the parameter values (Train, 2009). Bolduc (1999) suggested a simulation 

based procedure for the analytical solution of the gradient in the GHK-simulator. Another 

approach for the probit model parameter estimation is the Bayesian based Markov Chain Monte 

Carlo (MCMC) simulation technique that avoids the direct evaluation of the likelihood function. 

Instead it derives the posterior distributions from the prior belief and the data. The moments and 

other statistical properties are derived by sampling from the posterior distribution using 

simulation techniques like Metropolis-Hasting (M-H), Adaptive M-H, and Gibb‟s sampler (Kim et 

al., 1999; Kim et al., 2002; and Train, 2009). Kim et al. (1999) used Markov chain Gibb‟s 

sampler to draw directly from posterior distribution and performed finite sample likelihood 

inference. 

Bhat (2001) used a quasi-random Monte Carlo simulation technique to estimate parameters for 

a mixed logit model. A Halton sequence for each dimension of the integral in the likelihood 

function was drawn by paring k-sequences. The sequence ensured that the whole region under 

the integral is uniformly covered. The cyclic nature of the Halton sequence results in correlation 

issues. To avoid this problem, a scrambling technique was used, but this adds an exponential 

overhead with each dimension, so as to produce a “good” permutation (Hess and Polak, 2003). 

It is however not very clear what maximization criteria were used and how the approximate 

gradient/scores and hessian were calculated. It is also not very clear how the local maxima 

were avoided in the estimation process. 

Train (2009) outlined a Bayesian based MCMC method for the parameter estimation in mixed 

logit models. Bayesian methods relax the constraint of maximizing the simulated-likelihood 

function which could be complicated in cases where there might be various local maxima and 

thus might result in identification problems. In Bayesian methods, the prior distribution plays an 

important role and is assumed to be near the values that globally maximizes the likelihood 

function. Bayesian methods are also superior from standard simulated-likelihood maximization 

methods in terms of consistency and efficiency.  

In the case of the large-scale demand model estimation, Monte Carlo simulation, quasi-Monte 

Carlo simulation, and Markov Chain based Monte Carlo simulation methods are commonly used 

(Bhat, 2001, Kim et al., 2002, Habib, 2009). Bhat (2005) and Habib and Miller (2009) used the 
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quasi-random Monte Carlo simulation procedure outlined in Bhat (2001) for the likelihood 

function that had extreme valued error terms and normally distributed parameters.  

Kim et al. (2002), von Haefen and Phaneuf (2004), and Habib (2009), used Markov Chain 

Monte Carlo (MCMC) based on Metropolis-Hasting method to estimate their parameters from 

the likelihood function involving the normal distribution. The likelihood functions in the cases of 

von Haefen and Phaneuf (2004), and Habib (2009) had extreme valued error terms and 

normally distributed correlated parameters. Kim et al. on the other hand had a normally 

distributed correlated error terms as well. Kim et al. (2002) used GHK simulator to evaluate the 

multidimensional integral involved within the log likelihood function. The statistical properties of 

the estimated parameters were computed using Gibb‟s sampling. 

The likelihood function in equation (11) also involves correlated error terms that are normally 

distributed. In the estimation of parameters from this function, we also decided to use Bayesian 

MCMC with Gibb‟s sampling approach. For the evaluation of the multidimensional normal 

probability function involved in equation (11), we used a technique based on randomized lattice 

rules that seeks to fill the hyper integration space evenly using a deterministic process. In 

principle, these lattice rules construct regular patterns, such that the projections of the 

integration points onto each axis produce an equidistant subdivision of the axis (Genz, & Bretz 

2002, 2009). Robust integration error bounds are obtained by introducing additional shifts of the 

entire set of integration nodes in random directions. Since this additional randomization step is 

only performed to introduce a robust Monte Carlo error bound, 10 simulation runs are usually 

sufficient. We preferred this method from the more widely used Halton sequence based 

simulation procedure, because it has been numerically proven to outperform Halton or Sobel 

sequences in terms of efficiency and doesn‟t suffer from the correlation issues (Lai, 2009). 

3.6. Estimation Procedure 

The procedure that we used to estimate parameters in equation (11) is as follows: 

Let the parameters in the likelihood function are represented as 𝜁𝑏 = (𝛽𝑏
𝑟 , 𝛽𝑏

𝑐 , 𝛾, 𝜌) 

1. Initialize 𝜁𝑏 ,𝛼, 𝜁 𝑏 ,Ωζ  

2. Generate {𝜁𝑏 ,𝑏 = 1, … , 𝐵} from 

𝜓(𝜁𝑏 | 𝑞𝑏𝑡 , 𝑡 = 1, … , 𝑇 ,𝛼, 𝜁 𝑏 ,Ωζ} ∝ 𝑑𝑒𝑡 Ωζ 
1
2𝑒𝑥𝑝[−

1

2
(𝜁𝑏 − 𝜁 𝑏)′Ωζ

−1(𝜁𝑏 − 𝜁 𝑏)] 𝐿𝑏𝑡

𝑇

𝑡

 

Where  

 𝜓 is a 𝑁 × 1 vector representing all the alternatives 

 t represents the decision occasion 

Generate a random number 𝜏𝜓−≻ 𝑁(0,0.0025), then the candidate value of 𝜁𝑏 for iteration k will 

be: 
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 𝜁𝑏
𝑘 = 𝜁𝑏

(𝑘−1)
+ 𝜏𝜓  

Accept this new value with the probability: 

𝑚𝑖𝑛  
𝑒𝑥𝑝[−

1
2 (𝜁𝑏

(𝑘)
− 𝜁 (𝑘))′Ωζ(𝜁𝑏

(𝑘)
− 𝜁 (𝑘))]  𝐿𝑏𝑡

𝑘𝑇
𝑡

𝑒𝑥𝑝[−
1
2

(𝜁𝑏
(𝑘−1)

− 𝜁 (𝑘−1))′Ωζ(𝜁𝑏
(𝑘−1)

− 𝜁 (𝑘−1))]  𝐿𝑏𝑡
𝑘−1𝑇

𝑡

, 1  

3. Generate 𝜁 𝑏 from 

𝜓 𝜁 𝑏   𝜁𝑏 , 𝑏 = 1, … , 𝐵 , Ωζ = 𝑁 
 𝜁𝑏

𝐵
1

𝐵
,
Ωζ

𝐵
  

4. Generate Ωζfrom 

𝜓 Ωζ  𝜁𝑏 ,𝑏 = 1, … , 𝐵 , 𝜁 𝑏 ,  ∝ 𝐼𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑊𝑖𝑠𝑎𝑟𝑡  𝑑0 + 𝐵. 𝐷0 +  (𝜁𝑏 − 𝜁 𝑏)′(𝜁𝑏 − 𝜁 𝑏)

𝐵

1

  

Where d0 is the prior degrees of freedom and D0 is the sum of squares of Ωζ 

5. Generate 𝛼 from 

𝜓(𝛼| 𝑞𝑏𝑡 ,𝑏 = 1 …𝐵 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇 ,  𝜁𝑏 ,𝑏 = 1 …𝐵 , 𝛼 0 , Σ0}

∝ 𝑑𝑒𝑡 Ω0 
1
2exp[−

1

2
(𝛼 − 𝛼 0)′Ω0

−1(𝛼 − 𝛼 0)]   𝐿𝑏𝑡

𝑇

𝑡

𝐵

𝑏

 

𝛼 0and Ω0 are the prior parameters 

Generate a random number 𝜏𝛼−≻ 𝑁(0,0.01), then the candidate value of 𝛼for iteration k will be: 

 𝛼𝑘 = 𝛼(𝑘−1) + 𝜏𝛼  

Accept this new value with the probability: 

𝑚𝑖𝑛  
𝑒𝑥𝑝[−

1
2 (𝛼𝑘 − 𝛼 0)′Ω0

−1(𝛼𝑘 − 𝛼 0)]   𝐿𝑏𝑡
𝑘𝑇

𝑡
𝐵
𝑏

𝑒𝑥𝑝[−
1
2 (𝛼(𝑘−1) − 𝛼 0)′Ω0

−1(𝛼(𝑘−1) − 𝛼 0)]  𝐿𝑏𝑡
(𝑘−1)𝑇

𝑡
𝐵
𝑏

, 1  

6. Generate 𝜗 from 

𝜓(𝜗| 𝑞𝑏𝑡 ,𝑏 = 1 …𝐵 𝑎𝑛𝑑 𝑡 = 1, … , 𝑇 ,  𝜁𝑏 , 𝑏 = 1 …𝐵 , 𝜗 0 ,Σ0}

∝ 𝑑𝑒𝑡 Ω0′ 
1
2𝑒𝑥𝑝[−

1

2
(𝜗 − 𝜗 0)′Ω0

−1(𝜗 − 𝜗 0)]   𝐿𝑏𝑡

𝑇

𝑡

𝐵

𝑏

 

𝜗 0and Ω0′ are the prior parameters 
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Generate a random number 𝜏𝜗−≻ 𝑁(0,0.01), then the candidate value of 𝜗 for iteration k will be: 

 𝜗𝑘 = 𝜗(𝑘−1) + 𝜏𝜗  

Accept this new value with the probability: 

𝑚𝑖𝑛  
𝑒𝑥𝑝[−

1
2

(𝜗𝑘 − 𝜗 0)′Ω0
−1(𝜗𝑘 − 𝜗 0)]   𝐿𝑏𝑡

𝑘𝑇
𝑡

𝐵
𝑏

𝑒𝑥𝑝[−
1
2

(𝜗(𝑘−1) − 𝜗 0)′Ω0
−1(𝜗(𝑘−1) − 𝜗 0)]  𝐿𝑏𝑡

(𝑘−1)𝑇
𝑡

𝐵
𝑏

, 1  

7. Iterate back to step 1 

The simulation has to be run for a sufficient numbers of iterations before drawing inferences. It 

is suggested that around 25,000 iterations should be enough for the burn-in (Kim et al., 2002; 

von Haefen and Phaneuf, 2004; Train, 2009; and Habib, 2009). Gibb‟s sampling is then done to 

construct the distributional summary statistics for 𝜁𝑏 , 𝜁 𝑏 ,Ωζ ,𝛼, 𝜗. Gibb‟s sampling induces a serial 

correlation in the parameters. To avoid this correlation, it is also suggested that every 10th 

iteration is used in the simulation after warm up (von Haefen and Phaneuf, 2004; and Train, 

2009). 

3.7. Identification Problem 

Parameter estimation from the data based on the underlying model structure is fundamentally 

an optimization problem that may have a non-unique solution set. The identification problem is 

the problem of determining what conclusions drawn from the data about a model parameters 

are feasible (Manski, 1995; Train, 2009). Walker et al. (2007) defined the identification problem 

as the problem of determining the set of restrictions to impose in order to obtain a unique vector 

of consistent parameter estimates.  

MCMC with Gibb‟s sampling does a better job in regards to the identification problem, as 

compared to the quasi-MC methods because of its ability to first of all base the search on a prior 

distribution. We can thus control the direction of search based on our prior beliefs about the 

solution. Secondly, the Metropolis-Hasting based search process itself is more controlled and 

directed. Lastly, the statistical properties of the solution are draws from the posterior distribution 

of the parameters that are not just based on the likelihood values from the data, but also on the 

prior distribution and the search process. 

4. DATA DESCRIPTION 

The modelling framework outlined in the previous section was applied to estimate a model for 

new office space supply. We used the office space supply data for the Greater Toronto Area 

from 1986 to 2005 to estimate the model. The dataset includes all the buildings with an office-

space of 20,000 sq. ft. or more.  Office buildings are distributed across the study area in various 

identifiable clusters. Based on their geographic concentration in various regions, the study area 

was divided into 36 unique business nodes (Figure1) in the survey that generated the dataset. 
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FIGURE 1: Study area and approximate location of the business nodes. 

Table 1 lists the business nodes used in this study, their share of office space in year 2005, and 

the average gross prices for three different types of office space that is available in the GTA 

market. We see that a high concentration of office space is in the downtown Toronto followed by 

the regional centres of Mississauga, North York, and airport area. 

Our dataset classified office space into four standard types (A, B, C, and G), as defined by the 

Building Owners and Managers Association (BOMA). This is a subjective classification that uses 

a combination of factors including rent, building finishes, system standards and efficiency, 

building amenities, location/accessibility, and market perception (BOMA, 2009). Type A 

buildings have high quality standard finishes, state of the art systems, exceptional accessibility 

and a definite market presence. Downtown Toronto and regional centres are dominated by Type 

A office space. Type A space has higher than average rents for the area. Type B office space 

has fair to good facilities and infrastructure, while Type C buildings are only providing a 

functional space at a lower rent level compared to the area average (BOMA, 2009; AtlusInSite, 

2009). Type G buildings are government owned buildings and were not used in the model 

developed in this paper. 

Yearly average gross rent rate and vacancy rates were generated from the dataset to 

incorporate the effect of market conditions on the supply of new office space. Under the 

homogenous builder assumption, we created 720 observations of types of space built and the 

associated quantity, from the combination of 36 nodes and 20 years. It was assumed that the 

construction time of the project was 1 year. For the market indicator variables, a lag of 1 year 

was used. 

Statistics Canada was used as the main source for the data related to hourly wage rates of 

construction worker and number of construction workers in the labour force for each year in the 
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study duration. The construction cost estimates data for office space was collected from the 

yearly per square ft. estimates published by RSMean Inc. for the office space construction in 

Toronto region. These estimates are the major sources used by the builders to develop 

construction estimates for the construction projects. 

Table 2 provides the summary statistics and description of the dependent and explanatory 

variables used in the estimated model. 
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TABLE 1 Business Nodes in the study area 

No. Node % of Total Office 
Area in the Node 

Avg. Number of 
Floors 

Avg. Gross Rent 
    A            B             C 

1 Financial Core 20.07 18 43.6 32.8 26.9 

2 Downtown North 9.13 11 32.9 26.3 21.8 

3 Downtown West 6.62 7 28.5 20.2 22.6 

4 Downtown East 1.92 5 28.5 20.2 22.6 

5 Downtown South 1.45 10 37.2 29.8 18.3 

6 Bloor & Yonge 5.39 10 30.7 24.7 24.1 

7 St. Clair & Yonge 1.86 11 30.1 25.6 21.8 

8 Eglinton & Yonge 2.95 8 26.8 23.22 22.5 

9 North Yonge 5.46 10 30.7 26.1 21.7 

10 Heartland 1.92 4 30.7 26.1 21.7 

11 Yorkdale 1.57 4 19.2 17.0 18.3 

12 Downsview 0.47 4 19.2 17.0 18.3 

13 Dufferin and Finch 0.37 6 19.3 17.0 18.3 

14 Vaughan 0.89 5 18.9 17.5 15.7 

15 Bloor & Islington 0.94 9 28.6 22.3 18.5 

16 King & Dufferin 1.76 3 28.6 22.3 18.5 

17 Sheridan 0.68 2 25.1 21.0 17.8 

18 Airport Dispersed 2.82 4 21.4 19.9 15.8 

19 Highway 427 Corridor 1.53 6 22.5 17.4 15.3 

20 Airport Corporate Centre 3.71 4 24.3 19.4 25.8 

21 Etobicoke Dispersed 0.40 5 21.0 17.0 15.7 

22 Mississauga Dispersed 0.50 4 21.0 17.0 15.7 

23 Mississauga City Centre 2.08 9 28.7 26.8 17.4 

24 Cooksville 0.45 6 22.0 18.4 15.5 

25 Brampton 1.26 4 20.4 15.4 - 

26 Meadowvale 2.47 3 25.5 20.5 18.5 

27 Oakville 1.09 4 22.5 19.8 20.8 

28 Burlington 2.00 3 22.5 17.4 15.3 

29 Don Mills and Eglinton 2.58 6 22.6 19.0 16.4 

30 Duncan Mill 1.14 6 18.5 18.1 14.3 

31 Consumers Road 2.76 7 27.1 21.4 20.3 

32 Scarborough 2.93 5 25.9 19.1 14.7 

33 Markham & Pickering 0.48 3 26.0 19.1 14.7 

34 Highway 404 & Highway 7 4.81 4 22.4 16.8 - 

35 Highway 404 & Steeles 3.37 4 19.4 16.9 12.7 

36 Richmond Hill 0.16 5 23.8 20.6 17.6 

  100.00 6 25.5 20.8 18.7 
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TABLE 2 Summary Statistics 

Variable Description Mean/Proportion Std. Dev. Min. Max. 

Dependent Variable 

Supply_A 

Supply_B 

Supply_C 

Supply of Type A (1000 sq. ft.) 

Supply of Type B (1000 sq. ft.) 

Supply of Type C (1000 sq. ft.) 

76.57 

11.92 

2.14 

226.78 

44.99 

12.58 

0 

0 

0 

2601.88 

525.00 

150 

Independent Variable 

Built_A 

Built_B 

Built_C 

Gr_Rtl_Rt_A 

Gr_Rtl_Rt_B 

Gr_Rtl_Rt_C 

Vac_Rt_A 

Vac_Rt_B 

Vac_Rt_C 

Con_Wrks 

Wage_Rt 

Con_Cost 

Already Built Type A in the Node (million sq. ft.) 

Already Built Type B in the Node (million sq. ft.) 

Already Built Type C in the Node (million sq. ft.) 

Average Rent of Type A in the Node (CAN $) 

Average Rent of Type B in the Node (CAN $) 

Average Rent of Type C in the Node (CAN $) 

Vacancy Rate of Type A in the Node 

Vacancy Rate of Type B in the Node 

Vacancy Rate of Type C in the Node 

Number of Construction Workers in the GTA ( 1000) 

Hourly Wage Rate for Construction Workers 

Construction Cost per sq. ft. 

1.833 

1.307 

0.368 

25.46 

20.82 

18.73 

0.139 

0.160 

0.158 

41.93 

18.27 

85.15 

3.815 

1.448 

0.438 

6.888 

5.525 

5.000 

0.077 

0.096 

0.175 

9.87 

2.69 

13.75 

0 

0 

0 

2.30 

1.77 

7.40 

0 

0 

0 

2.73 

12.83 

70.5 

24.667 

5.987 

1.640 

50.30 

40.89 

37.62 

0.442 

0.56 

1 

61.30 

22.91 

117.55 

Total observations: 720
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5. MODEL ESTIMATION 

Using the dataset described in the previous section, we estimated the model of office space 

supply for the Greater Toronto Area. The dependent variable here is the probability of selection 

of a vector (3 × 1) of quantities for each type of office space to be built in a business node “n” at 

certain year “t” from 1986 to 2005. The explanatory variables used in the model represent the 

market conditions and land use characteristics of the business node and the state of regional 

economy at the time of decision to build. Parameter estimates and associated statistics are 

reported in Table 3. Table 4 reports the correlations between different types of office space. 

TABLE 3 Model Parameter Estimates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameters Estimates Std. Error t-statistics 

Explanatory Variable 

Const_A 29.71 0.182 163.29 

Const_B 19.99 0.112 178.74 

Const_C -10.72 0.119 -89.75 

Built_A 1.76 0.202 8.68 

Built_B 0.68 0.057 11.94 

Built_C 0.57 0.082 6.99 

Gr_Rtl_Rt_A 0.69 0.219 3.13 

Gr_Rtl_Rt_B  0.80 0.166 4.81 

Gr_Rtl_Rt_C  1.11 0.108 10.31 

Vac_Rt_A  -2.44 0.140 -17.44 

Vac_Rt_B -1.15 0.167 -6.91 

Vac_Rt_C -0.37 0.236 -1.58 

Con_Wrks 0.84 0.072 11.73 

Wage_Rt -1.32 0.116 -11.37 

Con_Cost -0.64 0.135 -4.73 

Model structure parameters 

Gamma_A 100.10 0.080 1246 

Gamma_B 100.06 0.088 1135 

Gamma_C 99.88 0.138 723.28 

Rho 4.49 0.108 41.64 

Alpha 0.66 0.173 1.107 

Theta 1.59 0.226 15.44 
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The constant term for Type A space is the highest followed by Type B. For Type C the constant 

term is negative. This suggests that builders in general prefer to build higher quality space. The 

office employment sector in the GTA is dominated by financial, accounting, law, and technology 

firms that generate the demand for high quality office space. Higher constants for Type A and B 

seems to be the response of builders to this demand and higher profit margins. 

TABLE 4 Correlation Matrix between the error terms 

 Type of Office Space 

 A B C 

A 1 0.25 -0.25 

B  1 -0.10 

C   1 
 

Haider and Miller (2004) reported the phenomena of spatial inertia in the new housing supply of 

the GTA. We observe the same phenomena in the office space supply. The attractiveness 

which is captured by the amount of office space that is already available (Buit_*), is the highest 

in case of Type A, while it is lowest in the case of Type C. 

The rent per sq. ft. of the type office space at the time of decision was used as the indicator of 

market and the growth of office based employment. In general there is a positive effect of the 

supply decisions with the higher rents and this effect is highest in the case of Type C buildings. 

This result is unexpected as one would expect that the higher quality space will be more 

sensitive to the increase in the rent. One reason for this might be the fact that in general there is 

a higher temporal variation found in the rent of Type C office space. While in case of Type A 

and B, the variation is both in terms of time and space. 

We used average vacancy rate in the node at time of decision as another indicator of the 

demand for office space. The model reports negative sensitivity of the supply decisions to the 

increase in vacancy rates. This effect is highest in case of Type A space. A higher project cost 

is associated with Type A space and at the same time the revenue (indicated by rents) from it is 

the highest as well. This explains the higher sensitivity to vacant space in case of Type A supply 

decisions. 

The number of construction workers in the labour force at the time of decision is used as the 

indicator of building inertia and state of the regional economy. A positive effect is found on the 

supply decisions due to the increase in number of construction workers. 

With the increase in the wage rates the cost of the project increases and thus effects the new 

office space supply decision in the negative fashion. Similar behaviour is evident in the case of 

increase in the construction cost. 

The greater than one theta variable that represents the behaviour of the builders towards risk 

shows that they are risk takers. Builders over-build in the boom of construction cycles 

anticipating future revenues. This fact is evident from the data. The translation parameters that 

make the corner solutions possible, are almost the same for all three types. The scale 
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parameter seems to be in the acceptable range. The rho parameter that is associated with the 

parameterization for the Hicksian good is also in the right range. 

A limitation that arises due to the use of Bayesian-based MCMC estimation process is the 

inability to generate model level goodness-of-fit statistics. The goodness-of-fit test for these 

types of method is an evolving research topic. An alternate approach to test the goodness of fit 

for this model could be to use simulation forecasting and compare the results with the observed 

data. Once new data for the years after 2005 are available, we plan on performing the 

simulation tests. 

6. CONCLUSION AND FUTURE WORK 

In this paper we presented a generic modelling framework for the supply of new built space and 

as an application estimated a model for the new office space supply in the Greater Toronto 

Area. The modelling framework is based on expected profit maximization attitude of the 

builders. This model is part of our ongoing efforts towards operationalization of the office space 

market within Integrated Land Use Transportation and Environment (ILUTE) modelling 

framework, currently under development at the University of Toronto. In the general market-

clearing framework of ILUTE, the asking rent model captures the role of accessibility, 

neighbourhood characteristics, quality of space, and market conditions to determine the asking 

price at each simulation year. The models for demand for office space in the Greater Toronto 

Area have already been developed by Elgar et al. (2009). With the available demand and 

supply, these asking rents are then to be used in the market clearing module to match the 

space to the demander at a transaction rent that is endogenously determined. In next simulation 

year, the lagged transaction rents then influence the builders‟ decisions of where, how much, 

and what type of office space to supply. 

The estimated model is dynamic in the sense that it captures the lagged effects of market 

conditions on the new supply. We observed the phenomena of spatial inertia in terms of location 

choices for different types of office space. The behaviour of the builders in terms of risk is 

explicitly incorporated and estimated in the model. The changes in the construction project‟s 

expected cost on the builder‟s decisions is also modelled. To our knowledge, this work is the 

first that models the where, when, how much, and what type of office space to supply in a single 

framework at a fairly disaggregate spatial zoning system. 

In future, we intend to assess the goodness of fit for the model using simulation and comparison 

with the observed data. We also intend to bring in more detail in terms of builders‟ behaviour 

and heterogeneity in terms of decision making. 

The Government of Ontario recently released a growth plan for Greater Golden Horseshoe Area 

that includes Greater Toronto Area. This plan forecasts an increase of 3.7 million in the 

population and 1.8 million in the employment of the region by 2031. The long-range forecast 

suggests high levels of growth in employment sectors that are housed in office-space. 25 nodes 

across the region are identified as high density employment centres and corridors linking them 

are given high priority for transit investment. The Province is also in the process of introducing a 

comprehensive transportation plan to support this growth. To quantitatively assess the 
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implications of these policies and their effect on the urban growth pattern, demographics, and 

more specifically on the travel behaviour of the population, we intend to operationalize a 

comprehensive office market model within the Integrated Land-Use, Transportation, and 

Environment (ILUTE) modelling framework. This modelling effort is a major step forward in 

achieving this objective. 
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