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INTRODUCTION 

This paper presents an analysis of several travel time functions on arcs, which are suitable 

for Dynamic Traffic Assignment (DTA) problems on urban networks. Arcs could have 

different physical and operative characteristics in urban networks, and then different travel 

time functions. We identify the appropriated characteristics of such functions, for being 

incorporated within Dynamic Traffic Assignment (DTA) methods, for traffic estimation on a 

short period. 

 

In some algorithms for DTA problems, a dynamic network is loaded (with a known O-D 

matrix) for each time interval by means of relaxations such as a static User Equilibrium (UE) 

Assignment (Shin et al., 2004; Janson, 1991; Jayakrishnan et al., 1995; Ran and Boyce, 

1996; Chen and Hsueh, 1998).  

 

Some research on DTA propose to use travel time functions which are dependent on vehicle 

flows and other dynamic variables (Friesz et al.,1993; Xu et al. 1999; Zhu and Marcotte, 

2000).  

 

In literature, travel time functions for flow entering in an arc at a given instant, have been 

considered following two ways: whole-link travel time models (WTTF) and the Lighthill, 

Whitham and Richards’ hydrodynamic model (LWR) (Lighthill and Whitham, 1955; Richards, 

1956). These models don't takes into account delays due to traffic lights and produce results 

which are not so realistic for urban networks. 

 

This paper reviews some travel time functions on arcs, which are flow dependent and have 

appropriate characteristics for DTA problems. These functions could be used for dynamic 

urban networks with two types of roads, controlled access arcs and arcs with traffic lights. 

We present the performance of such travel time functions in the Frank-Wolfe algorithm 

(Frank and Wolfe, 1956), on a case study. Static assignment results are analyzed and the 

suitable characteristic for the dynamic assignment are identified. 
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The paper first presents the introduction, a review of literature on functions for assignment 

models and a description of the main travel time functions. Then, the case study is 

described, the travel functions are analyzed and the results are presented. Finally, 

conclusion and references are included. 

REVIEW OF LITERATURE ON FUNCTIONS FOR ASSIGNMENT 
MODELS 

A review of literature, on DTA models and travel functions used by dynamic equilibrium 

models, was carried out. There are several proposals for modelling time dependent networks 

by means of an analytic approach (Boyce et al., 1995; Chen, 1998; Chen et al., 2003; Ban et 

al., 2005, 2008, Carey 1986, 1987, 1992, 2001, 2009, et al.,). Some of such proposals use 

optimization mathematical programming. However, although travel time functions are critical 

components of DTA models, there is limited research on it. Usually, authors use dynamic 

theoretical functions with their analytical proposals, whose results could not be realistic.  

 

The functions for describing traffic’s dynamic in a network (TDF), and travel time functions on 

arcs (TTF) which are used in DTA models, frequently are decisive to define a solution 

algorithm, to guarantee a good algorithm’ performance and to obtain coherent and realistic 

results. Hence, it is interesting to study the properties of different functions, in order to 

identify those that can be used in DTA models and for describing traffic’s dynamic. 

 

Although the DTA formulation and solution has been researched during three decades, there 

is a gap in the following points: the analytic treatment of flow dynamics on the network; the 

functional relation among the dynamic variables; the flow performance on each arc belonging 

to a path which is chosen by travellers; and the flow propagation on the network.  

 

The desirable properties of TDF, for the static UE traffic assignment are quite studied; 

however for DTA case, it is necessary to study the functional forms of the dynamic variables, 

their properties and their relations with the flow dependent TTF. 

 

The traffic’s dynamic function (TDF) is an analytical expression which relates dynamic 

variables of the DTA model. Several DTA formulations consider three dynamic variables 

which propagate flow on the network. These variables are presented in Figure 1 and are 

describes as follows: 

 

 

 

 

 

 

 

Figure 1. Arc (i, j) or (l,h) and propagation flows 
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)(txk

a  is the flow on arc a at time t;  

)(tvk

a  is the flow exiting from arc a at time t; and 

k is the analysis time interval.  

The flow on arc a at time t depends on the relation between )(tu k

a  and )(tvk

a . 

 

Ran and Boyce (1996) define an ideal state for the UE ADT problem, where dynamic paths 

are obtained for each time instant, resulting from loading a network with a known trips 

pattern, as follows: “Travel time of a dynamic network has got equilibrium (UE), when for 

each O-D pair for each time instant, the travel time of travellers leaving at the same time is 

equal and the minimum.” 

 

A general form of a DTA model search to optimize a system, whose cost is shown in 

equation 1, where:  

 

(1)          ,,   ))(*()(*)( odTtAakxkuk
t do a

aaa  


  

 

a is an arc belonging to a  set of arcs A; 

o-d represents the number of trips between each origin-destination (O-D) pair; 

t  is a time instant into the analysis period T ; 

))(*( kx aa  is the travel time on arc a , which is dependent on the flow on arc a  at 

instant k  in T . This travel time must guarantee equal minimum time for each O-D 

trip.  

 

A modification of the DTA model proposed by Janson (1991) formulated as a mathematical 

program based on the formulation by Beckmann et al., (1956), where time is included, is 

shown in equations 2a to 2d and 3. 
 

   


t
a
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w
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dwdtwczMinimize
)(

0,
)(x

fx
            (2a) 
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



odRp

od

p tqtf )()(  od  t                 (2b) 

0)( tf p   od , odRp  t    (2c) 

 



s

od Rp

p

tapa dsssftx
od

)()()( ,  a  t                               (2d) 

   
where, 

)(wca  is the travel time on arc a , as a separable and increasing with time t  function; 

)(tf p  is the instantaneous flow entering to path p at time t ; 

)(, sp

ta  
1 

0 

If flow on path p, which started at time s is on 

arc a  at time t  

Otherwise 
(3) 
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)(tqod
 is the travel demand between each O-D pair at time t ; and 

x  is a vector of flow on arcs, which is time dependent. 
 

This formulation has been the base for several DTA models, such as those proposed by 

Romph (1994), Jayakrishnan et al. (1995) and Ran and Boyce (1996), as is cited by Han y 

Heydecker (2006). Ran and Boyce (1996), Peeta and Ziliaskopoulos (2001) and Ban et al. 

(2008) are some papers that deal with the state of the art on DTA problems. 

 

In macroscopic models for dynamic networks, there are two ways for estimating travel time 

on arc a  at instant t : whole-link travel time models (WTTF) and the Lighthill, Whitham, and 

Richards hydrodynamic model (LWR) (Lighthill and Whitham, 1955; Richards, 1956). WTTF 

models analytically represent the flow propagation on the arc at time t , by means of the 

relations of the following dynamic variables: )(tk

a , )(txk

a , )(tu k

a  or )(tvk

a . WTTF model is 

based on kinematic wave theory, where traffic is likened to a hydraulic fluid. García et al., 

(2006) describe this model as “a traffic representation, by means of differential equations 

where the traffic behaviour in a space-time point is only affected by the system’s state in a 

vicinity of such point. This model is formulated in terms of density, flow and speed on arcs." 

 

Ran and Boyce (1996) consider WTTF as the sum of two flow components, one for free-flow, 

which depends on )(tuk

a  and )(txk

a , and the other for delay related to queues which depends 

on )(tvk

a and )(txk

a ; travel time function is considered as dependent on density, speed and 

number of vehicles on an arc. Later, Ran et al., (1997) conclude that the TDF which are used 

in many researches on DTA, have lack of bases on traffic flow theory. 

 

That is one of the reasons why we present a framework for the formulation of DTA models, 

with base on traffic engineering. Hence, available delay models are studied, identifying useful 

functions and incorporating such function to TDF, in order to analyze their use in DTA 

models. 

 

Carey and McCartney (2002) analyze WTTF (whole-link travel time) models, which are 

widely used in mathematical programming models for the DTA problem. They analyze the 

WTTF behaviour, assuming that flow-entering on arc a  is known; however, this analysis do 

not considers a network. Some analytic properties for flow dependent travel time functions 

(on an arc), with constant entering and exiting flows, are identified; such functions are linear, 

quadratic and n-polynomial. The realism of functions relations is not questioned. 

 

In literature, several papers on DTA use flow dependent travel time functions, ))(( kxaa , i.e., 

))(()( txft  , where )(t is travel time on arc a for vehicles entering at time t , and )(tx  is 

the flow (number of vehicles) on arc a  at time t  (Carey and Ge, 2003). Friesz et al. (1993) 

use a linear travel time function for a DTA model, )()( tbxat  , where a and b are 

constants,  
t

dssvsutx
0

))()(()(  is the number of vehicles on arc a  at time t , and )(tu  

and )(tv  are entering and exiting flows for arc a  at time t , respectively. The quadratic 

function is as follows 
2cxbxa   (Carey y Ge 2001); specifically, Chen et al. (2003) use 
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the function 
22 ))((001.0))((01.01)( txtutc aaa  , ta, , where )(tua  is the entering flow on 

arc a  during interval t , and )(txa  is the flow on arc a  at the beginning of interval t . 

 

Ran and Boyce (1996; 2002) present some non linear functions for travel time on arcs: 

 )(),(),()( tvtutxt aaaaa    a , i.e. )()()( 21 kgkgk aaa  , where:  )(),(1 tutxg aaa  is the 

instantaneous travel time of flow flowing on arc a ;  )(),(2 tvtxg aaa  is the instantaneous 

delay time on queue; and )(ta  is the current travel time of travellers on arc a  at time t . For 

example,  

   23

2

211 )()()( kxkukg aaaaaa  
 and 

   26

2

542 )()()( kxkvkg aaaaaa  
.  

 

Ran and Boyce propose two type functions, which can be used for representing controlled 

access arcs and arcs with traffic lights.  

 

1. For controlled access arcs, Ran y Boyce (1996) propose the following: 

Under prevalent constant traffic conditions, instantaneous travel time 

)(ta  is equal to the travel time of travellers on arc a , i.e. 

)()()( 21 kDkDk aaa   a , 
0

1 3600
a

a
a

w

l
D    and   maa keD )(2   

where: 

 

1aD :  intersection free-flow time (seconds) 

2aD : travel time, or delay at a queue on arc a  plus time for crossing the 

corresponding intersection (seconds) 

0aw  : free-flow speed on arc a  (km/h), 

al : length of arc a  (km), 

m : integer calibration parameter, 

 : real calibration parameter, 

   

a

aaa
a

l

kxkkvku
ke

)(2/)()(
)(


 : flow entering in arc a  at the beginning of 

interval k ,   

)(kua : flow entering in arc a  at interval k  

)(kva : flow exiting from arc a  at interval k  

)(kxa : flow on arc a  at interval k  

 

2. For arcs with traffic lights, Ran y Boyce (1996) propose the following: 

 

Under prevalent constant traffic conditions, the travel time stochastic function on arc 

a  during time interval k , where 5k  minutes, is the following:  
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)()()( 21 tDtDt aaa  , with )()()( 212 kdkdtD aaaaa    i.e., 

)()()()( 21 kdkdtDt aaaaaia   ,  

where: 

1a  corresponds to the uncongested part of arc a , and 2a  to the congested part, 

)(1 tDa  is the travel time or crossing time in the uncongested part of arc a  (seconds), 

)(2 tDa is the travel time or delay in a queue, in the congested part of arc a  (seconds) 

plus the time for crossing the corresponding intersection (seconds). 

 

 

ama

aaama
a

ekw

kxkxel
tD

)(

)1()(2
1800)(

1

22

1




 
where: 

 

al : length of arc a (km), 

ame  : maximum density (vehicles/km), 

ama ekx /)(2  : queue length in the congested part of the arc, 2a , at the beginning of 

interval k , 

ama ekx /)1(2 
: queue length in the congested part of the arc, 2a , at the end of 

interval k , 

  amaa ekxkx 2/)1()( 22 
: queue length, 

)(1 kwa : free-flow speed in the uncongested part of arc a  (km/h) 

 

To evaluate the travel time in the congested part of arc a , the exit capacity of such 

arc is considered (saturation flow). This involves the analysis of deterministic and 

stochastic components. The average delay for vehicles on arc a , which arrive at 

intersection during interval k , is the following sum (Ran and Boyce, 1996): 

)()()( 212 kdkdkD aaaaa   , where )(1 kda is the uniform delay which is a 

consequence of traffic control.  

 

A delay for just one green period, considering uniform arrival, was proposed by 

Webster (1958) (Ran and Boyce, 1996):  
 

)()()(1

)()(15.0
)(

2

1
kckgk

kckgc
kd

a

a



 , where, 

)(kc : a cycle during interval k  (seconds) 

)(kg : the green time in a cycle during interval k  (seconds) 

)(

)(
)( 2

k

ku
k

a

a
a


  : the saturation degree in the exit of arc a  during interval k , 

)(2 kua : the arrival rate at the intersection,  

)(ka : the saturation flow or discharge rate (vehicles/h),  

)(2 kda : the overflow delay, including the effects of random arrivals, as well as the 

overflow delays which are suffered by vehicles arriving during the specific flow period. 
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Linear and some non-linear WTTF of Ran and Boyce (1996) have been widely used by 

several authors: Astarita (1995, 1996), Wu et al. (1995, 1996), Xu et al. (1999), Carey and 

McCartney (2002), Zhu and Marcotte (2000). Nevertheless, such functions are criticized 

because their lack of realism (Carey, Ge and McCartney, 2003). Carey et al., (2003, 2004, 

2005) present an extensive review of literature on WTTF, and analyze FIFO and other 

desirable properties. 

 

Carey et al. (2003) propose a travel time model as the estimated mean flow, )(tw , of the 

entering rate in arc a  at time t , )(tu k

a , and the exiting rate after going though arc a , 

))(( ttvk

a  , i.e., ))(()( twht  ; then ))(()1()()( ttvtutw    with 10   . They 

show that their model has FIFO and other desirable properties. 

 

Carey and Ge (2003) compare several WTTF forms, combined with the estimated travel time 

on arc a , as a estimation of the mean flow rate )(tw , i.e., ))(()( twht  , with the Lighthill, 

Whitham, Richards (LWR) model. The analysis divides the arc into segments. The 

convergence of a discretised travel time model is review by Carey and Ge (2005). 

 

Some authors analyze characteristics and properties of the most used functions, in terms of 

their performance and adaptability to be incorporated to DTA models (Carey and Ge, 2005).  

They also review FIFO, causation and consistency performance with the static model. 

 

Carey and Ge (2007) present a discretised version of the WTTF model, proposed by Carey 

et al., (2003), and analyze FIFO properties for only one arc, assuming that )(tuk

a is constant. 

 

Nie and Zhang (2005) affirm that, if FIFO rule is not respected for the linear, linear in tracts 

and non linear WTTF, which are broadly used in literature, then the obtained exit flows are 

negative. For these authors, none of such functions respects the FIFO rule, and some 

classes of linear in tracts and non-linear functions could respect FIFO rule with a constraint 

on the entering flow. They stand out the difficulty of finding delay functions as ))(()( txft  , 

which can be realistic and respect FIFO rule. 

 

Jayakrishnan et al., (1995) introduce a travel time function on arc a , as a modified version of 

the Greenshields model, in terms of density and speed. Shin et al., (2004) verify the 

behaviour of this function, in a DTA model, and use the Greenshield model (1934) in a 

macroscopic analysis of roads without traffic lights. 

 

García et al., (2005) propose a WTTF continuous model, based on the one proposed by Ran 

and Boyce (1996) adding an arc’s capacity constraint. They carry out a numeric example, for 

a single arc outside of a network, considering a constant entrance flow. The result shows 

coincidence with the LWR model. 

 

The WTDFs which are thoroughly used in dynamic loading problems has strong limitations, 

since they should have desirable mathematical characteristics, as being non-decreasing, 

continuous and differentiable, besides of other desirable properties such as to respect FIFO 

rule (Tortoiseshell and Ge, 2007). Zhu and Marcotte (2000), Tortoiseshell and McCartney 
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(2002) and, Huang and Lam (2002) satisfy this requirement by means of travel time lineal 

functions on arcs, which is inexact given that the travel time on an arc has a non-linear 

behaviour in a congested network. 

  

Hence, this paper starts from the Ran et al. (1997) framework; then some delay functions in 

arcs with traffic lights are upgraded, such functions are introduced in DTA problems, and 

combinations of functions are used with the Frank-Wolfe algorithm, as a sub-routine of a 

process for the dynamic flow estimation in urban networks with arteries and arcs with traffic 

lights. Although it is accepted that the flow propagation in a dynamic network depends on the 

dynamic variables, such as entering flow, exiting flow and flow on the arc, in a time instant, 

we just consider a travel time function dependent on the number of vehicles in the arc in a 

time instant. A relation among the dynamic variables is proposed in a bi-level DTA model, 

whose inferior problem is a temporary user equilibrium traffic assignment in order to fix 

momentarily, travel time in arcs. The DTA model is studied later in this paper. It is necessary 

that any analytic approach proposal for the DTA problem coincide with the network behaviour 

when time is constant, under certain conditions. 

 

A review of some travel time functions in arcs is presented below; these function which 

consider delay, are useful to estimate travel times in arcs with traffic lights and controlled 

access arcs. Additionally, a case study is presented, where a user equilibrium traffic 

assignment Wardrop (1956) is used. 

TRAVEL TIME FUNCTIONS 

The travel functions to be analyzed are flow dependent for two types of roads, those with 

controlled access and those controlled by traffic lights. Functions BRP, Akcelik and Webster 

are among the analyzed travel functions. 

 

In an urban network could have arterial corridors (arcs with traffic lights) and controlled 

access roads. The former have coordinated programs, generally of two phases (eliminating 

turn to left), and can be macroscopically analyzed by means of functions which at least 

include a fix delay and an overflow delay. 

BRP Function 

BRP function was proposed by the U.S. Bureau of Public Roads (1964). It has been widely 

used in traffic assignment problems in urban networks. This function is continuous, 

increasing, differentiable, and have a parabolic form. It has two terms, the free-flow travel 

time and another term which is a factor of the former and increase with the flow-capacity rate 

(x/Q). This function does not include delays for traffic lights. The BRP function is the 

following:  





























a

a

n

a

aa

n

a
Q

x
txt



1)( 0
  ,  

where   

 
n

ax    : flow on arc a , 
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f

a
a

v

L
t 0

: cost of a free-flow trip ( )0(af ), 

aL
 : length of arc a , 

fv : free-flow speed or maximum speed on arc a , 

aQ : capacity of arc a , 

a  y a : arc’ parameters  

 

The BPR function is simple and has a good performance in network loading processes. 

Then, they are widely used in planning transportation models.  

Travel Time Function with Webster Function Delay  

The analytic traffic models incorporate three delay types (Roess et al., 2004): 

 

 Uniform delay: in an intersection with traffic light, this delay considers uniform arrival, 

stable flow and no individual cyclical characteristics.   

 Random delay: it is an additional delay to the uniform one, where it is assumed that 

the flow is randomly distributed; it usually exists in isolated intersections.   

 Overflow delay: it is an additional delay which exists when the capacity of an 

individual phase or a series of phases is smaller than the demand or the flow arrival 

rate.   

 

The delay due to the influence of the platoon flow is introduced as an adjustment to the 

uniform delay. In many current models, the random delay and the overflow delay are 

combined in a single function, which is just named overflow delay. 

   

The Webster Delay Function (1958) includes delays for traffic lights. This function is 

composed of the free-flow travel time and the uniform Webster delay (in s/vehicles) which 

becomes constant when Qx  is equal to one. At this moment, the travel time also includes 

an overflow delay, i.e., 
210)( aaaa ddtxt  , 

where:  

f

a
a

v

L
t 0

: free-flow travel time ( )0(af ) 

 






































 











C
g

X

C
g

C
da

*,1min1

1

*
2

2

1
 (s/vehicle) 

 X
T

da  1
2

2
: (s/vehicle) 

1

ad : uniform delay in arc a , 

aC : cycle of traffic light (seconds), 

aQ : capacity of arc a  (vehicles/h), 
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 QxX  : saturation degree, 

x : flow arrival rate (vehicles/h), 
2

ad : average overflow delay, 

T : analysis time. 

 

Akcelik Function 

The travel time function with delay produced by congestion, called Akcelik Function, is the 

following:      












 X
CT

A
XXTdtt

f

faa

8
11

4

1 210
. 

 

As in the previously mentioned TTFs,  
f

a
a

v

L
t 0

 is the free-flow travel time ( )0(af ) and 
1

ad  is 

the Webster uniform delay in arc a . The difference is that, the overflow delay is a time 

function which depends on the time of the Akcelik congestion function (Akcelik, 1991), i.e., 

   












 X
QT

A
XXTt

f

f

8
11

4

1 2
 (s/km), 

where: 

 QxX  : saturation degree, 

x  : flow arrival rate (veh/h), 

fT : analysis time, which is defined by the analyst (h), 

aQ : capacity of arc a  (veh/h), 

A : parameter of arc a  (an attribute in the network). 

 

Delay is larger as time fT  is increased. The time dependent function includes overflow 

periods, defined by means of saturation degree (volume/capacity rate,  QxX  ) larger 

than one. 

Other Functions 

The best function for modeling travel time when the delay at a intersection has a large 

influence in the total travel time, is the Akcelik congestion function (Akcelik, 1991). It is the 

following: 

  

 













XQt

AX
tt

1
1

0

0 , (s/km), 

where: 

 

A : coefficient delay under the current conditions, defined as IA  ,  



Travel Functions on Arcs for Dynamic Traffic Assignment Models in Urban Networks 
LONDOÑO, Gloria; LOZANO, Angélica 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

I : factor which represents intensity of delay elements in the arc (as density of intersections 

per kilometer), and  

k : delay parameter which contains the randomness level (or rate) of arrivals and services in 

points on the arcs where traffic is interrupted.  

 

This function is limited to 1/ Qx .  

 

 

 

The travel time function with HCM delay (HCM 2000) is the following: 

 
3210)( aaaaa ddPFdtxt  , 

where, 

f

a
a

v

L
t 0

 is the free-flow travel cost ( )0(af ) and  
1

ad  is the uniform Webster delay of arc a , 
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,  

PF : adjustment factor due progression, 









Q
xX : saturation degree 

x : flow arrival rate (veh/h), 

T : analysis time (h), 

Q : capacity of arc a (veh/h), 

k : increasing delay factor for acted controls (0.5 for programmed or fix time controls), 

I: adjustment factor for a filter in the entering up-stream flow (coordinated traffic lights) (1.00 

for the análisis of a single intersection), 
3

ad :  delay due a pre-existing queue (s/veh). 

The delay due a pre-existing queue requires a complex model; their detail level would 

correspond to a microscopic analysis. 

Functions Comparison 

The behaviour of five travel time functions was compared, for arcs with traffic lights. 

 

Figure 2 shows the behaviour of some travel time functions on arcs with traffic lights; in the 

horizontal axis, the volume-capacity rate (  QxX  ) for different flow (x) is represented, 

while that in the axe Y, the rate )0()( txt  is represented. Each function includes free-flow 

travel time (
0

at ) for a 60 km/h, uniform Webster delay (
1

ad ), and overflow delay (
2

ad ), i.e.  

210)( aaaa ddtxt  . 

 

The example presented in Figure 2, considers the following characteristics: the arc has 8 

lanes, S= 951 veh/h, C= 120 s, g=60 and Q=7,611 veh/h.  
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For the BPR function, α=0.55 and β= 2 were used (adjustment for comparison); for the 

Akcelik’s time dependent function, Tf=2 min and A=0.75 were used. 

 

The HCM function considered k=0.5 (arcs with fix phases), I=0.922 (for upstream X=0.4), 

and T=2 min, where the “I” factor has a small influence in the function. 

 

In the example, t(0) changes in each function and includes fix and overflow delays, except for 

the BPR and the Akcelik without delay functions Akcelik (1991). 
 

Travel time of the link dependent of degree of saturation (x/Q) for several functions types 
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Figure 2. Behaviour of five travel time functions, for arcs with traffic lights 

 

Figure 3 shows the behaviour of the same functions of Figure 2, but in a different 

representation; the difference is that the travel time in the arc, which varies with the number 

of vehicles x, is now divided by the flow-free travel time )0(t  without considering delays, i.e., 

it is the free-flow travel time constant. This representation let us to identify the differences 

among, the functions with fixed and overflow delays in the arcs with traffic lights, and the 

functions without delays due to traffic controls. Obviously, the BPR function ignores the real 

delay effects due to traffic lights. 

 

Figure 3 contains Qx  is in the horizontal axis, for different flow (x), and )0()( txt  in the 

vertical axis, and considers the same parameters for the functions that Figure 2.  

 

An interesting finding from the functions comparison is that, the Webster delay function has a 

similar behavior that the HCM function. Both functions are criticized because they 

overestimate the travel time when the flow surpasses the capacity. 
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Travel time of the link dependent of degree of saturation (x/Q) for several functions types
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Figure 3. Behaviour of five travel time functions, where Qx  is in the horizontal axis and 

)0()( txt in the vertical axis 

CASE STUDY (NETWORK) 

In order to compare the travel time functions in a real situation, a real network was used, 

which is formed of two paths, called Revolución y Segundo-Piso-Periférico, between one O-

D pair. This is a sub-network of the Mexico-City network. The Revolución path is composed 

of arcs with traffic lights, and the Segundo-Piso-Periférico path is a corridor with controlled 

access arcs. The length of each path is approximately 7.3km. 

 

Therefore, there are two kinds of arcs and, they need two different travel functions on arcs. 

 

Figure 4 shows a map of the network, and Table 1 shows the characteristics and parameters 

of the travel time functions in the arcs. 

 

The case study features are the following:  

a) The network has 32 arcs, 32 nodes, one origin, one destination and two paths. 

b) The attributes of arcs are length, number o lanes, lane’s width, flow direction, traffic 

count volume and free-flow speed.  

c) The attributes of intersections are traffic light phases, number of lanes for each 

movement, traffic count volume per each movement, control type, cycle time, 

effective green time, saturation flow, arrival rate, saturation degree and fix delay. 
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d) A known O-D matrix, which can vary with the time. 

e) The traffic count volumes, which vary with the time. 

The described network and information are used in the next section to analyze the dynamic 

behavior of several travel time functions, using the same network loading process (user 

equilibrium).  

 

 
Figura 4. Modelo de red con arcos cuyas funciones son diferentes. Elaboración en 

TransCAD. 
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Table 1. Characteristics and parameters of the travel time functions in the arcs of a Mexico 

City sub-network with two paths. 

Nª Arco

Effective 

green 

time (s)

Signal 

cycle 

length 

Saturation 

flow rate 

(veh/h/c)

Capacity 

of lane 

(veh/h/c)

Number 

of 

lanes_T

Total 

capacity 

(veh/h/c)

Max speed 

(km/h)

t (0) (s 

/ m of 

link)

link 

length 

SIG (m)

t (0) link (s/km) Alfa 

(α) 

Beta 

(β)

A

Revolución Andrea de Castagno 29 60,31 120,44 1900 951 8 7611 60 0,06 227,67 0,0037945000 0,550 2,000 0,75

Rembrandt 57 64,84 120 1900 1027 8 8213 60 0,06 226,84 0,0037806667 0,550 2,000 0,75

Antonio Van Dick 31 64,84 120 1900 1027 8 8213 60 0,06 306,46 0,0051076667 0,550 2,300 0,75

Mixcoac (2 sem) 58 y 60 69,77 120 1900 1105 5 5523 60 0,06 280,98 0,0046830000 0,600 2,400 0,75

2 Molinos 59 55,12 120 1900 873 6 5236 60 0,06 361,57 0,0060261667 0,400 2,500 0,75

Castañeda 62 64 120 1900 1013 4 4053 60 0,06 199,77 0,0033295000 0,600 2,350 0,75

Merced Gómez 61 79,52 120 1900 1259 4 5036 60 0,06 463,25 0,0077208333 0,420 2,600 0,75

3 Barranca del Muerto 40 54,66 120 1900 865 4 3462 60 0,06 402,26 0,0067043333 0,420 2,000 0,75

Macedonio Alcalá 41 70,21 120 1900 1112 4 4447 60 0,06 283,11 0,0047185000 0,590 2,300 0,75

Corregidora 63 84,97 120 1900 1345 4 5381 60 0,06 131,75 0,0021958333 0,900 3,000 0,75

Sofia 42 77,46 120 1900 1226 4 4906 60 0,06 212,05 0,0035341667 0,800 2,300 0,75

R. Boker 64 62,06 120 1900 983 4 3930 60 0,06 180,14 0,0030023333 0,750 2,000 0,75

Tlacopac 65 76,57 120 1900 1212 4 4849 60 0,06 196,04 0,0032673333 0,800 2,400 0,75

Maria Luisa 66 76,19 120 1900 1206 4 4825 60 0,06 323,82 0,0053970000 0,600 2,300 0,75

Desierto de los Leones 67 104,65 120 1900 1657 4 6628 60 0,06 269,95 0,0044991667 0,400 4,800 0,75

Altavista 45 63,97 120 1900 1013 4 4051 60 0,06 194,89 0,0032481667 0,700 2,150 0,75

4 Madero 78 61,06 120 1900 967 4 3867 60 0,06 84,14 0,0014023333 0,950 2,000 0,75

Dr Gálvez 46 72,29 120 1900 1145 4 4578 60 0,06 281,4 0,0046900000 0,600 2,300 0,75

Rey Cuauctémoc 68 74,7 120 1900 1183 4 4731 60 0,06 168,87 0,0028145000 0,850 2,350 0,75

Altamirano 48 59,69 120 1900 945 4 3780 60 0,06 283,9 0,0047316667 0,600 1,900 0,75

Eje 10 Sur 49 52,21 120 1900 827 4 3307 60 0,06 142,43 0,0023738333 0,700 1,800 0,75

Río MagdalenaxIglesia 50 87 120 1900 1378 5 6888 60 0,06 832,11 0,0138685000 0,250 3,300 0,75

Río MagdalenaxFraternidad69 87 120 1900 1378 5 6888 60 0,06 235,44 0,0039240000 0,700 3,000 0,75

S Jerónimo 70 87 120 1900 1378 5 6888 60 0,06 544,65 0,0090775000 0,350 3,000 0,75

5 G. San Jerónimo 71 44,73 120 1900 708 5 3541 60 0,06 533,87 0,0088978333 0,320 2,000 0,75

Sum Revolución 7367,36 0,1227893333

Sum flow

Segundo Piso PeriféricoSan Antonio Segundo Piso Periférico1 2200 2200 3 4400 60 0,06 436,6 0,0072766667 0,040 3,000 0,1

Periférico 74 2200 2200 2 4400 60 0,06 1188,13 0,0198021667 0,035 3,400 0,1

73 2200 2200 3 4400 60 0,06 201,27 0,0033545000 0,040 3,000 0,1

75 2200 2200 3 4400 60 0,06 878,91 0,0146485000 0,040 3,000 0,1

76 2200 2200 3 4400 60 0,06 1464,02 0,0244003333 0,040 3,000 0,1

77 2200 2200 3 4400 60 0,06 3104,63 0,0517438333 0,040 3,000 0,1

Sum Segundo Piso Periférico 7273,56 0,1212260000  
 

TRAVEL FUNCTIONS ANALYSIS 

Two network loading processes were carried out for the previously described network; the 

assignment used the convex combinations o Frank-Wolf algorithm (Frank-Wolfe, 1956). 

Each process involved two travel time functions, which were suitable for each type of arc. 

 

The cost function and the algorithm for the estimation of flow on each arc, have interesting 

characteristics. It is important to guarantee that the travel time functions ( )(xta ) are positive, 

increasing and differentiable, that the total cost function ( )( axz ) is increasing, differentiable 

and convex. 

 

Also, it is important to guarantee that existence and unique solution requirements are 

accomplished by the optimization sub-problem (it is a cost minimization problem).  Then, an 

analysis for determining the limits of the parameters (as the analysis time parameter, which 

depends on the flow/capacity rate) was carried out. 

 

The network loading processed and the travel time function are described below. 

Process 1: Network loading with a mixed travel time function 

The mixed travel time function is composed of, the BPR function for the controlled access 

arcs, and the free-flow travel time plus the Webster uniform delay plus the Webster overflow 

delay, for the arcs with traffic lights. 
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For a controlled access arc, the travel time on the arc is always positive, and the function is 

increasing. The contribution of this arc to the system’ cost ( )( axz ) is positive and contribute 

to make that it be increasing. It is as follows: 
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The contribution of a controlled access arc in the minimization subproblem is the following: 
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, where the last term 

corresponds to other type of arcs. 

 

The terms of the minimization sub-problem, for the searching of  , are dominated by the 

difference )( n

a

n

a xy  . Hence, the algorithm requires that this factor is positive. For the BPR 

function, this factor is always positive. 

 

For an arc with traffic lights, the travel time on the arc is composed of: the free-flow travel 

time plus the uniform Webster delay (which becomes a constant when x/Q=1) and plus the 

overflow delay, i.e., 
210)( aaaa ddtxt  , where: 
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T  is the analysis time, which is defined by the analyst previously to the network loading 

process. 

 

This function has a discontinuity in 1aX , but it is increasing and differentiable respect to 

ax , before and alter that 1aX . All of its terms are positive and contribute to the increasing 

of the function. 

 

The arc contribution to the system’ cost, )( axz , is the following: 
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where )( n

axz  is the cost of other type of arcs. 
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The logarithm of the second term of the sum is negative, then it is a positive contribution to 

)( axz . Hence, )( axz  is an increasing function. 
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axz  is the cost of other type of arcs. 
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  (for arcs with traffic lights). 

  

The contribution of a controlled access arc in the minimization sub-problem is the following: 
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the last term corresponds to other type of arcs. 
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a xy   factors are positive and then the algorithm for 

searching   would have a good behaviour. 
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the last term corresponds to other type of arcs. 
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Given that 10   , and 
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guarantees the requirements for using the Frank-Wolfe algorithm for solving the traffic 

assignment problem. 

Process 2: Network loading with a mixed travel time function 

The mixed travel time function is composed of, the free-flow travel time plus the Akcelik time 

dependent overflow delay, for the controlled access arcs, and the free-flow travel time plus 

the Webster uniform delay and plus the the Akcelik time dependent overflow delay, for the 

arcs with traffic lights. 
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The contribution of this arc to the system’ cost ( )( axz ) is the following: 
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For an arc with traffic lights, the travel time on the arc is the following:  
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where the last term corresponds to other type of arcs. 
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where the last term corresponds to other type of arcs. 
 

Given that 10   , all of the )( n
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n

a xy   factors are positive. 

  

Therefore, it is not necessary to limit the value of T, for guarantee a good behaviour of the  

Frank-Wolfe algorithm. 



Travel Functions on Arcs for Dynamic Traffic Assignment Models in Urban Networks 
LONDOÑO, Gloria; LOZANO, Angélica 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

RESULTS 

The network loading processes 1 and 2, were applied to the previously described México 

City sub-network, considering a demand equal to 20,000 trips/h and an analysis time equal 

to 2 minutes. 

 

The convex combinations algorithm was programmed in C#. It interacts with the TransCAD 

files in order to obtain the network characteristics, and executes the network loading process 

with a known demand. Then, the results are sent to TransCAD files, for displaying them in a 

GIS (Geographic Information System). 

 

Additionally, a third network leading process was carried out, using the BPR function for all of 

the arcs, just for comparison reasons. The   and   parameters were calibrated. 

 

The results of the three processes are shown in Figures 5, 6 and 7. Table 2 shows a 

summary of these results. 

 

In Table 2, the cost is lower is obtained when the BPR function is used; this is because such 

function ignores the fix and overflow delays produced by traffic lights. Instead, the mixed 

functions of process 1 and 2 allow obtain fixed and overflow delays produced by traffic lights, 

then they are more realistic. 

 

 
Figure 5. Estimated flow in the Mexico City sub-network, using the Process 1. 
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Figure 6. Estimated flow in the Mexico City sub-network, using the Process 2. 

 

 
Figure 7. Estimated flow in the Mexico City sub-network, using the Process 3. 

N 

N 

N 
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Tabla 2. Summary of  the results of the three process application 
Flow on 

Revolución

Flow on 

Periférico

(veh/h) (veh/h)

1: Mixed function including

Webster and BPR functions

3,417 5,155 14,844 0.34 0.32

2: Mixed function including

Webster and Akcelik functions

4,499 4,942 15,057 0.35 0.36

3: BPR function 3,166 6,814 13,186 0.26 0.26

Process  (h) Travel time on 

the Revolución 

path (h)

Travel time on 

the Periférico 

path (h)

)( axz

 
 

The objective of this analysis was to prove the algorithm’s performance, by means of the use 

of combined functions, which has been satisfactorily made.  

 

The convergence routine of the C# program will be improved to obtain equal times on the 

paths, for processes 1 and 2. 

CONCLUSION 

A review of the state of the art on dynamic function in DTA problems was presented, 

considering an analytical and macroscopic approach, emphasizing on the travel time on the 

arc, the functions’ characteristics and their potential for making realistic estimations. 

 

Any DTA model must have desirable properties as causality and correspondence with the 

static problem. The DTA problem can be formulated as a bi-level problem. In the lower level, 

the flow is estimated under static case considerations, generating an initial value for the 

dynamic variable ax , which feeds the upper problem, where the dynamic variables ax , 

au , av  have a relation.  

 

This paper deals with process for the lower level, incorporation travel time functions, which 

are flexible to changes in the supply and adaptable to different type of arcs. 

 

Mixed travel time functions are proposed, which include flow dependent delays, overflow 

delays and delays due to traffic lights. Such functions are propagated, by means of the 

Frank-Wolfe algorithm, and their behaviour as well as their parameters’ constraints, are 

analyzed. 

 

Some functions allow obtain realistic estimations and accept changes on the arc 

characteristics. They are widely used in microscopic analysis. However, their incorporation to 

macroscopic analysis, even in the static case, constitutes a powerful resource for the 

transportation planning, and it is a contribution to the research on traffic assignment on urban 

networks. 

 

The application to a real network generates interesting results and proves that the algorithm 

can incorporate mixed functions, with a possible small limitation to the analysis time. 
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