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ABSTRACT

This paper presents the application of the agent-based transport simulation toolkit MATSim-T to
a large-scale scenario of Switzerland. The scenario is called large-scale because ca. 6 million
synthetic persons, “agents”, are simulated on a high-resolution network model with >1 million
links. MATSim-T is able to compute a relaxed state of the simulation system within 60 iterations
of the learning-based solution procedure with regard to mode choice, car route choice and
choice of activity timing. This is achieved by applying improved optimization algorithms in the
replanning stage. A genetic algorithm is used for times and and mode choice optimization of
activity plans, together with an efficient implementation of time-dependent shortest path search
for route choice.

The improvements of the behavioral model reported in this paper are focused on the scoring
function which can process individualized parameters for measuring the quality of all-day activ-
ity plans. Combined with disaggregate input data for population and land use, it was possible to
build a heterogeneous and thus more realistic scenario. Furthermore, four modes of transport
(car, public transit, bike, walk) are considered in the presented application. The generalized
cost of the car option is determined by a queue simulation of traffic flow. In order to prove
the concept of mode choice optimization in a multi-agent microsimulation, the other modes are
modelled as abstract alternatives with static travel costs constant throughout the modeled av-
erage workday. It is shown how the model is calibrated against observed modal split data. The
results are validated with average workday count data. Despite the simple cost structure of the
mode alternatives, and due to a mode choice concept based on subtours, the observed spatial
distribution of the modal split can be reproduced within ±10 percentage points per mode.

Keywords: agent based transport simulation, large-scale system optimization, MATSim, paral-
lel computing, activity plans, multi-modal traffic model, Switzerland
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MOTIVATION

Location-based services provide information and other services depending on the temporal
and spatial position of the end user. A precise mapping of the end users’ travel behavior is
therefore crucial to the effectiveness of this kind of services. It would be ideal for the provider of
location-based services if every potential end user was equipped with a mobile device whose
position can be accessed on a regular basis. Modern information technology provides the
devices to precisely locate individuals, e.g. with GSM and GPS technology. Despite mobile
phones with an integrated GPS device having entered the retail market at a large scale, the
coverage is far from the required level to assess frequencies of people at a given location and
time of day. Important information for marketing purposes, such as the activity type a person
is engaged in, are difficult to obtain. Moreover, privacy issues restrict the automated storage
and processing of individual information.

An alternative to processing real-time positioning data in order to locate individuals is the sim-
ulation of their travel behavior. Conceptually it provides a comprehensive travel behavior anal-
ysis, including the decision making process of individuals. On the other side, simulation is a
statistical method whose purpose it is to reproduce observed distributions of travel behavior
variables. The spatio-temporal path of a simulated individual does not necessarily match the
actual movement of the real person, therefore the requirement of privacy protection is fulfilled.
As long as the aggregate analysis of distinct population groups is valid, the result of the travel
simulation of individuals can be used for the dimensioning of location-based services.

A promising approach to generate the desired data is multi-agent microsimulation. Large-
scale multi-agent traffic simulations are capable of simulating the complete day-plans of several
millions of individuals called agents (Meister et al., 2009). In contrast to traditional models, all
attributes that are attached to the synthetic travelers are retained during the simulation process,
thus enabling analysis on the level of the individual traveler. This paper reports on the results of
a research project which uses the open source multi-agent transport simulation toolkit MATSim-
T1 in order to generate a base case of individual travel demand for all of Switzerland. The
project was a cooperation between IVT, ETH Zurich and the privately owned company Axon
Active AG (formerly Datapuls AG) which is a business consultant for providers of location-
based services, amongst others (Balmer et al., 2010). The industry partner wants to use the
result of the base case in order to generate visiting frequencies for location-based services
of their clients. The scientific and computational challenges to generate these results are
detailed in this paper. These are (i) the handling of a scenario with a population of 106 agents
and a high-resolution network with 106 links which poses high performance requirements to the
software implementation, (ii) the efficient use of optimization algorithms for mode choice, car
route choice and choice of activity timing in order to obtain reasonable network flows, and (iii)
an improved behavioral model of the agent in order to meet the requirements of the industry

1See http://www.matsim.org, accessed on May 5, 2010
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partner.

The paper starts with a classification of the agent-based approach in the context of large-
scale dynamic transport modelling. This is followed by a description of the Swiss data which
were used to model demand and supply, as well as of the steps towards the modelling of
the individual travel demand. In the next section, the implementations of elements of the
agent-based simulation are specified. The calibration and the validation of the base case
are presented in the results section. Policy evaluations, i.e. parameter variations of the base
case are not part of this study. The paper closes with a summary and conclusions.

MULTI-AGENT TRANSPORT SIMULATION

From a transport modelling perspective, multi-agent simulation is a method to integrate activity-
based demand generation with dynamic traffic assignment.

Activity-based demand generation (ABDG) models generate a sequential list of activities and
trips connecting these activities for every person in the study area. Demand generation is
embedded in a concept of daily activity demand from which the need for transport is derived
(Kitamura, 1988). A major advantage of ABDG drawn on in this study is that the spatial and
temporal consistency of travel behavior can be ensured. For example, the mode chosen for
one trip may influence the mode choice for other trips of the daily plan. This is superior to tra-
ditional demand generation where aggregate traffic quantities represent isolated trips. Several
operational packages with a wide variety of methods have been developed, each of which is
applied to a different typical region. On the one hand, random utility theory is used to generate
daily activity plans. Examples are SACSIM for the Sacramento Area, California, and the com-
prehensive econometric microsimulator for daily activity-travel patterns (CEMDAP) applied to
the Dallas-Fort Worth Area (Bradley et al., 2010; Bhat et al., 2004). On the other hand, in a
rule-based approach demand generation is based on psychological decision rules observed in
stated-adaptation or other types of surveys. Examples include the travel activity scheduler for
household agents (TASHA) for the Greater Toronto Area, and the learning-based simulation
system ALBATROSS recently applied to the Netherlands in the context of an air-quality study
(Roorda et al., 2008; Beckx et al., 2009). An approach to introduce ABDG in traditional demand
generation uses hourly origin-destination (OD) matrices which are segmented by activity type
(Vrtic et al., 2007a). It is the state-of-the-art currently employed by the Swiss government
authorities responsible for mid- to long-term transport planning (Vrtic et al., 2005).

Most of the above approaches to generate a regional transport model have in common that only
the first three steps of the traditional four-step model are performed on the basis of individual
travelers. For the traffic assignment step, the trips listed in the activity plans are independently
aggregated to time-dependent (typically hourly) OD matrices which are fed into a dynamic
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traffic assignment (DTA). It assigns routes to time-dependent O-D flows so that the routes,
in conjunction with their resulting traffic pattern, fulfill some predefined criterion (Peeta and
Ziliaskopoulos, 2001). For example, the routes may fulfill a Nash equilibrium, meaning that at
no time of day can any O-D flow find a faster path than those that are already used. An often-
used alternative criterion is a time-dependent stochastic user equilibrium, meaning that each
O-D flow is distributed across possible routes following a prespecified distribution function at
each point in time. The typical way to solve the DTA problem is to use iterations between a
router and a traffic simulation (also called network loading algorithm). Flows on routes that do
not fulfill the prespecified criterion are slowly adjusted into the right direction. The iterations
stop when no more adjustments are necessary — that is, when the iterations have reached a
fixed point (Watling, 1996). Examples of DTA implementations are a dynamic version of VISUM
(Vrtic and Axhausen, 2003), DynaMIT (Ben-Akiva et al., 2002)2 and Dynasmart (Mahmassani
et al., 1992)3.

Conceptually, the iterative procedure of DTA can be extended to other dimensions of travel
decisions beyond route choice. Examples are “best-reply” models for departure time choice
(de Palma and Marchal, 2002; Ettema et al., 2005) or optimal mode choice. Elements of de-
mand generation are thus elevated from a simple pre-process to an integrated part of demand-
supply equilibration, as mode choice, departure time choice or even the activity sequence may
be susceptible to changes in traffic patterns. In the context of ABDG, the entire activity plan
becomes the unit of decision. At this point, multi-agent microsimulation is introduced. It is used
in this study such that the software objects representing travelers (“agents”) are retained not
only in the demand generation stage, but also in the assignment step (Rieser et al., 2007).
Personal attributes such as sociodemographic properties, the activity plan, and other internal
variables can be accessed during the entire modeling process. An agent-based approach to
iterative route assignment has been developed early in TRANSIMS (Simon et al., 1999) which
has recently been moved to open source4. Temporally consistent daily activity plans can be
directly implemented as the strategy of the agent. This is the main motivation for the use of
agent-based simulation in this study.

The repeated realization of ABDG in an iterative process becomes computationally more ex-
pensive the more dimensions of travel behavior are included, and the more complex the de-
mand calculation becomes. Think e.g. of shortest-path search in high-resolution networks or
the calculation of complex random utility models for ABDG such as the model by Bowman and
Ben-Akiva (2001). To resolve this issue, learning is introduced in the feedback cycle: An agent
can hold a set of activity plans in its “memory”, and chooses one of them for the traffic simula-
tion (Raney and Nagel, 2006). The agent will thus not immediately “forget” the activity plan it
executed the iteration before, but may use it again in later iterations. The evaluation of the plan
may change from iteration to iteration, depending on the respective traffic conditions.

2http://mit.edu/its, accessed on May 5, 2010
3http://mctrans.ce.ufl.edu/featured/dynasmart/, accessed on May 5, 2010
4http://www.transims-opensource.net, accessed on May 5, 2010
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Figure 1: Structure of the MATSim-T simulation system

The simulation structure of the resulting coevolutionary system is depicted in 1, and can be
summarized as follows.

Initial demand For every agent, one initial activity plan is generated. Input data such as
population and land use data, as well as network data are processed to generate this
initial demand. The agent database, which holds the agents and all their attributes in the
RAM, reads the initial plans file, creates the agent objects and loads their plans into their
memory as specified by the file. Since each agent usually has only one plan, it marks
that one as “selected”, indicating it has chosen that plan for execution (see next step).
The data used in this study and the initial demand generation process are outlined in
section Data base and initial demand generation on page 7.

Plan execution In the plan execution step, the selected activity plans are simulated along the
timeline in the model representation of the physical world. Implementations of the plan
execution have to take into account boundary conditions of the infrastructure in which
activities and movements are performed. These are e.g. the maximum storage and flow
capacities of the road network, or opening times of activity facilities. Moreover, activity
plans force an agent not to leave an activity before it has arrived there. The result of
the plan execution is a list of events which are localized in time and space. They contain
information about when an agent was performing an activity, travelling, entering or leaving
a network link etc. These events are handled by the subsequent elements of MATSim-T
(scoring, replanning, analysis etc.). The details of the traffic simulation are presented in
section Plan execution on page 12.

Scoring The agent database reads the events information from the plan execution step and
sends each event to the agent which generated it. Each agent uses its events to calculate
the new score of its selected plan — the one which was most recently executed. The
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scores of the other, not selected plans is not modified. The scoring function used in this
study is described in section Scoring on page 13.

Agent memory update The initial demand typically consists of one activity plan per agent.
Every time an agent is selected for replanning (see next step), another plan is added
to its memory. An agent can maximally hold nplans in its memory, plus another one if
the agent was selected for replanning in the current iteration. In this case, one plan
will be removed at the beginning of the next iteration. In this study, the plan with the
worst score is removed from the memory. This is a variation of elitist selection in genetic
algorithms, which guarantees that the individual with the highest fitness will survive the
selection process to the next generation (De Jong, 1975). In this study we use a value
of nplans=2. The value had to be chosen that low because many agents with very long
route descriptions had to be handled in a limited quantity of RAM. Generally, values of 3
or above are desired.

Plan selection Each agent decides which plan to select from its memory for execution in the
next iteration. It chooses from the following options:

Replanning With a probability of preplan,m, the agent is chosen for replanning by replan-
ning module m. It selects a random plan from its memory, and sends a copy of
it to the replanning module. After this copy will have been modified by the replan-
ning module, it is added to the agent memory. The modified copy is then marked
as selected for execution in the next iteration. While the probabilities preplan,m may
have different values, and may differ from iteration to iteration, in this study the same
value is used for all replanning modules across all iterations.

Probabilistic selection For agents not chosen by a replanning module, one existing
plan is selected for execution according to the following equation:

P (i) =
eβscore·Si∑
j e

βscore·Sj

with P (i) being the selection probability of plan i out of all j plans in the agent’s
memory, given their scores Sj . βscore is the score parameter for plan selection.
The higher the value of βscore, the more the agent tends to choose the plan with
the best score. In this study we use a value of βscore=2.0 which was also used in
previous studies (Raney and Nagel, 2006). If a plan has no score for any reason,
it is selected automatically. The purpose of this selection strategy is to reevaluate
existing strategies in order to make them comparable to new activity plans generated
by replanning modules. The logit-type formula achieves an agent-based stochastic
user-equilibrium, with the activity plan being the unit of choice (Nagel and Flötteröd,
2009).

Termination The iteration cycle is stopped after the properties of the system fulfill some stop-
ping criterion. Conceptually, the system has to run until the agents cannot significantly
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improve the score of the executed plans, that is when an agent-based stochastic user-
equilibrium is reached. As no formal stopping criterion was available for this study, the
iteration cycle is stopped after a fixed number of 60 iterations. See section Termination
on page 19 for details.

DATA BASE AND INITIAL DEMAND GENERATION

This section describes the data that are available for the generation of travel demand and
supply. Usually, data are delivered in different formats and levels of detail. The MATSim-T
software used to model the initial individual demand is able to combine these various data
sources via standardized XML formats in order to generate daily activity plans (Balmer et al.,
2006).

Network model

A major objective of this study is to simulate car traffic on a high-resolution model of the Swiss
road network. These networks provide the basis for GPS navigation devices. While there are
open-access alternatives5, the network used in this study is based on the proprietary TeleAtlas
MultiNet Specification 4.3.2.16. It describes the Swiss road infrastructure for the period from
the autumn of 2008 to the spring of 2009. While network topology and maximum link speeds
are very precise, the number of lanes per driving direction and the flow capacities are not part
of the dataset. These data are imputed based on the TeleAtlas road classification.

The high resolution of the network model is expected to substantially increase the computa-
tional burden of the simulation system, mainly of the algorithms for shortest-path search and
the simulation of the traffic flow (see later). It is therefore a part of the performance optimiza-
tion that the level of detail of the network data is minimized without losing essential information
for the traffic flow simulation and for the comparison of simulated and actual traffic flows. Two
steps were taken in order to free the network model from unused information: First, the original
polyline encoding of the road segments was deleted. This was possible because the actual
topology of the road segments is irrelevant to the implementation if the traffic flow simulation
used in this study. The lengths of the polyline elements were summed up as the length of the
road segment. Second, adjacent road segments with equal attributes and without junctions in
between were merged to a single road segment. The resulting MATSim XML network model
consists of 472’819 junctions (MATSim nodes) and 1’035’305 road segments (MATSim links).

5For example, http://www.openstreetmap.org, accessed on May 5, 2010.
6http://www.teleatlas.com/OurProducts/MapData/Multinet, accessed on May 5, 2010.
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Count data

The simulated traffic flows are validated with average hourly workday flows calculated from
semi- and fully automated counting stations. The counts used here are provided by several
government authorities which are responsible for different parts of the Swiss road network.
The counts are from the years 2004–2008, depending on the source and covers the following
regions/road types: (i) Motorways and other federally funded roads, provided by the Swiss Fed-
eral Roads Office (ASTRA), (ii) major roads of the Cantons Basel-Land, Grisons, Neuchâtel,
and Zurich, and (iii) the City of Zurich.

Overall, 665 series of average hourly counting data were manually mapped to the network
described in section Network model on page 7. The hourly averages of each counting station
take into account all data of Tuesdays, Wednesdays and Thursdays, except holidays, and
omitting the respective upper and lower 2.5% percentiles.

Activity facilities

Besides the network, the study region is mainly characterized by its land use. It determines
what types of activities can be performed in which places. For an activity-based travel demand
model with a high-resolution network, the land use information should be of high resolution,
too. In MATSim-T, each activity is mapped to exactly one activity facility, a spatial entity with
a coordinate and additional attributes such as opening times or capacity. The activity facility
itself is mapped to exactly one network link. Several activity facilities can be mapped to the
same link. This is equivalent to a zone-based traffic supply model with each link being a traffic
analysis zone.

The study distinguishes five main activity types: home, work, education, shop and leisure.
For the locations of homes, building information related to the population data was used (see
section Activity based initial demand generation on page 9). The activity facilities for work
were generated from the Swiss National Enterprise Census (Swiss Federal Statistical Office,
2001). This dataset contains, per hectare, the exact number of full-time equivalents (FTE)
in industry and services, as well as the exact number of employers in different size classes
concerning the number of FTE. For each employer, one activity facility was generated with a
random coordinate in its hectare. The FTE were distributed among all employers in that hectare
proportinally to their size class. For all of Switzerland, 382’979 work facilities were generated.
Depending on the type of the employer, they were assigned additional activity types education,
shop, or leisure. The opening times, which are important boundary conditions for the scoring
of daily activity plans, are based on simple assumptions about working hours, and publicly
available data on shop opening hours (Meister, 2008).
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Public transport

The result of the car traffic flow simulation is a fully agent-based, link-level description of car
trips. There was no large-scale activity-based equivalent operational for public transport at the
time this study was conducted. However, it is possible to implement mode choice in MATSim-T
without the microscopic simulation of public transport. In this project, public transport travel
times are estimated with input data from the transport model employed by the Swiss Federal
Government (Vrtic et al., 2005). This model provides a list of ≈15’000 public transport stops.
It also provides a travel time matrix between the centers of the 3’114 Swiss municipalities. The
travel times are calculated searching for the shortest path in the timetabel of public transport
services.

Activity based initial demand generation

The modeling of the initial demand comprises the generation of a synthetic agent population as
well as the generation of one complete initial daily activity plan of an average workday. Usually,
the generation of the synthetic population is based on Public Use Microdata Samples which are
extrapolated to the full population of the study region, using the method of Iterative Proportional
Fitting (Beckman et al., 1996). In this study, an existing data set of 5’986’051 Swiss persons
hosted by the industry partner was used, which is an 88% sample of the Swiss population7.
Each record in this data set could straightly be converted to one agent of the simulation. The
extrapolation of a subsample was thus not necessary.

For each agent, one initial activity plan is constructed according to the following procedure
(Ciari et al., 2008):

Distribution of activity chains The Swiss Microcensus on Travel Behavior is used as the
data basis for distributing activity chains to the synthetic agent population (Swiss Federal
Statistical Office, 2006). A very simple but effective and robust solution is to uniformly
draw an activity chain from the Microcensus based on the individual sociodemographics.
The survey is therefore divided into 80 groups based on “gender”, “has work”, “has edu-
cation”, “has driving license” and 5 different “age” groups (≤6, 7-14, 15-17, 18-65, ≥66).
The random draw is weighted according to the person weight of the Microcensus. As a
result, the relative bias of the distributed chains compared to the Microcensus chains lays
below 0.7%. In this step, the 5 main activity types mentioned before are segmented into
overall 10 activity types: home, work (industry/sector 2, services/sector 3), shop, leisure,
education (kindergarten, basic primary school, secondary school, higher education, and
other).

7In order to obtain valid results, the values for storage and flow capacities of the network are adapted propor-
tionally. A sample size of 88% is expected to be large enough in order to give meaningful results.
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Assignment of primary activity locations The location of the homes of all agents is given
by the dataset provided by the industry partner. Next, the activity locations for work and
education are chosen. Aggregate numbers on the municipality level of detail are given
by the Swiss National Census (Swiss Federal Statistical Office, 2000). Therefore, the
primary locations are directly converted from the census. In a microscopic view, Swiss
municipality level of detail is actually too rough. By using the information about activity
facilities described above, a weighted random draw of work and education location is
performed to distribute the locations inside the given municipality.

Assignment of secondary activity locations There is no information available in the Na-
tional census about the locations of shop and leisure-type activities. Based on the given
locations of the primary activities, and the dataset on activity facilities, a “neighbourhood
search” algorithm is adopted such that it selects given facilities around the primary loca-
tions and draws one of them weighted, based on the capacities of the facilities.

While the above attributes will remain fixed during the iterations, the following are variable and
will be optimized according to the behavioral model fomulated in a scoring function. Although
arbitrary (e.g., random) initial values could be used, these attributes are initialized close to the
supposed final values.

Activity durations Just like the distribution of activity chains, the initial activity durations are
drawn from observations of the Microcensus. Furthermore, it is assumed that the ob-
served distribution of time among the activities is close to the preferred time budget per
activity, which is an important parameter of the behavioral assumptions described in sec-
tion Scoring on page 13.

Initial mode choice The following five transport modes are considered in the initial demand:
car, public transport (pt), bike, walk, and ride. In this study, the decision unit related to
mode choice is the subtour8. The initial mode distribution is calculated with a discrete
choice model estimated with observed data again from the Swiss Microsensus. The
average trip rate per person is 3.7 which conforms with the observation average.

Initial route choice The routes in the initial plans are calculated with a shortest-path algo-
rithm also used in the iteration process, assuming free speed network conditions (see
section Router on page 17).

See Fig. 2 for an example agent with one initial daily activity plan.
8The term subtour is defined as follows. A tour is a set of consecutive trips in an activity plan where the origin

activity of the first trip and the destination activity of the last trip are performed at the same location. A tour may
consist of several subtours if another tour can be identified within it. Thus a subtour can be defined as a tour within
another tour, while its trips not necessarily have to be consecutive.

12th WCTR, July 11-15, 2010 – Lisbon, Portugal

10



Large-scale agent-based travel demand optimization applied to Switzerland, including mode choice
MEISTER, K.; BALMER, M.; CIARI, F.; HORNI, A.; RIESER, M.; WARAICH, R. A.; AXHAUSEN, K. W.

Figure 2: Example initial daily activity plan in the MATSim XML plans format.

<person id="98765" sex="f" age="32" license="yes" car_avail="always"
employed="yes"> <travelcard type="unknown" />

<desires>
<actDur type="leisure" dur="01:00:00" />
<actDur type="work_sector2" dur="07:45:00" />
<actDur type="home" dur="15:15:00" />

</desires>

<plan score="" selected="yes">
<act type="home" link="l1" facility="f1" x="609873.0" y="192409.0"

start_time="00:00" dur="07:47" end_time="07:47" />
<leg mode="car" dep_time="07:47" trav_time="00:00" arr_time="07:47">

<route dist="1000.0">node4-node8-node14</route>
</leg>
<act type="work_sector2" link="l2" facility="f2" x="609594.0" y="190841.0"

start_time="07:47" dur="04:00" end_time="11:47" />
<leg mode="pt" dep_time="11:47" trav_time="00:00" arr_time="11:47">

<route>stop8571621-zone616-zone35101-stop8507110</route>
</leg>
<act type="leisure" link="l3" facility="f3" x="600643.0" y="199514.0"

start_time="11:47" dur="01:00" end_time="12:47" />
<leg mode="pt" dep_time="12:47" trav_time="00:00" arr_time="12:47">

<route>stop8507110-zone35101-zone616-stop8571621</route>
</leg>
<act type="work_sector2" link="l2" facility="f2" x="600438.0" y="199855.0"

start_time="12:47" dur="03:45" end_time="16:32" />
<leg mode="car" dep_time="16:32" trav_time="00:00" arr_time="16:32">

<route dist="1100.0">node15-node9-node5</route>
</leg>
<act type="home" link="l1" facility="f1" x="609873.0" y="192409.0"

start_time="16:32" />
</plan>

</person>

It consists of the sociodemographic agent description, the preferred time budget per activity type (desires), and
the initial activity plan. The plan is essentially a list of activities in chronological order. The trips connecting the
activities are denoted by leg.
In this example, agent #98765 leaves its home at 07:47 AM in order to go to work by car on a route via the network
nodes 4, 8, and 14. After 4 hours, it goes on a subtour by public transport (pt) for a leisure activity with the duration
of 1 hour. This leisure activity is located in a different zone (616) than the work activity (35101), whereas “zone”
means municipality in this application. The agent leaves the second work activity at 16:32.
All attribute values in normal face are predefined and will not be altered during the iterations. The attribute values
in bold face (leg modes, activity and leg time information, routes) can be modified by the replanning modules.
For better readability, route descriptions have been simplified. Also, time information is presented in the format
HH:MM, while it originally is HH:MM:SS.

IMPLEMENTATION OF MATSIM ELEMENTS

This section presents in some more detail implementations of the MATSim simulation system
(Fig. 1) which have been adopted/improved for the study at hand.
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Plan execution

Each trip with the mode car will be executed in a traffic flow simulation. This simulation con-
sists (i) of loading the agent on the network link at which the previous activity is located at a
given departure time, (ii) of moving the agent along a given route through the network, where
it might interact with other agents under way, and (iii) unloading the agent from the network at
the link of the destination activity. There is a variety of models for the simulation of car traffic
with discrete entities such as agents, including car-following models or cellular automata (for
a comprehensive review, see Helbing, 2001). These simulations directly model the driving be-
havior, and thus are quite complex and have too high computing requirements for the repeated
simulation in large-scale scenarios. Mid-to-long term transport planning requires a method
which generates valid approximations of link speeds and link travel times without the costly
detailed simulation of driving behaviour. This requirement is fulfilled by the queuing model (Si-
mon et al., 1999). In this model, each road segment is modelled as a FIFO waiting queue,
with a minimum service time of the length of the road segment divided by the maximum travel
speed. The maximum number of vehicles that a queue can release equals the road capacity,
depending on the number of lanes etc. The maximum flow capacity is thus a predetermined
value, as opposed to models with on-link dynamics where the maximum flow emerges from
the number of vehicles and their interactions.

In this project, an event-driven implementation of the queue simulation is used. Event-driven
refers to the fact that only events are simulated when a vehicle enters or leaves a road segment
(Charypar et al., 2007). This implementation is much more efficient than a parallel link update
simulation of the network with equidistant timesteps which is typically used for the simulation
of on-link-dynamics (Cetin, 2005). The only concept related to on-link dynamics integrated into
the queueing simulation is a gap between vehicles travelling backwards at constant speed in
the case of traffic jam resolution, bringing in some notion of kinematic waves represented in
their full scale in macroscopic traffic models based on fluid dynamics (Helbing, 2001).

Trips with modes other than car can also be interpreted by the implementation used in this
study (Waraich et al., 2009). They are not executed in the physical environment. Instead,
the travel time is a predetermined value which is generated by the replanning module which
generates the routes (see section Router on page 17). The execution of such trips is reduced
to “teleporting” the agent from the origin to the destination activity in exactly the planned time,
which means that trips with a mode other than car do not generate any interaction in the
physical world.

The complete integration of the traffic flow simulation in MATSim-T allows it to directly read
activity plans from the agent database which is entirely held in the RAM. Moreover, the gener-
ated events can be immediately transferred to the subsequent tasks that handle them. Time
consuming saving of temporary results on the hard disk or any (de)compression of data as
in previous versions become unnecessary. The implementation used in this study exploits
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the opportunity of parallel computation on multi-core processors such that the handling of the
events can happen immediately after they have been generated. The more processor cores
are available, the more event handlers can be run in parallel.

Scoring

In order to compare activity plans, they are evaluated with a measure of general utility, called
score. The related scoring function describes the agent’s preferences.

The score of a daily activity plan, Uplan, is

Uplan =
n∑
i=1

(Uact,i + Utravel,i + Uwait,i + Ushort,i)

with n being the number of activities, Uact,i being the score performing activity i, Utravel,i being
the score of traveling to activity i, Uwait,i being a penalty for waiting instead of performing
activity i, and Ushort,i being a penalty for performing activity i for a too short duration (Charypar
and Nagel, 2005). See the sections below for a detailed description of the various scoring
elements.

Performing an activity

The (usually positive) score of performing activity i, Uact,i, is

Uact,i = (Ucum,j − Ucum,j−1) · fp

with Ucum,j being the cumulative score of all activities of the same type as activity i, of which i
is the jth instance when ordered ascending temporally. This cumulative score is

Ucum,j =

max
(
0, βperf · t∗ · ln

(∑j
k=1 tperf,k

t0

))
j > 0

0 j = 0.

βperf is the marginal utility of another unit of time spent performing an activity. t∗ is the ex-
ternally defined desired time budget of the agent for spending time performing one or more
activities of the same type as activity i. tperf,k is the time spent performing the kth activity of
the same type as activity i (see desires section of the activity plan in Fig. 2). t0 is the zero
of the logarithmic function and is proportional to t∗. In other words, this scoring function cumu-
lates scores by activity type and does not require a time allocation between several activities
of the same type beforehand. The advantage is that one does not have to define a large set
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of parameters for desired activity durations as it was necessary in previous studies (Meister
et al., 2009). Moreover, the values of t∗ are defined per agent and thus represent random taste
variations whose consideration has been put forward also in discrete choice analysis (Chesher
and Silva, 2002).

fp denotes a factor which may negatively influence the score of a shop or a leisure activity if
the related facility is too crowded (Horni et al., 2009):

fp =

min
(
βload,1 ·

(
load

capacity

)βload,2
, 0.5

)
, if activity type ∈ {shop, leisure}

1.0 otherwise.

with βload,1 and βload,2 being the parameters of the capacity restraint function, load being the
number of agents that perform an activity of the same type at the same facility and the same
time as activity i, and capacity being the maximum number of agents that the facility can
accommodate for that activity type.

Traveling

The score for traveling from activity i-1 to activity i by the transport mode mode, Utravel,i,mode,
is

Utravel,i,mode = Uaccess/egress,mode + βtt,mode · tmode + βcost,mode · cmode

with βtt,mode being the marginal utility of another unit of time traveling by mode, βcost,mode being
the marginal utility of another unit of money spent on traveling by mode. tmode denotes the
in-vehicle travel time, and cmode is the expenditure of money required for traveling with mode.
Uaccess/egress,mode denotes the (usually negative) score of access/egress to/from a vehicle if the
mode is different than walk.

The calculation of the score for traveling is most simple for the mode walk. With no ac-
cess/egress costs, and no monetary expenditure, only the term for travel time has to be con-
sidered. In the case of the mode bike, a fixed score Uaccess/egress,bike is added to the term for
travel time, which reflects the access and egress from/to the means of transportation. Note
that access and egress do not take simulation time, only the related score of the opportunity
cost is added.

For the mode car, the in-vehicle travel time tcar is obtained from the traffic flow simulation
described in section Plan execution on page 12. The monetary expenditure ccar is ccar =

ckm,car · dcar with ckm,car being the (constant) cost of traveling 1km by car, and dcar being the
trip distance, which is the sum of the lengths of the route’s road segments. As for the mode
bike, the score for access and egress is added.
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For the public transport alternative (mode pt), the monetary costs cpt are

cpt =

dpt · ckm,pt without public transport season ticket

dpt · ckm,pt,travelcard with public transport season ticket

with ckm,pt being the cost of travelling one kilometer by pt without a season ticket, accordingly
ckm,pt,travelcard with a season ticket. dpt is the trip distance which equals the crow-fly distance
between the two public transport stops closest to activities i-1 and i, respectively, multiplied
with a factor of 1.5. The in-vehicle travel time tpt equals the average travel time between the
centers of the Swiss municipalities in which the public transport stops are located (Arendt and
Vrtic, 2006). If both stops are located in the same municipality, a constant public transport travel
speed vpt is assumed. This value is based on speed measurements of public transport vehicles
in the Canton of Zurich, as well as observed door-to-door travel times of public transport trips
(Hackney, 2005). For access and egress to/from the public transport stop, the required time
for walking from/to the closest activity location is added to the in-vehicle travel time. These
imaginary walk trips are scored with the parameters related to the walk mode.

Penalties

Two penalties are applied if the agent spent time in an undesired manner. First, an agent must
spend time waiting if it planned to perform an activity outside the opening time of the related
activity facility, e.g. waiting before a shop opens. The score of waiting instead of performing
activity i, Uwait,i is

Uwait,i = βwait · twait

with βwait being the marginal utility of waiting time, and twait being the actual waiting time. Note
that it is possible that e.g. an agent arrives at 7:50 AM, waits for ten minutes for the shop to
open at 8:00 AM, and immediately starts to perform a planned activity of the type shop for the
rest of the planned activity duration.

The penalty for performing activity i short is

Ushort,i = βshort ·max (0, (0.5h− tperf,i))

with βshort being the marginal utility of another unit of time which is missing to the minimum
activity duration of 0.5h, and tperf,i being the time spent performing activity i. This penalty is
necessary in order to prevent that activity i is assigned the entire desired activity duration if
there are further activities of the same type as activity i, which would possibly have a duration
of 0s. This parameter would not be necessary if an agent could decide to add or remove
activities from its plan. In this study, the activity chains are fixed.
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Summary of scoring parameter values

The values of the scoring function parameters are based on different sources of information.
They are deduced as follows.

• The marginal utility values for performing an activity, waiting, and travelling by car are
taken from a parameter estimation exercise for a bimodal (car/pt) MATSim study of
Switzerland (Kickhöfer, 2009):

βperf=2.26/h; βtt,car=0.0/h; βwait=0.0/h

As long as βperf > βtt,car and βperf > βtt,car, the opportunity costs of traveling by car
and waiting are negative, which is an incentive for the agent to spend as much time as
possible performing activities.

• The parameters of the capacity restraint function of activity locations are taken from
(Horni et al., 2009):

βload,1=0.13; βload,2=5.0

• Performing an activity short is penalized very hard, compared to the value of βperf , in
order to maintain minimum durations in the fixed actvity chain:

βshort=-180.0/h

• The values of the marginal utilities for spending time traveling by modes other than car,
as well as the marginal utilities for monetary expenditures of all modes are the result of a
manual calibration procedure. The purpose of the calibration procedure is to reproduce
observed modal split distributions with respect to trip distance and trip duration. See
section Results of the modal split calibration on page 21 for a short description, as well
as the results concerning the modal split.

βtt,pt=-2.0/h; βtt,bike=-16.0/h; βtt,walk=0.0/h

βcost,car=0.0/h; βcost,pt=-0.8/h; βcost,walk=-0.1/h

A behavioral interpretation of these values cannot be given here because they are not
the result of a model estimation, but are inferred from the calibration procedure which
imposes a desired modal split. It is not the purpose of this study to find meaningful
parameters for the scoring function. As a consequence it is important to note that it is
possible to calibrate the large-scale multi-agent transport simulation system presented
here in order to obtain a meaningful modal split.

• The average monetary expenditures per kilometer for motorized modes of transport are
based on Swiss values documented in Vrtic et al. (2007b).

ckm,car=0.12 CHF/km; ckm,pt=0.28 CHF/km; ckm,pt,travelcard=0.14 CHF/km9

9CHF - Swiss Francs (Swiss currency)
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The value for ckm,pt,travelcard is a weighted mean between the values for travelers with an
all-Switzerland half-fare card (“Halbtax”, 0.15 CHF/km), and an all-Switzerland travelcard
(“Generalabonnement”, 0.08 CHF/km).

• The constant average speed of the pt mode is based on speed measurements in the City
of Zurich (Hackney, 2005). The speeds for bike and walk are arbitrary assumptions.

vpt=15.7 km/h; vbike=14.0 km/h; vwalk=2.8 km/h

• The assumed access and egress time per trip to/from the means of transportation for the
modes car and bike is

taccess,car/bike=tegress,car/bike=5 min (Mogridge, 1997).

The related costs for access and egress for the modes car and bike are constant oppor-
tunity costs. As such, they interact with βperf :

Uaccess/egress,car = Uaccess/egress,bike = (βtt,walk − βperf ) · (taccess,car/bike + tegress,car/bike)

For the mode walk, the value of this score constant is zero. This is also the case for the
mode pt, where access to and egress from the closest pt stop are explicitly part of the
route description.

Replanning

Two replanning modules are used to generate modified activity plans for the learning proce-
dure. For both modules, preplan is 10% each.

Router

The router module generates new routes for all trips, given their mode and departure time.

For the mode car, a time-dependent shortest path algorithm is run in order to find the route with
the smallest possible negative score. For the estimation of link travel times, events from the
previous run of the traffic flow simulation are aggregated in 15 minute time slots10. The shortest
path algorithm used here is a dynamic Landmarks-A* router which finds the same best possible
path as a standard Dijkstra algorithm for Euclidean networks (Lefebvre and Balmer, 2007). For
the expected size of the road network model (105 nodes, 106 links), the performance of the A*
algorithm is ≈10 times better than that of the Dijkstra algorithm.

For the public transport mode (pt), the travel time is determined for the Swiss municipalities
in which the activities are located, as described in section Traveling on page 14. At first the

10This means that global knowledge of the system is used to generate the new route, which might be an invalid
assumption given the limited human capacity to store and process information.
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stops closest to the previous and the next activity locations have to be found. In order to make
this look-up very efficient for an expected number of 104 stops, the stops are sorted in a quad
tree (Finkel and Bentley, 1974). The average travel time between the two municipalities where
the stops are located is then looked up in the given travel time matrix. This static calculation
does not depend on time-of-day dependent travel times as it is the case for the car mode. The
mapping of stops to activity locations is straightforward and could in principle be performed
beforehand. The use of the efficient data structures mentioned becomes crucial as soon as
the pt travel time calculation gets more complex. For example, if agents were allowed to change
the location of their activities, the public transport alternative would have to be calculated again.
The number of calculations would increase even more if the determination of the travel time
becomes dynamic as it is the case in state-of-the-art transport models employed in Switzerland
(Vrtic et al., 2007b).

For the modes bike and walk, no path optimization is performed. The travel time is computed
simply by dividing the crow-fly distance, multiplied with a factor of 1.5, by the respective as-
sumed average speeds vbike and vwalk.

Planomat

The planomat is a replanning module for activity durations and departure times, as well as
mode choice on subtour level. It uses a genetic algorithm (GA) for function optimization of the
daily activity plan scoring function (Meister et al., 2006). This means that while robust results
of the stochastic optimization are expected, it cannot be guaranteed that the optimal solution is
returned, as it is the case for the router desribed above. However, it is sufficient to approximate
the optimal solution because the traffic conditions in which the optimized plan will be executed
may have changed substantially from one iteration to the next, given the 10% share of agents
selected for each replanning module. On the one hand, the usage of “approximating best-reply”
modules such as the planomat replaces a module which only shifted the existing departure
time information in a range of ±30 minutes (the “time allocation mutator”, Balmer et al., 2005).
This makes the sytem independent of the initial conditions, here the time allocation of the initial
demand. Furthermore, this leads to a convergence of the learning framework within several
dozens of iterations, as opposed to ≥200 iterations with mutation-type modules. On the other
hand, the choice of a GA allows it to easily include more plan variables into the optimization
procedure. In this study, the mode of each subtour of the activity plan is optimized in addition
to the times. It is widely acknowledged that the transportation mode choice is one of the most
important information that planners want to have from a transportation model. It becomes
important for dynamic transport models besides route choice and departure time choice, e.g.
for the assessment of peak-hour road pricing (Downs, 2004). Mode choice has already been
addressed in the context of MATSim-T with a mutation-type replanning module (Rieser et al.,
2009). The choice set for each subtour consists of the four modes car, public transport (pt),
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bike, and walk.

The optimal timing of the daily activity plan depends mainly on the travel times which the
agents expects for a given trip. Just like in the router, and for reasons of simplicity, a travel time
approximation based on global knowledge is assumed. The travel time will be estimated for the
route that is given in the activity plan, which remains unchanged. For the “virtual” assessment
of other modes of a given trip, the free-speed route for the respective mode is determined.
The actual travel time on this route may still be time-dependent, as for the mode car in the
application presented here.

Termination

The iterations are stopped after a fixed number of 60 iterations. This number is based on
visual inspection of the development of aggregate system indicators across iterations, such as
average score of the executed plans, the average travel time, or the mode share (see Fig. 3).
The learning procedure is judged complete when these values have reached a plateau for
several iterations. In addition, the comparison of traffic patterns as validated by counts data
between iterations is used to assess whether substantial changes are still taking place or not.
The value of 60 iterations ensures that the agents are selected for replanning several times.

RESULTS

This section presents selected aggregate simulated traffic results which are compared to real-
world observations.

First, the modal split of the simulation results after 60 iterations is compared to the reported
modal split of the Swiss Microcensus of Travel Behavior, a representative one-day travel survey
(Swiss Federal Statistical Office, 2006). The scoring parameter values were manually adjusted
such that the difference in the modal split with respect to trip distance and trip travel time
distribution between the observation and the iterated activity plans is minimized (for the final
values, see section Summary of scoring parameter values on page 16). That means, the
model was calibrated to fit the observed modal split. This was not achieved by imposing a
fixed modal split in the initial demand. Instead, the sensitivity of the results to the scoring
parameters for travelling was studied by performing several runs of the simulation system with
different parameter settings. The calibration focused on the modal split because mode choice
optimization based on subtour-level has been performed for the first time in this study (see
section Planomat on page 18). Route equilibration and departure time optimization are already
known to work well (Meister et al., 2009). The main goal of the model calibration is to achieve
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Figure 3: Relaxation of the transport model.
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The score averages of all executed activity plans, and of each agent’s best and worst plans are plotted against the
left x axis. Iteration 60 is chosen as the result iteration because there is no significant change in scores afterwards.
Aggregate indicators of the transport system are plotted to the right axis. While the score values and the average
trip travel time are stable, a slight gradual shift in mode shares can still be observed visually. The shares of the
various transport modes in the relaxed state do not differ very much from those of the initial demand (iteration 0),
because the latter is modelled on the basis of observations. Conceptually, a random modal split could be used in
the initial demand. See section Results of the modal split calibration on page 21 for a discussion of the modal split
results.

a realistic share of the car mode, and thus a reasonable amount of demand in the traffic flow
simulation without imposing a fixed modal split beforehand. In the second part of this section,
counts comparisons are presented in order to check to what extent this goal was achieved.

The results presented in this section were produced with the simulation of a 25% sample of the
initial demand in order to minimize the computational burden. The sensitivity analysis required
dozens of MATSim runs. In order to simulate the entire scenario, 90 GB of RAM are required.
When using the 25% sample, three runs can be performed at the same time. Each of those
sample runs takes about 4 days to calculate the required 60 iterations. Our experience shows
that the simulation of only a subsample of the agent population produces meaningful results
while the capacities of the infrastructure, primarily the road network, are proportionally reduced
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(Gao et al., 2010). Simulation of subsamples is also applied in other activity-based demand
generation models such as TASHA (Roorda et al., 2008). Furthermore, the simulation of the
entire agent population was not mandatory from the perspective of the industry partner for their
aggregate analyses of the results.

Results of the modal split calibration

Fig. 4 shows comparisons of the observed and the calibrated simulated modal split. Cumulative
mode shares across both trip distance and trip duration are shown. The rightmost columns of
both subfigures show that the overall modal split can be reproduced quite well not only for the
car mode (43.3% observed vs. 44.1% simulated), but also for the other modes.

The modal split with respect to the trip distance is depicted in Fig. 4(a). While the quality of
the distribution, as well as the overall modal split are generally acceptable, there are several
deviations of the simulated modal split of the observed numbers:

• The number of trips with the mode ride is almost zero in the simulation results. This
result was expected as this mode only exists in the initial demand, and is excluded from
the choice set for the mode choice optimization during the learning iterations. There was
no mature method for the large scale agent-based simulation of the ride mode available at
the time this study was conducted. With the ongoing iterative simulation and replanning,
the initial ride share of overall 4.4% is reduced to 0.9% after 60 iterations. The figure
suggests that the initial ride trips are distributed to both the car and pt modes.

• Generally, the simulation produces too few short trips with a distance <2km and instead,
produces too many trips with longer distances. Particularly for the walk and the car
modes, the simulation overestimates the trip distance, while it is underestimated for the
mode pt. The main reason for these deviations is suspected in the inadequate distance
calculation based on approximate crow-fly distances for all modes except car. Further-
more, it is unclear to what extent the interdependence of subtours influences the real
world modal split. For example, a person cannot choose to go by bike or car if the vehi-
cle is not available at the anchor point of the subtour (e.g. go to work by bike, and choose
the car for a work-based subtour to a leisure activity). This interdependence is not con-
sidered by the mode-choice optimization presented here, and thus violates the boundary
conditions of the physical simulation. Other implementations of activity-based demand
generation, such as TASHA, explicitly consider this interdependence (Miller et al., 2005).

One notices the leftmost column of Fig. 4(a) representing the number of trips with a distance of
zero meters, in both the observed and the simulated data. While no trip in reality has a distance
of 0m, it occurs when the activities at both ends of the reported trip are mapped to the same
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Figure 4: Comparison of observed and simulated modal split

(a) Cumulative modal split by trip distance.
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(b) Cumulative modal split by trip duration.
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Figure 5: Aggregate hourly counts comparison for 78 counting stations within a 5km radius around Bellevue, Zurich
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activity facility in the geocoding step (e.g. due to “vertical” transportation in the same building).
Trips with zero distance are explicitly allowed in the simulation, where a trip can connect two
activities in different activity locations at the same coordinate.

The modal split distribution across trip durations shows a similar result (Fig. 4(b)). The overall
qualitative distribution is reproduced well. The quantities of trips per trip duration slot are hit
slightly better than in the trip distance distribution. In general, trip durations are underestimated
by the simulation, in particular for very short car trips with a duration <10min and short pt trips
with a duration <20min. Again, one notices an artifact of ≈6% of simulated trips with a trip
duration of 00:00, which are caused by zero-distance trips as explained above.

Validation with count data

The simulation results are validated by comparing simulated traffic volumes with counts from
different Swiss government authorities (see section Count data on page 8). The focus of the
study is to model the personal travel behaviour of the Swiss population. Cross-border traffic as
well as freight traffic are not included in the description of the simulated demand. A more or less
substantial underestimation of traffic volumes is therefore expected, depending on the location
of the counting station. The validation thus concentrates on qualitative count comparisons.
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Figure 6: Counts comparisons of selected roads

(a) Example counting stations with a high correlation of observed and simulated traffic volumes.
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(b) Example counting stations with a low correlation of observed and simulated traffic volumes.
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The maximum flow capacity of each road is 4000 vehicles/h.

Fig. 5 depicts the results of count comparisons of hourly traffic volumes for counting stations
located in the City of Zurich. Zurich is located in the center of the biggest Swiss metropolitan
area. It is furthermore not close to a national border like other large Swiss cities such as
Basel or Geneva are, whose workforces substantially consist of cross-border commuters. Most
counting stations are located on urban roads instead of freeways, where possibly many transit
travellers are counted. It is therefore expected that the observed counts are matched quite
well by the traffic simulation. The median relative error of the simulated traffic volumes does
not exceed ±15% for the hours from 7:00 to 20:00, which are the hours with the highest traffic
volumes. The simulation model tends to slightly overestimate traffic volumes especially for
urban roads. In the early morning as well as in the late evening hours, traffic volumes are
smaller. It is typical for the simulation of small quantities that the relative error increases while
the absolute error remains negligible.
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In order to examine the quality of the validation in more detail, a closer look is taken on the
results of particular counting stations. Fig. 6(a) shows the hourly volumes of examples of com-
mon road types close to Zurich (high-volume commuter roads, arterial roads). Both the shape
and the quantities of the load curve are reproduced quite well. The same is generally true for
highways connecting large Swiss cities, as well as urban roads (not shown). Instead, counting
stations where the simulated traffic volumes are too low throughout the day are presented in
Fig. 6(b). These counting stations are typically located close to the Swiss national border. This
result is not surprising because cross-border travel demand is not included in the travel de-
mand description. Traffic volumes are underestimated also in rural regions where the demand
is generally low, such as the Cantons Ticino and Grisons. They consist of many tourist trips
which are not captured by the Microcensus of travel behavior of the Swiss population. Addi-
tional sources of errors in count comparisons are of a more technical nature. For example, the
base year of counts of some stations is not the same as the base year of the network model.
This may heavily distort the result for this counting station e.g. because the demand drops
due to the opening of a new high-capacity alternative. Furthermore, counting stations may
have been mapped to the wrong road segment which is not easily detected when working with
high-resolution network models.

Spatial validation of modal split

Fig. 7 shows the quality of the spatial distribution of the modal split, in the case of public trans-
port. In general, the pt share in most of the greater urban areas such as Zurich, Berne or
Lausanne is hit within a range of ±10 percentage points. This level of quality is considered
acceptable for the application presented here. For the large cities the pt share is slightly under-
estimated, with the exception of Geneva (slight overstimation) and Basel (strong underestima-
tion). As the pt share is highest in such areas due to the high population density it is pleasant
to have it reproduced approximately. For second-order agglomerations which also make up a
substantial share of the population, the underestimation of the pt share is 10 percentage points
maximum, such as the space between Zurich and Berne. Grid cells with major deviations from
the observed values (> ±10pp) are distributed with no identifiable spatial pattern.

SUMMARY AND CONCLUSIONS

This paper presents the application of the agent-based transport simulation toolkit MATSim-T to
a large-scale scenario of Switzerland. The scenario is called large-scale because ca. 6 million
synthetic persons, “agents”, are simulated on a high-resolution network model with >1 million
links. MATSim-T is able to compute a relaxed state of the simulation system within 60 iterations
of the learning-based solution procedure with regard to mode choice, car route choice and
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Figure 7: Spatial distribution of public transit share on subtour level - comparison of simulation results to Swiss
Microcensus 2005
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The figure shows the deviation of the simulated (sim) from the observed pt share (obs) in percentage points (pp)
with data aggregated in a 5·5km grid. This is the minimum resolution the limited number of observed subtours
(≈100’000 for all of Switzerland) admits in order to generate statistically representative comparisons. The area of
a data point is proportional to the number of simulated subtours.

choice of activity timing. This is achieved by applying improved optimization algorithms in the
replanning stage. A genetic algorithm is used for times and and mode choice optimization of
activity plans, together with an efficient implementation of time-dependent shortest path search
for route choice.

Computational issues

The computer used to calculate the iterative solution is a shared-memory machine of the type
Sun Fire X4600 M2 with 8 dual-core CPUs and 128 GB RAM. For a 25% sample of the full sce-
nario, 30 GB RAM are required. MATSim-T can compute one iteration of such a scenario within
2 hours absolute computation time, of which the traffic flow simulation requires 50%, and both
the replanning modules require 25% each. Overhead time is required only in every 10th itera-
tion, when the plans as well as the events are dumped to compressed files. As the software of
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the agent database and the traffic flow simulation are now completely integrated, no additional
overhead for file exchange is generated as in previous versions. Furthermore, multithreading is
used to separate generation and processing of events during the traffic flow simulation, which
reduces overhead time for events handling to a negligible level. A starting point for further
exploitation of multithreading in the simulation of traffic flow is the re-introduction of domain
decomposition of the network assignment (Charypar et al., 2009).

Multithreading can on the other side be used to distribute agents on the available processors
in the replanning stage because there no agent interaction takes place. 5 CPU cores are used
for each of the three 25% sample runs which were performed in the sensitivity analysis stage
of the project as described in section Results on page 19. This application of multithreading
reduces the share of net CPU core time of ≈40% to the mentioned 25% share of absolute
computation time per replanning module. This saving increases with a growing number of
available CPU cores. The time required for replanning is furthermore reduced by an efficient
implementation of an A*-Landmarks routing algorithm for car route choice.

It can be summarized that the simulation system provides a performant software implementa-
tion to compute an agent-based equilibrium transport model of the mentioned size with high-
resolution network models within a reasonable time. These network models resolve the street
network much more realistically than usual planning networks, which results in a ten times
higher number of links.

Data and modelling issues

The improvements of the behavioral model reported in this paper are focused on the scoring
function which can process individualized parameters for measuring the quality of all-day activ-
ity plans. Combined with disaggregate input data for population and land use, it was possible to
build a heterogeneous and thus more realistic scenario. Furthermore, four modes of transport
(car, public transit, bike, walk) are considered in the presented application. The generalized
cost of the car option is determined by a queue simulation of traffic flow. In order to prove
the concept of mode choice optimization in a multi-agent microsimulation, the other modes
are modelled as abstract alternatives with static travel costs constant throughout the modeled
average workday.

The calibration of the model system is focused on the modal split which emerges from the
iterative learning procedure. There were no quantitative requirements for the actual numbers
of the modal split result from the industry partner. As a first milestone, results correct within a
range of ±10 percentage points could be generated, both for the trip distance/trip travel time
distributions shown in Figs. 4(a) and 4(b) as well as the spatial distribution shown in Fig. 7.
Potential for improvement exists on the data side (e.g. a more complete list of public transit
stops) as well as on the model side (e.g. use of a behaviorally sound location choice module
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for flexible activities instead of a simple “neighborhood search”). A near-future outlook on
methodic advances includes the agent-based demand generation and simulation also of other
modes than just the car mode (Rieser and Nagel, 2009).

An important issue in micro-simulation modeling is the high sensitivity of the results on errors
in input data. This is especially true for model regions with a high density of activities, where
a high travel demand meets short road segments due to the high network resolution. Besides
that, raw population and land use data as used in this study are usually not available to the
transport modeler, which poses additional methodic challenges e.g. to initial demand genera-
tion. In any case, more attention has to paid to the correct statistical properties of the demand
model than in aggregate transport modelling.
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