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ABSTRACT 

In this paper we present a generic methodology for calibrating walking models. Applying the 

methodology to the Nomad walker model improved substantially the quality and significance 

of the parameters. This methodology aims to describe all aspects of the parameter 

estimation process of walker models, while making it applicable to the calibration of any 

walker model. The base of the methodology is the simultaneous calibration of several 

aspects of pedestrian traffic to improve the robustness and generic application of the model. 

We investigated the impact of combining different flow configurations, estimating parameters 

for groups of pedestrians, using errors of pedestrian state variables in the optimisation and 

introducing prior information about the parameters. 

Keywords: calibration methodology, pedestrian modelling, walker models 

INTRODUCTION 

Walker models are widely used for predicting purposes. Many commercial and free 

application tools are available attesting the demand for such predictive models. The basic 

premise for the use of such models is the confidence that their results are within an accepted 

deviation of reality. These models are applied in a variety of tasks: calculating egress times 

in evacuations, determining level-of-service in walking facilities, crowd control and comparing 

the performance of different layouts of walking facilities. This wide range of usage indicates 

that these models should perform well in many tasks (generality). A general model is able to 

represent correctly different pedestrians (heterogeneity) walking in different configurations of 

flow. 
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Each pedestrian has its own, unique, walking behaviour reflecting this inter-pedestrian 

heterogeneity. One way to account for heterogeneity is to use a single walker model for the 

total population, and to assign different parameter sets for different pedestrians. Most models 

would allow for this approach and some authors estimated parameter distributions 

(Hoogendoorn et al., 2005, Johansson et al., 2007, Moussaid et al., 2009) rather than 

average parameter values (Campanella et al., 2009b, Kretz et al., 2008, Robin et al., 2009, 

Steiner et al., 2007, Teknomo and Gerilla, 2005, Osaragi, 2004) to account for heterogeneity. 

Campanella et al., 2009a showed that heterogeneity in the population has a large effect in 

the flow characteristics. Comparing flows generated by a homogenous population with flows 

with heterogeneous population they observed that heterogeneous populations in general 

produced flows with higher breakdown probabilities (the probability that flows will get 

jammed). These facts indicate that a calibration of a single model should always aim to 

estimate how the parameters distribute in the population.  

  

Another important aspect of calibrating walker models is the risk of specialisation. A model 

that is calibrated using a specific flow configuration (e.g. bidirectional flows) may not perform 

well in other flow configurations (e.g. one directional flows or crossing flows). Ideally, walker 

models should perform well in all situations, but such a generic model is not available yet.  

 

Literature on calibration showed that no generally accepted methodology and guidelines for 

calibration of traffic models and in particular pedestrian models exists. The main contribution 

of this paper is a methodology that focuses on (but is not limited to) estimating parameters 

reflecting the inter-pedestrian heterogeneity. Furthermore, it also incorporates the ability of 

using simultaneously different flow configurations and different aspects of the pedestrian 

traffic in calibration. Another added value of this methodology is that it enables to compare 

the quality of different parameter sets.  

 

GENERALISED CALIBRATION METHODOLOGY 

 

Figure 1 shows the scheme of the calibration methodology. It is presented as an iterative 

process of searching optimal parameters that are significant (the outcomes of the model are 

influenced by their variation). The clockwise loop is the optimisation process in which 

parameters are input in the walker model that is used to run simulations. Errors arising from 

differences between the simulation and the reference data are used by the optimisation 

algorithm to compare sets of parameters. While the error is not minimal a new set of 

parameters is generated and a new iteration is performed. When the minimum error is found 

the parameters are consider optimal. These parameters are then analysed to assess their 

significance. If they are found not to be significant enough, a new calibration must be 

performed. Otherwise, the parameters are ready to be submitted to a validation process.   
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Figure 1 – Calibration methodology scheme 

 

The basic components of the methodology are the scenarios. They represent those aspects 

of the traffic that the model is going to be applied for. Pedestrian state variables such as 

positions, velocities or accelerations are usually the most important outcomes of walker 

models. Another possible aspect would be the differences between fundamental diagram 

relations. Any aspect that represents meaningful pedestrian behaviour can be used to build a 

scenario. A calibration scenario is a computable algorithm that inputs a set of values (the 

parameters θ necessary to simulate the walker model) and calculates a value that is an 

expression of how different (or how alike) the model predictions are from the reference data. 

A calibration scenario comprehends the reference data, all the boundary conditions 

necessary to run the simulations and an objective function. 

 

The objective function is a mathematical function that takes in values that represent the 

aspects of the simulated traffic and compare with the same aspects in the reference data. If 

we are interested in comparing how different the outcomes are then the objective-function 

calculates the error ε (that will be minimised). Several forms of objective function are used 

and the simplest is the difference function.  

 

To obtain a model for generic application, several scenarios with different trajectories and/or 

different aspects can be optimised simultaneously. The resulting parameter set will be the 

best compromise between the different flow configurations and traffic aspects. Figure 1 

shows the multiple-objective function ψ that is responsible to calculate a unique error from n 

scenario errors. The common form of ψ is a weighted addition of the errors: 

1 1 ... n n      . If one scenario must have more importance in the calibration then its λ 

must be set to a larger value. One problem with using errors in multiple-objectives is that 

there is no way to find the values of λ other then setting them arbitrarily.  
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An alternative for the objective function is to determine a likelihood function that will express 

the probability that the model outcomes are equal to the reference data. In this case the 

calibration will try to maximize the likelihood. The advantage of using probabilities is that by 

assuming that they are independent they can be multiplied to give the combined probability. 

Furthermore, by calculating the logarithm of the likelihood we obtain the log-likelihood that 

can be added without any need of weights to express the joint probability of two different 

scenarios. In the next section we will present likelihood functions that were applied in the 

calibrations performed in this paper.    

Estimation with likelihood functions for trajectory errors 

The model estimation in this paper follows the calibration framework developed in 

(Hoogendoorn and Daamen, 2010) and in (Hoogendoorn and Hoogendoorn, 2010). In these 

papers the authors proposed likelihood objective functions that allowed individual and 

multiple trajectories to be optimised both for walker and car-following models. The authors 

propose extensions of the likelihood functions that allow the inclusion of information from 

other data sources such as prior-information on the distribution of the parameters.  

 

The basic idea of the likelihood framework is to calculate estimation errors from a single 

pedestrian along his simulated trajectory and use it as the likelihood probability. To calculate 

these errors one pedestrian from the reference data is randomly chosen to be simulated 

(pedestrian p). The simulation begins with the first time-step (t1) in which p is present in the 

reference data. All pedestrians (p included) that are present in the walking area at t1 have 

their state variables  ( ) ( ( ), ( ), ( ))z t r t v t a t (position, velocity, acceleration) set exactly the 

same as in the reference trajectories. At every subsequent time-step until the time step tK in 

which the pedestrian p exits all pedestrians apart of p will have their states updated 

according to the reference data. Pedestrian p however will have his state estimated by the 

model. The difference (error) between the estimated state variable and the correct value as 

stated in the reference data is then a measure of the likelihood that the outcomes of the 

model are equal to the reference data.   

 

   ( | ) ( ) ( | )p ref p p

k k kt z t z t                                                          (1) 

If we assume that these errors are independent and normally distributed with parameters 

N(0,σp) we can apply the probability density for the normal distribution obtaining the 

likelihood function for one time step. It can be shown (Hoogendoorn and Hoogendoorn, 

2010) that the log-likelihood function for the errors of the entire trajectory is then (2): 

 

  


 
   

 
 2

1

( ) ln ( | )
2 2

K
p p

k

k

n n
L t                                                     (2) 

This equation is the log-likelihood objective-function that must be maximised by finding the 

optimal parameter set θ* (3):  

 * argmax ( )L                                                                        (3) 
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Estimation with prior information 

Imagine that we know (from previous calibrations) the mean  i  and the deviation  i  of the 

parameter i, part of the parameter set θ. If we assume that  i  follows a normal distribution we 

can obtain the likelihood with prior information: 

 

 
  

 


   2

2

( , )
ln 2 ( )

2 2

i i
prior i

i

n
L L                                          (4) 

 

CALIBRATION EXPERIMENTS 

In the following sections we apply the methodology to investigate four aspects that influence 

the quality of the estimations. These four aspects deal with important parts of the 

methodology but are not the only that should be investigated (others are mentioned in the 

subsection future work in the conclusion). The first two aspects are elements of the 

methodology that affect the precision of estimated parameters.  

 

1. We want to know how flow configurations influence the values of estimated 

parameters. Do unidirectional flows in which pedestrians only interact with 

pedestrians walking in the same direction produce significant and well estimated 

parameters responsible for all interaction behaviours? How do other configurations 

such as bidirectional and crossing flows perform as well? 

 

2. Pedestrian states can be characterised by three variables: positions, velocities and 

accelerations. These states are commonly used to calculate errors in calibrations 

because they express dynamical properties of the walking behaviour. Therefore, we 

investigate what is the quality of the estimations when using errors from these 

variables.   

 

The two other investigations aim at improving the significance of estimated parameters by 

using special objective-functions. 

 

3. Imagine a set of trajectories in which only a subset of the pedestrians are walking 

close enough to obstacles for a significant period of time. This will cause the 

parameters responsible to the obstacle interaction not to be significant for the 

population. However, if we would estimate one parameter set for a group of 

pedestrians then we would increase the probability of having situations where 

pedestrians are close to obstacles. The question of how this grouping affects the 

estimated parameters is investigated.    

 

4. Another way of dealing with parameters that are found to be not significant is to find 

another source for the mean values (and standard deviations). Having such 
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information we investigate how much is a new estimation improved by applying these 

prior information in the objective function. 

Experimental design 

To be able to assess the quality of the estimations we need to have complete knowledge 

about the pedestrians that created the reference trajectories. Such knowledge enables us to 

compare the results of the calibrations quantitatively with a ground truth. For this purpose we 

created synthetic trajectories with the Nomad model (Hoogendoorn and Bovy, 2003), which 

were to be used as reference trajectories.  

 

Since we performed a large amount of calibrations, limiting of the amount of parameters that 

were to be estimated was necessary. The population was created with parameters previously 

estimated with real data (Campanella et al., 2009b). Furthermore, we varied six of the 

parameters among the population to create a heterogeneity: A0 and R0 are the parameters 

responsible for the interaction behaviour, T is the parameter responsible for the pedestrians 

to stay along their intended path, the free speed is V0, there is the pedestrian radius and a 

noise parameter that accounts for behaviours that are not modelled (Hoogendoorn and Bovy, 

2003). These parameters were assigned according to a normal distribution N(μ, σ).  The 

values of the standard deviations presented in table 1 were based on calibrations presented 

in Hoogendoorn et al., 2005.  

 
Table I –Distribution of means and deviations of the parameters that were varied in the reference trajectories  

 

Parameters Mean 

μ 

Deviation 

σ 

A0 10.0 0.7 

R0 0.16 0.02 

T 0.25 0.04 

Aw 20.0 0 

V0 1.45 0.26 

radius 0.22 0.2 

noise 0 0.001 

 

Table 1 shows a seventh parameter: Aw, that was not varied. Aw is responsible for 

interactions with obstacles. The first four parameters in the table 1 (A0, R0, Aw and T) were 

chosen to be estimated in the investigations. Together with the V0 and the radius they are 

the most important in the Nomad model and social force models. They are present in all 

different versions of these models (Hoogendoorn et al., 2005).  

 

Each calibration consisted of 25 estimations of the four parameters to determine the 

distribution of these. This number was shown to be enough to create a sample with a 

distribution of reference parameters within the chosen sampling errors with 95% of 

confidence.  Each simulation estimated the parameters of one different pedestrian chosen 
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randomly (one trajectory). The details of the estimation with trajectories are written in the 

section (Estimation with likelihood functions for trajectory errors). 

  

Along the investigations three different flow configurations were simulated: a bidirectional 

corridor, a unidirectional flow with a narrow bottleneck and a 90° crossing flow. The 

respective dimensions of the walking areas are for the bidirectional flow: 10m x 4m, for the 

narrow bottleneck flow: 10m x 4m with a narrow corridor of 1m in the middle and 8m x 8m for 

the crossing flows (Figure 2).  

 

 
Figure 2 – The three walking configurations (from left): bidirectional corridor, unidirectional flow with a narrow 

bottleneck and a crossing flow. 

These flows were chosen because these represent the flows most frequently used in 

calibration and validation procedures. Furthermore, they present a wide variety of traffic 

situations so that they create a large amount of behaviours that need to be properly covered 

by the model. In these flows pedestrians need to avoid opposing pedestrians, to follow or to 

overtake leading pedestrians, to interact with pedestrians coming from the sides and to deal 

with conflicts near bottlenecks. The input flows were created in a stepwise ascending manner 

to assure that both free flow and congestion could occur in all flows. 

 

The simulations were run with very small time steps (Δt=0.02s) to reduce the influence of 

errors arising from numeric approximations (Campanella et al., 2009c).  

 

As an optimisation algorithm we use a procedure combining a genetic algorithm (GA) and a 

Simplex optimiser. Initially a GA with a population of 20 individuals is applied. The best 

individual after a significant number of generations is considered the closest to the optimal 

solution and is passed to the Simplex optimiser. The experiments have shown that this 

individual was always close enough to the correct parameter value to allow the Simplex to 

search for the optimum value. The combined procedure therefore has a much better 

accuracy than when using only the Simplex method. Tests with special trajectories without 

the noise and no distributed parameters have shown that the Simplex very often could not 

estimate the correct parameters. This happened because the objective function outcome is 

not smooth and present several local minima trapping the search results. Using the pure GA 

turned out to be at least two times slower in estimating the correct parameters.  

 

THE INFLUENCE OF FLOW CONFIGURATIONS 

In this section we investigate the influence of flow configurations for estimating correct 

parameters of the Nomad model. In this section we estimated all parameters using the errors 
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of the accelerations in the trajectories presented in equation 1. The three flows shown in 

figure 2 were used for calibrations. A fourth estimation named multiple-flows was performed 

adding errors arising from the three flows. The results of the estimations are presented in 

table 2.   

 
Table 2 – The results per flow configuration of four parameters estimated with the methodology and the mean of 
the maximum log-likelihoods for the 25 calibrations.  

 

 Parameters ̂  Log-

LikelihoodL  

 mean deviation Mean 

 A0 R0 T AW A0 R0 T AW  

Correct values 10 0.16 0.25 20 0.7 0.02 0.04 0.0  

Bidirectional 8.5 0.17 0.27 6.1 1.5 0.03 0.07 7.5 - 434 

Crossing 8.4 0.16 0.29 2.4 1.9 0.02 0.07 2.5 - 387 

Bottleneck 7.2 0.15 0.40 16 2.0 0.03 0.20 10 - 1204 

Multiple-flows 8.5 0.16 0.32 16 1.4 0.03 0.08 4.9 - 2442 

 

Results for the single flow estimation 

The mean and deviations of the parameters A0 and T were better estimated using the 

bidirectional corridor and the crossing flows than the unidirectional flow. Furthermore, table 2 

shows that the mean of the optimal log-likelihoods for these flows was significantly bigger in 

comparison with the bottleneck flow indicating that the trajectories were better estimated. 

However, the unidirectional bottleneck flow permitted a better estimation of AW. For the 

bidirectional corridor this parameter was tested and shown to be significant for only 24% of 

the estimations and 0% for the crossing flows against 72% of the unidirectional bottleneck. 

This happened because the flow configurations presented insufficient situations in which 

pedestrians were close to obstacles.  

Combining flow configurations 

To improve this situation 25 new calibrations were performed with a multiple-objective 

function that simulated all three configurations simultaneously and added the errors. The 

table 2 also shows the results for this multiple-flows estimation. In the multiple flow 

calibration the parameters A0 and R0 were as well calibrated as with the crossing and 

bidirectional flows. T was a bit worse estimated but still much better in comparison with the 

bottleneck flow. This shows that the negative effect of the large errors produced by the 

unidirectional bottleneck flow was compensated by the smaller errors of the other two flows. 

The Aw mean was identical for the multiple and unidirectional bottleneck flow. However, the 

deviation obtained with the multiple-flow was significantly smaller. This improvement was 

also observed with the increase of significant estimations (92%). These results indicate that 

the richness of the individual flows was captured by the multiple-objective estimation.  
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COMPARING PEDESTRIAN STATES 

In the log-likelihood presented in equation 2 any of the three state variables (or a 

combination of them) could be used to calculate the errors shown in the equation 1. In this 

investigation we compared how well the three state variables are able to estimate the 

distribution of the parameters. In table 3 we present the means and deviations from the 

estimated parameters for each state variable and a fourth error that was a simple addition of 

all three errors at each moment of the trajectory. All calibrations were performed with the 

bidirectional corridor. This configuration was chosen because it presented the best overall 

results apart from the multiple-flow that is more complex and thus a more computational 

demanding process.  

 
Table 3 – The results per state variable of four parameters estimated with the methodology and the mean of the 
minimum errors for the 25 calibrations.  

 

 Parameters ̂  Log-

LikelihoodL  

 mean deviation Mean 

 A0 R0 T AW A0 R0 T AW  

Correct values 10 0.16 0.25 20 0.7 0.02 0.04 0.0  

acceleration 8.5 0.17 0.27 6.1 1.5 0.03 0.07 7.5 - 434 

velocity 8.9 0.16 0.29 7.3 2.4 0.03 0.07 7.9 - 1598 

position 6.5 0.18 0.37 6.3 2.4 0.05 0.17 6.2 - 3443 

combined 8.5 0.17 0.29 6.1 1.7 0.03 0.06 6.9 - 465 

 

Comparing the use of single states 

The acceleration and combined errors produced significantly better results than the position 

and velocity. The means of the estimations using the acceleration and velocity did not differ 

so much but the deviations for the velocity were larger for the A0 parameter. This caused a 

significant difference in the maximum log-likelihood mean values indicating that the 

acceleration errors were significantly smaller.  

 

The reason for the poor performance of the position and velocity errors in comparison to the 

acceleration can be explained by numeric errors in the integration of the movement 

equations. The Nomad model calculates the acceleration of the pedestrian, the velocity is 

obtained by one time integration and the position is obtained by two time integrations at each 

time step. The errors originating from the discrete integration approximations must get 

significant when compared with the error arising from the model causing these differences. 

We observed that during the calibrations with the position errors the GA did not find good 

solutions and the parameter sets it passed to the Simplex optimiser were too far from the 

optimal for it to improve further. 



A methodological investigation on calibration of walker models 
CAMPANELLA, Mario; HOOGENDOORN, Serge; DAAMEN, Winnie  

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
10 

Combining state errors 

An error adding the three individual errors was also created and showed equivalent results to 

the acceleration error indicating that the acceleration error is preferable.  

APPLYING MULTIPLE-TRAJECTORY SCENARIOS 

In this section we investigate the effect of combining multiple-trajectories to improve the 

significance of parameters. We have seen that using the bidirectional flow data to estimate 

the parameters of individual trajectories gave poor results for the Aw parameter due to 

insufficient information in the data. To improve this situation we modified the single trajectory 

optimisation expressed by equation (2) by including errors of several trajectories. We 

investigated the effects of adding the errors of different combinations of 10 and 20 

trajectories to the outcome of the parameters.   

 

Table 4 shows that combining the trajectories of pedestrians in the estimation did make the 

distributions of the T get much worse, A0 did not change much with the means for the 

combined slightly worse but the deviations better, R0 was estimated similarly but Aw 

improved considerably. The significance of Aw was also much higher: 92% of significant 

estimations for 10 trajectories and 96% for 20 trajectories. This indicates that aggregating the 

trajectories improved the estimation when data that is not rich for all pedestrians. The two 

levels of aggregation did not present significantly different results  

 
Table 4 – The results per aggregation level of four parameters estimated with the methodology and the mean of 
the minimum errors for 25 calibrations.  

 

 Parameters ̂  Log-

LikelihoodL  

 mean deviation Mean 

 A0 R0 T AW A0 R0 T AW  

Correct values 10 0.16 0.25 20 0.7 0.02 0.04 0.0  

1 8.5 0.17 0.27 6.1 1.5 0.03 0.07 7.5 - 434 

10 7.4 0.17 0.37 18 0.86 0.01 0.07 5.8 - 10231 

20 7.1 0.17 0.37 18 0.86 0.008 0.05 7.3 - 19637 

 

USING PRIOR INFORMATION OF PARAMETERS 

In this section we investigated how the inclusion of prior information in the objective-function 

affects the quality of the predictions. We recalibrated the bidirectional flow the acceleration 

error, but this time we included the information gathered in the multiple-trajectories about the 

mean and deviation of the Aw parameter. We used the values Aw = 18 and s = 5.8 and put 

them in the equation (4). The estimation of A0, R0 did not improve and T got significantly 
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worse as table 5 shows. However, the objective with prior estimated Aw much better 

indicating that the proposed method of including prior information can be used to calibrate a 

model with poor data.    
 
Table 5 – The results with prior information of four parameters estimated with the methodology and the mean of 
the minimum errors for the 25 calibrations.  

 

 Parameters ̂  Log-

LikelihoodL  

 mean deviation Mean 

 A0 R0 T AW A0 R0 T AW  

Correct values 10 0.16 0.25 20 0.7 0.02 0.04 0.0  

bidirectional 8.5 0.17 0.27 6.1 1.5 0.03 0.07 7.5 - 434 

bidi. with prior 8.0 0.16 0.35 18 1.7 0.02 0.09 3.6 - 1666 

 

 

CONCLUSION 

In this paper we presented a generalised calibration methodology composed of calibration 

scenarios that represent aspects of pedestrian traffic. By defining calibration components 

these can easily be investigated and modified when parameters are not significant. An 

application of the methodology on Nomad showed that unidirectional flows produce less 

optimal parameters. Furthermore, non significant parameters can be estimated by combining 

the results of several flow configurations in multiple-objective estimations. Using acceleration 

errors proved to produce more optimal parameters when compared with velocity and position 

errors. These results are valid for models such as the Nomad and social force that predict 

the acceleration. For CA and other type of models that predict the velocities similar results 

between velocities and positions are expected. Aggregating several trajectories in the 

objective function improved the significance of those parameters that were not very 

satisfactory. The presented methodology greatly improves the confidence in the results of 

pedestrian walker models. Models calibrated according to it can be made more precise, 

general and robust.  

Future work 

More aspects influencing calibration of walker models can be investigated such as the effect 

of noise and upper-body lateral movements (swaying) in the trajectories. The tracking 

process that produces reference data from empiric observations may introduce 

measurement errors in the position of the pedestrians that can be alleviated with a smoothing 

algorithm. However, smoothing may introduce errors. The effect of smoothing in data will be 

investigated in the future using empiric data.  

 

The methodology applied to real trajectories can also be used to study the heterogeneity and 

variations of behaviours in different flow configurations.  
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