
A BAYESIAN MULTINOMIAL-POISSON SIMPLIFIED MODEL

FOR NETWORK TRAFFIC INFERENCE BASED ON LINK

COUNT DATA

Luis E. Carvalho, Boston University, lecarval@math.bu.edu

Carlos F. G. Loureiro, Universidade Federal do Ceará, felipe@det.ufc.br

ABSTRACT

Given a network where traffic counts are observed on a selected set of links, we consider the

problem of estimating traffic intensities between origin-destination (OD) pairs in this network. We

adopt a Bayesian approach and set independent Poisson prior distributions on the number of trips

generated on a given time interval between each OD pair. Trips are further assigned to routes in

the network according to a multinomial distribution where route choice proportions are defined by

a SUE model. Given the complexity in the likelihood function, we derive a hybrid Markov chain

Monte Carlo algorithm that samples asymptotically from the posterior distribution and thus enables

the joint inference of mean OD pair and network flows. We discuss theoretical aspects of the

model, including its relation to previously studied models and the adequacy of the assumed prior

distribution, and practical issues such as computational efficiency. We illustrate our method on

well known example networks, compare estimates with other methods, and finish by presenting

directions for future research.

Keywords: OD matrix estimation, Bayesian statistics, posterior inference, MCMC methods.

1 INTRODUCTION

Consider a network with origin-destination (OD) pairs such that each pair generates trips during a

certain time interval and trips are allowed to take more than one route between origin and destina-

tion. Under this static non-fixed routing setting, and during the same time period, we record traffic

counts at some specific subset of links in the network and then wish to infer OD pair flows based

on observed link counts. This problem is often called OD matrix estimation. If pair flows are further

assumed to be random our interest then also lies in estimating distribution parameters or expected

OD matrices.

These problems are highly under-specified for most networks of interest since the number of

OD pairs greatly exceeds the number of counting links and so infinitely many flow configurations

can lead to same link count observations. To remedy this situation, additional information, usually

in the form of previously observed or subjectively defined OD matrices, is considered to constrain

or guide the estimation procedure. Following Castillo et al. (2008) and Kolaczyk (2009, Chap. 9),

we briefly review two broad classes of proposed methods for OD matrix estimation:

Optimization based methods. As the name suggests, these methods require the constrained op-

timization of a particular objective function. In least-squares (Robillard, 1975; Cascetta and

Nguyen, 1988) and generalized least-squares (Cascetta, 1984; Bell, 1991) methods an ap-

proximate Gaussian measurement model is adopted and the sum of squares of the difference

between predicted and previous OD pair flows is minimized. These approaches have the
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advantage of being convenient from a statistical point of view since they deliver unbiased es-

timates and a covariance that quantifies the uncertainty in estimating the flows. On a similar

vein, entropy based methods (Van Zuylen and Willumsen, 1980; Zhang et al., 2003) seek to

minimize the relative entropy between predicted and previous flows subject to constraints that

encourage consistency to observed link counts.

Statistical based methods. While optimization based methods attempt to find OD flows that are

consistent with observed link counts and similar to a previous estimate of flows, statistical

based methods assume that flows are random and try to estimate parameters that specify

flow distributions. A common approach is to assume Poisson OD flow distributions (Hazelton,

2000; Lo et al., 1996) or normal approximations (Vardi, 1996; Hazelton, 2001). A Bayesian

approach, in which parameters can be taken to be random themselves, tries to incorporate

prior information in a more principled, if not natural, way. Noteworthy references are Maher

(1983), that combined a multivariate normal likelihood with a prior distribution on mean OD

flows, and Tebaldi and West (1998) that also adopted Poissonian flows based on the frequen-

tist model of Vardi (1996). As Hazelton (2001) points out, optimization and statistical based

methods attempt to solve essentially different problems, namely of OD flow estimation and

mean flow estimation.

Here we adopt a Bayesian perspective that is similar to the approach from Tebaldi and West

(1998) but differs from it in that we assume an even more model-based design that accounts for

measurement errors in link counts and unobservable route traffic. Our proposed statistical model

assumes Poissonian OD pair flows, multinomial route preferences based on a user equilibrium

model, and a simplified Poisson likelihood for link count errors. In Section 2 we present this model,

extend it to allow mean flows, route probabilities, and mean link count errors to be random according

to a hierarchical model structure, and derive sampling procedures that drive the OD pair traffic esti-

mation. Next, in Section 3, we illustrate the proposed methodology with computational experiments

in simple example networks. Finally, we discuss the model, our proposed estimation procedure, and

some directions for future work in Section 4.

2 STATISTICAL MODEL

Let O be the collection of origin-destination pairs in a network N , each pair s ∈ O with origin

o(s) and destination d(s) generating Ns trips independently according to a Poisson distribution with

mean ηs: Ns ∼ Po(ηs). It might be desirable to further model pair interdependencies among the

Poisson means but we just assume that the ηs are known for simplicity for now. In Section 2.3 we

discuss an extended hierarchical model where ηs is random.

For each pair s ∈ O we select a non-exhaustive number of routes connecting o(s) to d(s), the

route set for s, R(s). A trip from o(s) to d(s) has a probability ps,r of choosing route r ∈ R(s), and a

probability ps,o
.
= 1−

∑

r∈R(s) ps,r of not using any route in R(s). Let us denote by Ns,r the number

of trips between o(d) and d(s) that use route r ∈ R(s). Then, conditional on Ns, the route flows

for OD pair s have a multinomial distribution: ((Ns,r)r∈R(s), Ns −
∑

r∈R(s) Ns,r) |Ns ∼ MN(Ns;ps),

where ps
.
= ((ps,r)r∈R(s), ps,o).

The motivation in designing the route set is to elect a minimal number of routes that have high

traffic flows and hence high probabilities of being chosen by network users. The route probabilities

are, for now, assumed to be known and determined according to a stochastic user equilibrium (SUE)

model (Daganzo and Sheffi, 1977; Praskher and Bekhor, 2004); in the next section we present a

more flexible model within which we allow ps,r to be random.

For a selected set of links I ⊂ N we observe traffic counts X = (Xi)i∈I . Without measurement
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errors and given the route flows we should have

∑

s∈O

∑

r∈Ri(s)

Ns,r = Xi, (1)

where Ri(s) = {r ∈ R(s) : i ∈ r} is the route subset that contains link i. To avoid ambiguities,

we assume that a counting link belongs to at least one route in R(s) for some OD pair s ∈ O and

that no two routes contain exactly the same counting link set. Conversely, given the link counts

X we say that a traffic flow configuration S
.
= ((Ns,r)r∈R(s))s∈O is count consistent if it satisfies

equation (1) for all i ∈ I. As hinted before, since | ∪s∈O R(s)| ≫ |I|, there are usually many count

consistent configurations whose enumeration is prohibitively expensive. It should be noted that in

realistic network designs the counting links are usually placed along high probability routes in the

route sets connecting OD pairs.

To incorporate measurement errors we assume that measurement discrepancies are indepen-

dent with distribution Xi −
∑

s∈O

∑

r∈Ri(s)
Ns,r |S ∼ Li(ξi). As an example, we could adopt a

zero-mean Gaussian kernel with variance parameter ξi: Li(Y ; ξi) ∝ exp(−Y 2/2ξi). We then say

that a route flow configuration S is weakly count consistent with respect to link counts X, denoted

by S ∈ C(X), if

Li

(

Xi −
∑

s∈O

∑

r∈Ri(s)

Ns,r; ξi

)

> 0 (2)

for all i ∈ I. Note that if Li(0; ξi) > 0 for all links then count consistency implies weak count

consistency; in particular, in the absence of errors Li(Y ; ξi) = I(Y = 0), where I(·) denotes the

indicator function, and thus weak count consistency and count consistency become equivalent.

2.1 Model inference

According to our model specification the likelihood P(X |N) of N is given by

P(X |N) =
∑

S∈C(X)

P(X, S |N)

where

P(X, S |N) = P(X |S, N)P(S |N)

=
∏

i∈I

Li

(

Xi −
∑

s∈O

∑

r∈Ri(s)

Ns,r; ξi

)

∏

s∈O

Ns!
∏

r∈R(s) Ns,r!(Ns −
∑

r∈R(s) Ns,r)!

∏

r∈R(s)

p
Ns,r
s,r

(

1 −
∑

r∈R(s)

ps,r

)Ns−
P

r∈R(s) Ns,r

.

(3)

A possible inferential approach is then to find arg maxÑ P (X | Ñ), the maximum likelihood estima-

tor. However, as previously noted, N is highly non-identifiable with many solutions yielding the same

likelihood.

Alternatively, in a Bayesian statistical setting all the inference is driven by the posterior, condi-

tional on data, distribution of the variable of interest. In our case N has posterior distribution

P(N |X) =
P(X |N)P(N)

∑

N P(X |N)P(N)
,
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according to Bayes’ rule, where prior information is considered through P(N), termed the prior

distribution of N ,

P(N) =
∏

s∈O

ηNs
s e−ηs

Ns!
. (4)

Estimates for N can then be simply obtained from the posterior mean EN |X [N ] or posterior mode

arg maxÑ P(Ñ |X).
The main difficulty in evaluating P(X |N), and hence P(N |X), is in summing over all consistent

flow configurations in C(X) that satisfy equation (2), but this is not a new hurdle since it stems

from the linear constraints on Ns,r given X. Fortunately, we can resort to Markov chain Monte

Carlo (MCMC) methods (Gelman et al., 2003; Givens and Hoeting, 2005) to sample from the joint

posterior P(N, S |X) and obtain marginal posterior estimates for N , as we show next.

2.2 Posterior sampling

In a Gibbs sampler (Geman and Geman, 1984), a type of MCMC algorithm, we iteratively sam-

ple from the conditional distribution of one variable given the others until convergence to the de-

sired, target distribution. In our case we wish to sample from P(Ns |N[−s], S, X) for each s ∈ O,

where N[−s] = (Nu)u∈O,u 6=s, and P(Ns,r |N, S[−r], X) for each s ∈ O, r ∈ R(s), where S[−r] =
((Nu,t)t∈R(u),t 6=r)u∈O, until convergence to P(N, S |X).

Now, since from (3) and (4)

P(Ns, N[−s], S, X) =
ηNs

s Φ[−s](N[−s], S, X)

(Ns −
∑

r∈R(s)Ns,r
)!

(

1 −
∑

r∈R(s)

ps,r

)Ns−
P

r∈R(s) Ns,r

,

where Φ[−s](·) only contains terms that do not depend on Ns, we then have

P(Ns |N[−s], S, X) =
P(Ns, N[−s], S, X)

∑

Ns
P(Ns, N[−s], S, X)

=
(ηsps,o)

Ns−
P

r∈R(s) Ns,re−ηsps,o

(Ns −
∑

r∈R(s)Ns,r
)!

and so

Ns −
∑

r∈R(s)

Ns,r

∣

∣

∣

∣

∣

N[−s], S, X ∼ Po

[

ηs

(

1 −
∑

r∈R(s)

ps,r

)]

. (5)

Next, before finding P(Ns,r |S[−r], N, X), let us define X〈i,r〉
.
= Xi −

∑

u∈O

∑

t∈R(u),t 6=r Nu,t,

p〈s,r〉
.
= 1−

∑

t∈R(s),t 6=r ps,t, and N〈s,r〉
.
= Ns −

∑

t∈R(s),t 6=r Ns,t to simplify the notation. Then, also

from (3) and (4) we have

P(Ns,r, S[−r], N, X) =
∏

{i∈I : r∈Ri(s)}

Li(X〈i,r〉 − Ns,r; ξi)Ψ[−r](S[−r], N, X)

p
Ns,r
s,r (p〈s,r〉 − ps,r)

N〈s,r〉−Ns,r

Ns,r!(N〈s,r〉 − Ns,r)!

where Ψ[−r](·) only includes terms that do not depend on Ns,r. Rearranging and scaling terms we

obtain

P(Ns,r |S[−r], N, X) ∝
N〈s,r〉!

Ns,r!(N〈s,r〉 − Ns,r)!

(

ps,r

p〈s,r〉

)Ns,r
(

p〈s,r〉 − ps,r

p〈s,r〉

)N〈s,r〉−Ns,r

∏

{i∈I : r∈Ri(s)}

Li(X〈i,r〉 − Ns,r; ξi).

(6)
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To sample from P(Ns,r |S[−r], N, X) we would need to find the proportionality constant in (6) by

summing the expression over the support of Ns,r,

Ss,r
.
= {0, . . . , N〈s,r〉} ∩

⋂

{i∈I : r∈Ri(s)}

{

Ns,r : Li(X〈i,r〉 − Ns,r; ξi) > 0
}

,

the intersection of the binomial and likelihood supports. However such operation would incur in

a significant computational burden. Alternatively, we employ a Metropolis-Hasting step (Hastings,

1970): we sample a candidate N∗
s,r from a proposal distribution g, compute a Metropolis ratio

R(Ns,r, N
∗
s,r) =

P(N∗
s,r |S[−r], N, X)g(Ns,r)

P(Ns,r |S[−r], N, X)g(N∗
s,r)

,

and accept N∗
s,r as a valid sample with probability min{R(Ns,r, N

∗
s,r), 1}. Since in this case we

sample N∗
s,r regardless of Ns,r, this routine implements an independent Metropolis-Hastings step.

Let

g(Ns,r) ∝
N〈s,r〉!

Ns,r!(N〈s,r〉 − Ns,r)!

(

ps,r

p〈s,r〉

)Ns,r
(

p〈s,r〉 − ps,r

p〈s,r〉

)N〈s,r〉−Ns,r

I(Ns,r ∈ Ss,r) (7)

and

w(Ns,r)
.
=

∏

{i∈I : r∈Ri(s)}

Li(X〈i,r〉 − Ns,r; ξi)

and thus P(Ns,r |S[−r], N, X) ∝ g(Ns,r)w(Ns,r) according to (6). We then use g(·) as proposal

distribution, that is, we sample a candidate

N∗
s,r

∣

∣

∣
S[−r], N, X ∼ Bin

(

N〈s,r〉,
ps,r

p〈s,r〉

)

until N∗
s,r is in the support Ss,r and accept it based on the Metropolis ratio

R(Ns,r, N
∗
s,r) =

∏

{i∈I : r∈Ri(s)}

w(N∗
s,r)

w(Ns,r)
=

∏

{i∈I : r∈Ri(s)}

Li(X〈i,r〉 − N∗
s,r; ξi)

Li(X〈i,r〉 − Ns,r; ξi)
, (8)

a product likelihood ratio. Note that, as an advantage, we do not need to compute the proportionality

constant in (6) anymore.

Finally, putting all the steps together we obtain a hybrid MCMC algorithm—known as “Metropolis-

within-Gibbs” (Gilks et al., 1995)—at Figure 1 for sampling from the joint posterior distribution of N
and S. We can now estimate Ns, for some s ∈ O, by approximating the posterior mean of Ns using

the samples:

ENs|X [Ns] ≈
1

n

n
∑

k=1

N (k)
s

and similarly for Ns,r, r ∈ R(s).

2.3 Extended hierarchical model

To better incorporate uncertainty into model parameters, since they are usually estimated or guessed

from previous observations, we now adopt a simple hierarchical model with conjugate hyper-priors:

for s ∈ O, ηs ∼ Ga(as, bs) and ps ∼ Dir(πs), where Ga(a, b) denotes the gamma distribution with

shape a and rate b, and Dir is the Dirichlet distribution.
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1. (Initialization) Sample from prior until S(1) ∈ C(X): for s ∈ O sample N
(1)
s ∼ Po(ηs) and for

r ∈ R(s) sample S(1) ∼ MN(N
(1)
s ,ps).

2. (Gibbs sampling) For k = 1, . . . , n, with n large enough to guarantee convergence to

P(N, S |X):

(a) For s ∈ O sample according to (5):

N (k+1)
s −

∑

r∈R(s)

N (k)
s,r

∣

∣

∣

∣

∣

N
(k)
[−s], S

(k), X ∼ Po

[

ηs

(

1 −
∑

r∈R(s)

ps,r

)]

.

(b) (Metropolis-Hastings step) For s ∈ O, r ∈ R(s):

i. Sample candidate N∗
s,r from proposal in (7):

N∗
s,r

∣

∣

∣

∣

∣

S
(k)
[−r], N

(k+1), X ∼ Bin

(

N
(k)
〈s,r〉,

ps,r

p〈s,r〉

)

until N∗
s,r ∈ S

(k)
s,r , where some of the route flows in S

(k)
[−r] might have already been

updated by a previous Metropolis-Hastings step.

ii. Sample U ∼ U[0, 1] and compute, according to (8),

R(N (k)
s,r , N∗

s,r) =
∏

{i∈I : r∈Ri(s)}

Li(X〈i,r〉 − N∗
s,r; ξi)

Li(X〈i,r〉 − N
(k)
s,r ; ξi)

.

iii. If U ≤ min{R(N
(k)
s,r , N∗

s,r), 1} set N
(k+1)
s,r = N∗

s,r (accept); otherwise set N
(k+1)
s,r =

N
(k)
s,r (reject).

Figure 1: Metropolis-within-Gibbs sampling algorithm for the joint posterior on N and S.
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To apply the same treatment to measurement errors we should define hyper-priors for the pa-

rameters ξi. For computational simplicity—and to have a more homogeneous model—we settle

on Poisson errors with mean ξi, Xi −
∑

s∈O

∑

r∈Ri(s)
Ns,r |S ∼ Po(ξi), where ξi are random with

conjugate distribution ξi ∼ Ga(ci, di), for i ∈ I. As a consequence, S ∈ C(X) corresponds to count

sub-consistent route flows that satisfy
∑

s∈O

∑

r∈Ri(s)

Ns,r ≤ Xi

for all counting links.

Under this extended model we can now address the issue of estimation of mean OD pair flows.

As in the previous section, we now look to devise a sampling scheme for computing posterior means

Eηs |X [ηs] as estimates for ηs. But it is now straightforward, due to conjugacy, to obtain, for s ∈ O
and i ∈ I,

ηs | η[−s], ξ,p, S, N, X ∼ Ga(as + Ns, bs + 1),

ps | η, ξ,p[−s], S, N, X ∼ Dir

(

(πs,r + Ns,r)r∈R(s), πs,o + Ns −
∑

r∈R(s)

Ns,r

)

,

ξi | η, ξ[−i],p, S, N, X ∼ Ga

(

ci + Xi −
∑

s∈O

∑

r∈Ri(s)

Ns,r, di + 1

)

,

(9)

where η
.
= (ηs)s∈O, ξ

.
= (ξi)i∈I , p

.
= (ps)s∈O, and we use η[−s] to denote the exclusion of OD pair

s from (ηs)s∈O and similarly for p[−s] and ξ[−i] as before.

The conditional distributions in (9) can then be casted as steps in an extended version of the

hybrid Gibbs sampler in Figure 1. Since Ns is conditionally independent of ξi and X given S, ηs,

and ps, we do not depend on the choice of Li to sample Ns similarly to (5):

Ns −
∑

r∈R(s)

Ns,r

∣

∣

∣

∣

∣

η, ξ,p, S, N[−s], X ∼ Po

[

ηs

(

1 −
∑

r∈R(s)

ps,r

)]

. (10)

We still require a Metropolis-Hastings step to sample Ns,r, but given the specific choice of Li we

now know that the support Ss,r goes from 0 to

min

{

N〈s,r〉, min
{i∈I : r∈Ri(s)}

X〈i,r〉

}

and, adopting the same truncated binomial proposal g(·) in (7), the “importance” weights

w(Ns,r)
.
=

∏

{i∈I : r∈Ri(s)}

ξ
X〈i,r〉−Ns,r

i

(X〈i,r〉 − Ns,r)!

yield the Metropolis ratio

R(Ns,r, N
∗
s,r) =

∏

{i∈I : r∈Ri(s)}

w(N∗
s,r)

w(Ns,r)
=

∏

{i∈I : r∈Ri(s)}

ξ
Ns,r−N∗

s,r

i

(X〈i,r〉 − Ns,r)!

(X〈i,r〉 − N∗
s,r)!

. (11)

The new algorithm is listed in Figure 2.

3 CASE STUDIES

In this section we show two application examples for simple networks adapted from (Hazelton, 2000)

and (Lo et al., 1996) respectively.
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1. (Initialization) Sample from prior until S(1) ∈ C(X):

(a) (Hyper-priors) For s ∈ O sample η
(1)
s ∼ Ga(as, bs) and p

(1)
s ∼ Dir(πs), and for i ∈ I

sample ξ
(1)
i ∼ Ga(ci, di).

(b) For s ∈ O sample N
(1)
s ∼ Po(η

(1)
s ) and for r ∈ R(s) sample S(1) ∼ MN(N

(1)
s ,p

(1)
s ).

2. (Gibbs sampling) For k = 1, . . . , n, with n large enough to guarantee convergence to

P(η, ξ,p, N, S |X):

(a) (Hyper-priors) Sample according to (9): for s ∈ O,

η(k+1)
s | · ∼ Ga(as + N (k)

s , bs + 1),

p
(k+1)
s

∣

∣

∣

∣

∣

· ∼ Dir

(

(π(k)
s,r + N (k)

s,r )r∈R(s), π
(k)
s,o + N (k)

s −
∑

r∈R(s)

N (k)
s,r

)

,

and, for i ∈ I,

ξ
(k+1)
i

∣

∣

∣

∣

∣

· ∼ Ga

(

ci + Xi −
∑

s∈O

∑

r∈Ri(s)

N (k)
s,r , di + 1

)

.

(b) For s ∈ O, sample according to (10),

N (k+1)
s −

∑

r∈R(s)

N (k)
s,r

∣

∣

∣

∣

∣

· ∼ Po

[

η(k+1)
s

(

1 −
∑

r∈R(s)

p(k+1)
s,r

)]

.

(c) (Metropolis-Hastings step) For s ∈ O, r ∈ R(s):

i. Sample candidate N∗
s,r from proposal (7) until N∗

s,r ∈ Ss,r:

N∗
s,r

∣

∣

∣

∣

∣

· ∼ Bin

(

N
(k)
〈s,r〉,

p
(k+1)
s,r

p
(k+1)
〈s,r〉

)

.

ii. Sample U ∼ U[0, 1] and compute, according to (11),

R(N (k)
s,r , N∗

s,r) =
∏

{i∈I : r∈Ri(s)}

ξ
(k+1)
i

N
(k)
s,r −N∗

s,r (X〈i,r〉 − N
(k)
s,r )!

(X〈i,r〉 − N∗
s,r)!

.

iii. If U ≤ min{R(N
(k)
s,r , N∗

s,r), 1} set N
(k+1)
s,r = N∗

s,r (accept); otherwise set N
(k+1)
s,r =

N
(k)
s,r (reject).

Figure 2: Metropolis-within-Gibbs sampling algorithm for the joint posterior on N , S, and hyper-

parameters η, ξ, and p under the extended hierarchical model.
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Example 1

Consider the three-node network depicted in Figure 3 with three OD pairs: 1 ∼ [1 → 2], 2 ∼ [1 → 3],

and 3 ∼ [2 → 3]. Let us assume that the OD pairs have Poisson mean parameters η
(0)
1 = 70, η

(0)
2 =

100, and η
(0)
3 = 80 estimated from similar networks. Observed link counts are X = (120, 130, 50),

and let us make ξ
(0)
i = Xiσ

2 for i = 1, 2, 3, where σ = 0.2 as estimated from previous observations.

1 3

2

1 2

3

Figure 3: Network for Example 1 from (Hazelton, 2000).

Given the simplicity of the network it is reasonable to assume that only a small fraction of users

does not use any of the links, and so we suppose that each OD pair s has ps,o
.
= δ = 0.01. OD

pair 2 has two possible routes: one straight from node 1 to node 3 and other passing through node

2. We assume that route 1 → 2 → 3 has probability θ(1 − δ). Table 1 summarizes the network

parameters. For the experiments, let us assume that both routes connecting pair 2 have equal

probability of being selected, and thus θ = 0.5.

Table 1: Network parameters for Example 1.
Route r OD pair s Links Prob. ps,r

1 → 2 1 1 1 − δ
1 → 2 → 3 2 1, 2 (1 − δ)θ

1 → 3 2 3 (1 − δ)(1 − θ)
2 → 3 3 2 1 − δ

For an extended model we fix a parameter ρ for the gamma rates and set as = η
(0)
s ρ, bs = ρ for

s ∈ O and ci = ξ
(0)
i ρ, di = ρ for i ∈ I. Since Ga(aρ, ρ) has mean a and variance a/ρ, parameter ρ in

the extended model controls for how informative the estimates η
(0)
s and ξ

(0)
i are. Route probabilities

have Dirichlet prior distribution with parameters πs = ps/δ, simply scaled so that πs,o = 1.

We now run three scenarios: base model, extended model with ρ = 0.05 (non-informative), and

extended model with ρ = 5 (informative). In all cases we run the algorithms in Figures 1 and 2 for

the base and extended models respectively for 100,000 iterations and keep the last 10,000 assuming

the limiting behavior of the chain has then prevailed. Table 2 and Figures 4 and 5 summarize our

results.

Table 2: Posterior mean and standard deviation (in parentheses) of N and η estimated from 10,000
iterations of the hybrid Gibbs sampler for Example 1.

Model/Param. N1 N2 N3

Base 70.26 (4.75) 94.82 (4.89) 79.96 (4.94)
Ext., ρ = 0.05 62.41 (6.76) 104.98 (7.25) 72.49 (7.87)
Ext., ρ = 5 69.47 (5.27) 95.47 (5.42) 79.48 (5.17)

η1 η2 η3

Ext., ρ = 0.05 62.83 (10.13) 104.71 (12.15) 72.94 (11.29)
Ext., ρ = 5 69.89 (3.52) 99.28 (4.21) 79.94 (3.74)

We first note that a small δ has the effect of estimating close to (strongly) consistent route

flows. Since η
(0)
s admits a count consistent flow where N2,1 = N2,2 = 50 and Ns = η

(0)
s , s =
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Figure 4: Estimated posterior distribution of N from base model (top), extended models with ρ =
0.05 (middle) and ρ = 5 (bottom) for Example 1. Bold vertical lines indicate the posterior mean.
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Figure 5: Estimated posterior distribution of η from extended models with ρ = 0.05 (top) and ρ = 5
(bottom) for Example 1. Bold vertical lines indicate the posterior mean. Dashed curves and vertical

lines show prior distribution and prior mean.
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1, 2, 3, we obtain estimates that are reasonably expected under the base and informative scenarios.

Albeit different from the sampling-based approach in Hazelton (2000), these results are comparable

to his “encouraging” simulation estimates obtained from likelihood maximization of a multivariate

normal approximation. We point out that even though each Ns has a prior Poisson, the posterior

distribution is less rigid with a much smaller variance given the influence of data. Such influence

is also observed for mean parameters in the extended models; in particular, as the top panel in

Figure 5 shows, the observed link counts greatly affect the posterior distribution of ηs.

The seemingly poorer results for the non-informed scenario should not come as a surprise:

as we have less trust in our previous estimates more flow configurations become likely, that is,

we face more severe identifiability issues. Less informative priors yield higher variance posteriors,

as Table 2 demonstrates. The middle panel in Figure 4 hints at two modal flow configurations:

one already corroborated by the base and informative cases, N = (70, 100, 80), and other with

N = (60, 110, 70) and thus more likely unbalanced route flows in OD pair 2. However, this latter

estimate becomes more plausible given that the posterior distribution of ηs is centered closer to it.

Example 2

The network in Figure 6, also discussed by Hazelton (2000), is taken from Cascetta and Nguyen

(1988) and Lo et al. (1996). Here we take O = {1, 3, 4, 6}2 and consider all routes connecting each

OD pair that are not cyclic. We assign route choice probabilities according to a logit model on route

travel costs cr, the sum of costs over links in route r, with parameter θ = 0.2. We again follow

Cascetta and Nguyen (1988) and assume that each link in route r has uniform cost of 5 units. As in

the previous example, we set ps,o = δ = 0.01, and so

ps,r =
exp(−θcr)

∑

t∈R(s) exp(−θct)
(1 − δ).

Dirichlet priors are also taken as πs = ps/δ to ensure πs,o = 1.

4 5 6

1

2 4

3

56

7

8

9

10

11 12 1413

1 2 3

Figure 6: Network for Example 2 from (Cascetta and Nguyen, 1988). Origin/destination nodes are

identified in gray.

Previous estimates for mean OD flows η
(0)
s are listed in Table 3. For the base model we simply

adopt η
(0)
s as mean parameters. To generate link count data, we set σ = 0.1, simulate OD flows

and route flows Ñs,r and sample, for i = 1, . . . , 14,

Xi −
∑

s∈O

∑

r∈Ri(s)

Ñs,r

∣

∣

∣

∣

∣

Po

(

∑

s∈O

∑

r∈Ri(s)

Ñs,rσ
2

)

,

obtaining X = (810, 935, 859, 839, 539, 722, 746, 655, 642, 701, 715, 518, 370, 508). As before, we

define a precision parameter ρ for how informative η
(0)
s are and set priors ηs ∼ Ga(η

(0)
s ρ, ρ) for

s ∈ O and ξi ∼ Ga(Xiσ
2ρ, ρ) for i ∈ {1, . . . , 14}.
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Table 3: Previously estimated mean OD pair flows η
(0)
s for network in Example 2.

Origin / Destination 1 3 4 6
1 — 500 250 250
3 500 — 250 250
4 250 500 — 250
6 500 250 250 —

The same three scenarios from Example 1 are simulated now: base model and extended non-

informed (ρ = 0.05) and informed (ρ = 5) models. Table 4 and Figures 7 and 8 summarize the

last 10,000 samples from a simulation run of 100,000 iterations. Similarly to the previous example,

the posterior distributions for Ns under the base and informed models agree well with previous

observations, while estimates under the non-informative setting exhibit larger variances. Given

the higher complexity of this network, however, we should expect an increased dependence on

prior specifications to alleviate identifiability problems in inference. In fact, as Figure 8 illustrates,

posterior distributions for ηs are more disperse, and thus more sensible, depending on ρ.

Table 4: Posterior mean and standard deviation (in parentheses) of N and η estimated from 10,000
iterations of the hybrid Gibbs sampler for Example 2.

OD pair s Ns ηs

[o(s) → d(s)] Base Ext., ρ = 0.05 Ext., ρ = 5 Ext., ρ = 0.05 Ext., ρ = 5

1 ∼ [1 → 3] 482.92 (15.39) 515.39 (25.44) 479.69 (18.39) 514.82 (32.97) 496.66 (9.68)
2 ∼ [1 → 4] 235.29 (10.61) 227.75 (15.99) 234.87 (10.98) 228.69 (21.16) 247.44 (6.68)
3 ∼ [1 → 6] 239.56 (12.17) 164.09 (17.94) 240.55 (11.82) 168.17 (21.21) 248.42 (6.77)
4 ∼ [3 → 1] 517.33 (17.27) 525.26 (14.83) 512.74 (18.15) 524.12 (26.40) 502.03 (9.61)
5 ∼ [3 → 4] 240.4 (10.98) 310.52 (20.72) 247.62 (15.57) 307.48 (26.36) 249.67 (7.00)
6 ∼ [3 → 6] 247.7 (12.88) 198.47 (18.21) 244.47 (12.76) 201.09 (22.15) 249.04 (6.74)
7 ∼ [4 → 1] 250.35 (11.44) 196.92 (22.51) 254.04 (13.42) 199.21 (25.51) 250.65 (6.87)
8 ∼ [4 → 3] 476.21 (13.55) 479.77 (27.41) 484.19 (14.40) 480.72 (33.79) 497.36 (9.47)
9 ∼ [4 → 6] 243.82 (10.82) 290.17 (26.67) 244.11 (14.95) 288.49 (30.62) 249.00 (6.93)
10 ∼ [6 → 1] 508.98 (14.47) 508.31 (18.59) 505.13 (17.54) 508.11 (28.34) 500.87 (9.53)
11 ∼ [6 → 3] 248.35 (10.33) 240.13 (25.10) 245.38 (14.04) 240.74 (28.15) 249.16 (6.91)
12 ∼ [6 → 4] 242.94 (13.18) 171.24 (29.02) 247.79 (14.84) 175.03 (30.47) 249.65 (6.85)

4 DISCUSSION

In this paper we have taken a Bayesian approach to the problem of estimating OD pair flows and

mean OD pair flows in traffic networks based on link count data. Extending the work of Tebaldi and

West (1998) and Vardi (1996), we adopted a model that considers count measurement errors and

allows for unobserved route flows. The main contribution is then a methodology for OD matrix esti-

mation under stochastic routing that incorporates prior network information within a sound statistical

framework. To this end, we have developed a sampling scheme based on a hybrid MCMC Gibbs

sampler that mixes independent Metropolis-Hastings steps. The proposed model and estimation

methodology were illustrated in two simple network examples.

Besides the advantage of being a more principled approach, an statistical treatment of OD matrix

estimation benefits from a long experience, as raised by Castillo et al. (2008), and encompasses

a large set of tools including credibility intervals and hypothesis tests to quantify variability and test

estimates. For instance, the assumption of unobservable routes makes the model arguably more

appropriate for large-scale networks where, even though an OD pair is connected by a large number

of routes, most of them have a very low probability of being chosen. However, from a broader

perspective, it is a common and encouraged practice within Bayesian settings to validate model
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Figure 7: Boxplots of estimated posterior distribution of N from base model (top), extended models

with ρ = 0.05 (middle) and ρ = 4 (bottom) for Example 2.

12th WCTR, July 11–15, 2010 — Lisbon, Portugal

14



A Bayesian Multinomial-Poisson Simplified Model for Network Traffic Inference Based on Link Count Data

CARVALHO, Luis E.; LOUREIRO; Carlos F. G.

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11 η12

10
0

30
0

50
0

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10 η11 η12

25
0

35
0

45
0

55
0

Figure 8: Boxplots of estimated posterior distribution of η from extended models with ρ = 0.05 (top)

and ρ = 5 (bottom) for Example 2.

12th WCTR, July 11–15, 2010 — Lisbon, Portugal

15



A Bayesian Multinomial-Poisson Simplified Model for Network Traffic Inference Based on Link Count Data

CARVALHO, Luis E.; LOUREIRO; Carlos F. G.

assumptions using posterior predictive checks. All these statistical tools are easy to implement and

promptly obtainable from our sampling routine.

The main caveat in MCMC methods is the assessment of convergence to the target distribution.

Even for small networks such as those in Section 3 the estimation problem might become severely

ill-posed given the number of possible solutions that induce the same posterior probability. It is then

natural to expect a large number of iterations until convergence is assured, since high correlation

across variables due to consistency constraints can induce auto-correlation in the chain of samples.

This difficulty can be present in a different way for the optimization-based methods reviewed in

Section 1: optimization routines might require many different starting points to avoid local optima.

Hazelton (2000) reports such experience when using a generalized least squares method.

The model can be enhanced in many ways. Even though we have not discussed models in

which ps,o = 0 and/or where link count observations are free of errors, it is relatively straightforward

to modify the Metropolis-within-Gibbs sampler to accommodate these specifications. In general,

it might be possible to sample more efficiently by devising a better proposal for the Metropolis-

Hastings step—not necessarily independent—according to the count likelihoods Li.

The methodology can also be extended to more comprehensive models that consider, for ex-

ample, dynamic routing, in which case network flows and observed link counts are indexed by time,

and joint SUE parameter inference. We are currently planning on applying the proposed model to a

large-scale, real case scenario and intend to later report our findings on model adequacy, method-

ology results, and possible alternative solutions.
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