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ABSTRACT 

This study examines the relationship between the built environment and vehicle miles 
travelled (VMT) by taking advantage of a unique dataset of millions of odometer readings 
from annual vehicle safety inspections for all private passenger vehicles registered in the 
Boston Metropolitan Area, Massachusetts, U.S.A.  With advanced GIS techniques and 
database management tools, VMT and a set of comprehensive built-environment measures 
are computed for a statewide 250m*250m grid cell layer developed by MassGIS (the State’s 
GIS Office). We use factor analysis to extract built-environment and demographic factors that 
may affect VMT, and integrate the factors into the regression models. Spatial regression 
techniques are applied to correct spatial autocorrelation. The empirical results suggest that 
there are significant associations between built environment factors and household vehicle 
usage. In particular, distance to non-work destination, connectivity, accessibility to transit and 
jobs play significant roles in explaining the VMT variations across grid cells. The research 
findings can facilitate the dialogue among regional planning agencies, local government and 
the public regarding growth management and sustainable regional development strategies 
and scenarios. 
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1.   INTRODUCTION 

In the last few decades, the rapid growth of Greenhouse Gas (GHG) concentration in the 
atmosphere and associated negative effects of global warming are causing increasing 
concerns about the sustainability of our world. The transportation sector is currently 
responsible for one quarter of the world’s energy-related GHG emissions (Price et.al. 2006), 
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and personal mobility consumes about two thirds of the total transportation energy use (IEA 
2004). As an important source of GHG emissions, transportation plays a critical role in the 
global efforts to achieve sustainable development. Multiple strategies to reduce 
transportation energy use and emissions are currently explored, such as fuel-efficient 
vehicles, financial (dis)incentives, and various smart growth policies. Among these policy 
options, smart growth policies invite special interests due to their financial and political 
feasibility. 
 
Central to smart growth strategies is leveraging the interconnection between the built 
environment and travel behavior to reduce travel demand. The built environment comprises 
urban design, land use, and the transportation system, and encompasses patterns of human 
activity within the physical environment (Handy et al. 2002). Smart growth policies try to 
reshape household travel behavior by changing the built environment via such mechanisms 
as regional planning, zoning, provisions of alternative transportation nodes, and so forth. 
 
The relationship between transportation and the built environment has long been studied and 
is recognized as complex, as reviewed in Handy (1996), Boarnet and Crane (2000), Crane 
(2000), Ewing and Cervero (2001), and Frank and Engelke (2001). There continues to be 
debates about whether the relationship is “strong” or “weak” (Krizek 2005). Trip-based survey 
data (for sampled individuals and households) are the preferred instrument for empirical 
analysis of travel behavior since the unit of analysis, an individual trip, can be readily 
associated with the mode availability, travel cost, demographic factors, and built environment 
measures. However, the high expense of individual travel surveys tends to limit sample sizes 
and privacy concerns often limit the geographic specificity with which trip origins and 
destinations can be revealed. These issues constrain the capability of survey-based studies 
in providing confidence in statistical accuracy at neighborhood level.  
 
Another line of research characterizes both the built environment and travel using aggregate 
measures. Newman and Kenworthy (1999) analyze the relationship between density and 
energy use for an international sample of cities and find significant negative correlation 
between density and energy use. However, besides the fundamental problem of comparing 
places with different cultural, political and historical contexts, this study is also criticized by its 
use of simple measures of urban form and travel (Handy 1996). Holtzclaw (1994) uses 
odometer reading data from biennial auto emission inspections to derive estimates of total 
travel for twenty eight zip code zones in California and relate it to built environment 
measures. The result shows that annual vehicle miles travelled is significantly associated 
with neighborhood density. Miller and Ibrahim (1998) carry out an empirical investigation into 
the relationship between the built environment and automobile travel at traffic analysis zone 
(TAZ) level in the Greater Toronto Area. The study finds zonal VMT per worker to increase 
with increasing distance from the CBD, and/or other major employment zones within the 
urban area. Holtzclaw et. al. (2002) use socio-demographic variables to control for population 
difference across different zones and find that auto ownership and mileage per car are 
functions of neighborhood urban design and socio-economic characteristics in the Chicago, 
Los Angles, and San Francisco regions.  
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The aggregate approach has provided promising evidence of the potential effectiveness of 
smart growth policies in reducing travel demand (Handy 1996).  However as many 
researchers have suggested, this approach also has significant shortcomings: (1) It does not 
allow for an exploration of underlying factors and the mechanisms by which the built 
environment influences individual decisions; (2) The zones used in previous aggregate 
studies are usually very large in size. For example, Holzclaw et al. (2002) use zip code as 
their unit of analysis. At such aggregated level, the intra-zone variations of the built 
environment and demographic measure could be too large to ignore; (3) Previous studies 
either omit or include very few demographic variables in their statistical analyses, thus make 
limited effort to control the residential self-selection problem and construct causal 
relationships (Brownstone 2008); and (4) spatial autocorrelation may affect significantly but is 
neglected. 
 
In this study, we take advantage of a newly-available unique dataset, the odometer readings 
from annual safety inspections for all private passenger vehicles registered in Metro Boston 
to develop an extensive and spatial detailed analysis of the built environment and household 
vehicle usage. Vehicle Miles Travelled (VMT) is taken as the primary variable of interest, 
which is a convenient measure that reduces the multi-dimensional travel demand (number of 
trips, the spatial distribution of these trips, the modes and routes chosen to execute these 
trips) to a single variable (Miller and Ibrahim 1998). The basic spatial unit for our analysis is a 
statewide 250m by 250m grid cell layer developed by MassGIS, the State’s Office for 
Geographic and Environmental information. We perform multivariate regression analyses at 
the grid cell level to identify built-environment and demographic factors that are significantly 
associated with household vehicle usage. Spatial econometric techniques are applied to 
address the potential spatial autocorrelation. 
 
Given the nature of our analysis, we raise two cautions at the outset. First, the objective of 
this study is not to project the impact of a given policy on vehicle usage, which requires a 
dynamic model of land use-transportation interaction (Miller and Ibrahim 1998). Our more 
modest objectives are to examine the spatial distribution of travel behavior within a 
metropolitan area, which can be seen as the outcome of this dynamic land use-transportation 
process, and to clarify the irreducible spatial components of household travel behavior. The 
second issue concerns the ecological fallacy. In particular, we focus on the aggregate spatial 
patterns of the relationship between the built environment and household vehicle usage, 
while the underlying factors and the behavior mechanisms by which the built environment 
influences individual decisions cannot be revealed by this study. 

2.   STUDY AREA AND DATA 

The Boston Metropolitan Area is selected as the study area of our empirical analyses. Metro 
Boston exhibits a variety of built-environment characteristics, which makes it a compelling 
case for our study. Figure 1 maps Metro Boston and the City of Boston. 
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Figure 1- Study Area 

This study uses a unique VMT dataset, the annual vehicle safety inspection records from the 
Registry of Motor Vehicles (RMV) to estimate annual mileage for every private passenger 
vehicle registered in Metro Boston. Safety inspection is mandated annually beginning within 
one week of registering a new or used vehicle. The safety inspection utilizes computing 
equipment that records vehicle identification number (VIN) and odometer reading and 
transmits these data electronically to the RMV where they can be associated with the street 
address of the place of residence of the vehicle owner. MassGIS gets access to the safety 
inspection records from the RMV for a “Climate Roadmap” project that details possible plans 
for significant reductions in GHG emissions by the 2020-2050 period in Massachusetts. 
MassGIS compares the two recent vehicle inspection records for all private passenger 
vehicles, calculates the odometer reading difference, and pro-rates it based upon the time 
period between inspection records so as to reflect the estimated annual mileage travelled. 
Each vehicle is then geocoded to the owner's address using GIS tools. MassGIS grants us 
permission to use this dataset in our study through the research collaboration between MIT 
and MassGIS. Overall, 2.47 million private passenger vehicles are included in this dataset. 
Among them, 2.10 million vehicles (84.9%) have credible odometer readings. For the 
remaining 0.37 million vehicles, we know their places of garaging but don’t have reliable 
odometer readings, either because the reported reading was determined to be in error or 
because two readings sufficiently far apart were not available. 
 

Boston Metropolitan Area City of Boston 
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While this dataset lacks individual trip details, it does provide a very high percentage sample 
of total passenger vehicle miles travelled. Furthermore, unlike travel surveys, this dataset 
does not depend on the subjects' willingness or ability to remember and report their driving. 
The Energy Information Administration (EIA)'s 1994 Residential Transportation Energy 
Consumption Survey shows that self-reported VMT values are 13 percent greater than 
odometer-based VMT in urban areas. EIA suggests that odometer-based VMT should be 
obtained if possible (Schipper and Moorhead 2000). Holtzclaw et al. (2002) use a similar 
dataset in their study, odometer readings from auto emission inspections (smog check), but 
since California exempts new vehicles from smog checks for the first two years, their 
measure systematically biases VMT downwards for zones with large numbers of new 
vehicles (Brownstone 2008). 
 
Our study also benefits from built-environment data with exceptional spatial detail, which are 
mainly from MassGIS. MassGIS utilized Dun & Bradstreet business location database to 
locate household non-work destinations, and geocoded these businesses to a point layer. 
Institutional destinations such as schools, hospitals and parks exist as independent data 
layers developed and maintained by MassGIS. Road inventory database with detailed 
information on road networks in the region is from the Massachusetts Department of 
Transportation. Population and household data are generated from the 2000 Census and 
constrained by MassGIS to those areas identified as residential by the 2000 land use 
dataset. Population and households are further assigned to 250m*250m grid cells.  
 
The spatial unit used in this study is a 250m*250m grid cell layer developed by MassGIS. 
The grid cell approach has often been identified as a possible means of dealing with the 
Modifiable Areal Unit Problem (Robsen 1969). In this study, a grid cell contains an area just 
over 15.4 acres, which is very small to capture spatial details and neighborhood effects. 
Meanwhile, using the grid cell as a basic study unit, one can take advantage of powerful 
raster analysis tools in GIS software. For each grid cell, we define a catchment area 
(neighborhood) as the 3*3 nearest grid cells, compute the variable of interest for the 
catchment area, and assign the value to the grid cell in the middle. The 750m*750m 
catchment area has a size that is close to the “transportation impact area”, which is 
conventionally defined as a circle with a 1⁄4-mile radius, a figure that has been backed by 
behavioral and empirical research (Untermann 1984). The employment of catchment area 
also helps create a smooth surface, reducing noises in the raw data. Compared with 
previous research, our study is performed at a much more fine-grained scale. Table 1 
compares the grid cells we use in our study and some spatial units that are widely used in 
transportation research for Metro Boston.  
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Table 1 - Comparison of Spatial Units for Metro Boston 
 
    Grid Cell TAZ Block Group Census Tract
No. of observations 119834 2727 3323 894
No. of observations with population 73714 2606 3319 894
Vehicle count for populated units    
 Min 0 0 1 1
 Max 3117 3022 11593 13631
 Mean 32 941 744 2764
 Std. Dev. 49 603 514 1514
Household count for populated 
units    
 Min 0 0 0 0
 Max 1624 2318 2211 4260
 Mean 22 631 495 1839
 Std. Dev. 48 391 246 713
Individual count for populated units    
 Min 1 1 2 70
 Max 3673 4969 6131 12051
 Mean 58 1654 1297 4817
  Std. Dev.  112 992 626 1825

3.   METHODOLOGY 

3.1 Model Specifications 

In our base model, VMT is specified as a function of built-environment and demographic 
factors.  

iikkijji DEMBEVMT εβα ++= ∑∑                                                                        (1) 
where VMTi is the zonal average VMT per vehicle, per household or per capita for the 
catchment area of grid cell i; BEi is a vector of built-environment variables of grid cell i, and 
DEMi is a vector of demographic variables of the block group that grid cell i falls in.  
 
Many previous studies suggest that built environment can influence travel behavior. This 
effect can be partitioned into direct influences associated with the characteristics of the 
neighborhood where the household locates and indirect influences associated with the travel 
behavior and built environment characteristics of neighboring areas. We estimate both 
spatial lag model and spatial error models (Anselin 1993) to capture this spatial effect. 
Spatial lag suggests a possible diffusion process -- VMT of one place is affected by the 
independent variables of this place as well as neighboring areas. With spatial lag in OLS 
regression, the estimation result will be biased and inefficient. Spatial error is indicative of 
omitted independent variables that are spatially corrected. With spatial error in OLS 
regression, the estimation result will be inefficient. The spatial lag model can be specified as: 
 

iikkijjVMTi DEMBEWVMT
i

εβαρ +++= ∑∑                                                            (2) 
where ρ is a spatial lag correlation parameter, and ε is an Nx1 vector of i.i.d. standard normal 
errors. The spatial error model can be specified as: 
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ii

iikkijji

i
W

DEMBEVMT

μλε

εβα

ε +=

++= ∑∑
                                                                                  (3) 

where ʎ is a spatial error correlation parameter, and µ is an Nx1 vector of i.i.d. standard 
normal errors. 
 
In Equations (2) and (3), W is the NxN matrix of spatial weight, which is developed assuming 
constant spatial dependence among grid cells up to a maximum distance. The maximum 
Euclidean distance used is 750m. Both models can be estimated by maximum likelihood. 

3.2 VMT Variables 

In this study, we explore the built environment effects on three VMT measures: VMT per 
vehicle, VMT per household, and VMT per capita. VMT per vehicle is a single indicator of 
individual car usage, while VMT per household and VMT per capita are also influenced by 
auto ownership. VMT per vehicle for each grid cell is first computed based on safety 
inspection records. Some grid cells have very few vehicles. To address issues related to 
sparse cells, we apply the spatial interpolation function of GIS software. For grid cells that 
have at least 12 vehicles with credible odometer readings (denoted as “good” cars), the 
zonal average annual mileage of all “good” cars is assigned to the grid cell. For grid cells with 
1-11 “good” cars, the inverse distance weighted average of 12 closest “good” annual 
mileages are assigned to the grid cell. VMT per household (VMT per capita) for each grid cell 
is computed by multiplying VMT per vehicle by total number of vehicles then dividing by 
number of households (individuals). These odometer-readings-based VMT estimates provide 
a more accurate and reliable picture of household vehicle usage than survey-based self-
report VMT estimates, establishing a baseline for tracking future changes in vehicle usage 
and associated energy consumptions and emissions for Metro Boston. Figure 2 plots the 
three VMT measures across grid cells in Metro Boston using quantile classification method. 
The spatial pattern is what we can expect: VMT are lower in grid cells near urban centers 
and sub-centers, but higher in suburban areas. 
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  2-(a) VMT per vehicle 
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2-(b) VMT per household               

 
 
 

Figure 2 - Grid Cell Level VMT in Metro Boston 
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The dependent variables of the regression models are VMT per vehicle, VMT per household, 
and VMT per capita computed for the 9-grid-cell catchment area of each grid cell 
respectively. After excluding grid cells with extreme values, the total number of grid cells in 
our empirical analysis is 52929. 

3.3 Built-Environment Variables 

Twenty seven built-environment variables are computed in this study. Because spatial 
distribution of destinations can significantly influence travel costs, accessibility to common 
destinations is an important determinant of housing price. One gravity-type measure of job 
accessibility is computed at the TAZ level to represent work distance, which takes the 
following form known as the Hansen accessibility model (1959). Each grid cell is assigned 
the value of the TAZ that it belongs to. 

• Job accessibility: ∑=
j

ijjj CfOA )( , where )*exp()( ijij CCf β−= ; Oj is the 

number of jobs in TAZ j; f(Cij) is an impedance function; Cij is the network distance 
between TAZ i and j; β is set to 0.1, based on Zhang’s calibration using an 
Activity–Travel Survey conducted by the Central Transportation Planning Staff for 
the Boston region (2005). 

 
MassGIS computed distances to a variety of non-work destinations at 250m*250m grid cell 
level using GIS tools. We select eight types of most important non-work destinations based 
on average trip rate from the 2001 National Household Transportation Survey, including: 

• Distance to shopping mall: Euclidian distance to the nearest shopping mall 
• Distance to grocery store: Euclidian distance to the nearest grocery store 
• Distance to school: Euclidian distance to the nearest school 
• Distance to hardware store: Euclidian distance to the nearest hardware store 
• Distance to restaurant: Euclidian distance to reach at least 4 restaurants 
• Distance to church: Euclidian distance to reach at least 4 churches 
• Distance to dentist: Euclidian distance to reach at least 4 dentists 
• Distance to gym: Euclidian distance to reach at least 4 gyms 
 

Other built-environment variables describe density, land use mix, road networks, transit 
proximity, and pedestrian environment respectively. They also have the potential to affect 
travel costs for different travel modes. Among them, we computed distance-related variables 
directly for the target grid cell. We computed other measures for the 9-grid-cell catchment 
area and then assigned the value to the target grid cell. 

• Population density: population / residential area 
• Land use mix: the land use mix measure is based on the concept of entropy — a 

measure of variation, dispersion or diversity (Turner, Gardner and O’Neill, 2001). 
In the first step, it is computed for each grid cell using ∑−

j
jj JPP )ln(/)ln(* , 

where Pj is the proportion of land in the jth land-use category and J is the total 
number of land-use categories considered. In this study, J=5: single family, multi-
family, commercial, industrial, and recreation and open space. A value of 0 means 
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the land in the grid cell is exclusively dedicated to a single use, while a value of 1 
suggests perfect mixing of the five land uses. Then each grid cell is assigned the 
average value of the nine grid cells in the catchment area. 

• Intersection density: number of intersections / area 
• Density of 3-way intersections: number of 3-way intersections / area 
• Density of 4-way intersections: number of 4-way intersections / area 
• Road density: total length of road / area 
• Percent of 4-way intersections: number of 4-way intersections / number of 

intersections 
• Percent of roads with access control: total length of road with access control / 

total road length 
• Average road width: ∑(width of road segment * length of road segment) / total 

road length 
• Percent of roads with over 30-mph speed limit: total length of  road segment with 

over 30-mph speed limit / total road length 
• Distance to highway exit: Euclidian distance to the nearest highway exit 
• Percent of roads with curbs: total length of  road segment with curbs / total road 

length 
• Percent of roads with sidewalks: total length of  road segment with sidewalks / 

total road length 
• Average sidewalk width: ∑(sidewalk width of road segment * length of  road 

segment) / total road length 
• Distance to subway station: Euclidian distance to the nearest subway station 
• Distance to commuter rail station: Euclidian distance to the nearest commuter rail 

station 
• Distance to MBTA bus stop: Euclidian distance to the nearest MBTA bus stop 
• Distance to MBTA parking lot: Euclidian distance to the nearest MBTA parking lot 

 
GIS techniques and database management tools are extensively used in the computation of 
these built-environment variables.  

3.4 Demographic Variables 

Based on literature, thirteen demographic variables at the block group level are selected to 
control the zonal difference of populations. The variables included in the analysis can be 
found in Table 3. Ideally, we should compute demographic variables at grid cell level. 
Because of data limitation, each grid cell is assigned the value of the block group it belongs 
to.  For population and household counts, block group counts were distributed among only 
those grid cells in residential area. 
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4.   EMPIRICAL ANALYSIS 

4.1 Factors Analysis 

Due to the multi-dimensional nature of the built environment, one central issue in studies of 
the built environment is the selection of relevant variables from a large set of potentially 
important variables. Furthermore, many built-environment variables tend to be closely 
correlated. For example, relatively dense neighborhoods tend to have a greater variety of 
land uses, smaller blocks, and so on. A regression model with highly correlated variables is 
likely to result in numerous insignificant or incorrectly signed coefficients. To deal with the 
multicollinearity, we use factor analysis to reduce the total number of built-environment 
variables to a small set of factors, and include factor scores in regression models. Principle 
component analysis with Varimax rotation is performed. Top five factors with initial 
eigenvalues greater than 1 explain 69.84% of variance in original variables. In other words, 
there is only a 30% loss in information incurred by the 82% reduction in the number of built-
environment variables from 27 to 5.  
 
Factor 1 has high loadings on variables for distance to non-work destinations and land use 
mix, and therefore describes primarily “distance to non-work destinations”. Grid cells with 
higher scores in factor 1 tend to have longer distance to non-work destinations, thus are 
hypothesized to have higher VMT (others factors held constant). Factor 2 places the highest 
weights on street network layout and population density. We label it as “connectivity”. Good 
connectivity can improve the connection of people and places and shorten local trips (Crane 
1996), thereby reducing household vehicle usage. Factor 3 describes the difficulty of 
accessing transit systems and jobs, with positively high loadings on distance to transit 
variables and negatively high loading on job accessibility. Factor 3 could be positively 
associated with VMT. Factor 4 leans to the traffic management side, representing the degree 
of auto dominance. It could decrease travel costs of the auto mode, thus increase vehicle 
usage. The fifth factor “walkability” describes the pedestrian environment, which can reduce 
the travel costs of walking, thus decreasing VMT. Figure 3 shows the spatial patterns of built-
environment factors. Compared with grid cells in the suburban, grid cells in urban centers 
have better accessibility to non-work destinations, jobs, and transit systems, better 
connectivity, and better pedestrian environment as we would expect. Grid cells with higher 
scores in the “auto dominance” factor tend to be located along major transportation corridors. 
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   3-(a) - Distance to non-work destinations               3-(b) - Connectivity 

 
 
 
3-(c) - Accessibility to transit and jobs                     3-(d) - Auto dominance 
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   3-(e) - Walkability 

 
 

Figure 3 - Maps of Built-Environment Factors 

Similarly, we also apply factor analysis to the thirteen demographic variables at block group 
level and extract from them three demographic factors: wealth, children, and working status. 
Factor 1 can be seen as an indicator of income level. Block groups with higher values in 
factor 2 tend to have more children and bigger household size. Factor 3 is related to 
residents’ working status. The three factors explain 70.65% of variance in the original 
variables. 
 
Factors loadings for each built-environment and demographic variable can be found in Table 
2 and 3. Factor loadings with absolute value less than 0.35 are suppressed for interpretation 
convenience. Table 4 presents the descriptive statistics of variables in regression models. 
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TABLE 2 - Factor Loadings for Built Environment Factors 
 
  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 
  Variables Dis. to non-

work 
destinations

Connectivity Inaccessibility 
to  

transit&jobs

Auto 
dominance 

Walkability 

1 Dis. to restaurant 0.784        
2 Dis. to mall 0.764        
3 Dis. to hardware store 0.746        
4 Dis. to grocery 0.733        
5 Dis. to dentist 0.688  0.398    
6 Dis. to gym 0.676        
7 Dis. to church 0.674        
8 Dis. to school 0.645        
9 Land use mix -0.480        
10 Den. of 4-way intersections   0.872      
11 Intersection density   0.849      
12 Den. of 3-way intersections   0.809      
13 Population density   0.785      
14 Road density -0.353 0.765      
15 Pct. of 4-way intersections   0.609      
16 Dis. to bus stop     0.833    
17 Dis. to commuter rail station     0.810    
18 Dis. to subway station     0.801    
19 Dis. to MBTA parking lot     0.775    
20 Job accessibility   0.486 -0.636    

21 
Pct. of roads with access 
control       0.910  

22 Average road width       0.875  

23 
Pct. of roads with 30+ speed 
limit       0.856  

24 Dis. to highway exit       -0.362  
25 Pct. of roads with sidewalks         0.910
26 Pct. of roads with curbs         0.908
27 Average sidewalk width   0.583    0.602
 
 
TABLE 3 - Factor Loadings for Demographic Factors 
 
   Factor 1 Factor 2 Factor 3
 

  
Wealth Children Working

Status
1 Pct. of population below poverty level -0.858    
2 Pct. of owner-occupied housing units 0.826 0.390  
3 Pct. of population with at least 13 years of schooling 0.811    
4 Median household income 0.807    
5 Pct. of population that is white 0.802    
6 Per capita income 0.687    
7 Pct. of occupied housing units with over 2 cars 0.655 0.491  
8 Unemployment rate -0.602    
9 Pct. of households with less than 3 members   -0.920  
10 Pct. of population 3+ yrs  that are enrolled in elementary/high school   0.855  
11 Pct. of population under 5   0.694  
12 Pct. of population 65 years old and over   -0.336 -0.851
13 Pct. of population 16 years old and over in labor force 0.427  0.790
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Table 4 - Descriptive Statistics 
 
Variable  Obs. Mean Std. Dev. Min Max
VMT per vehicle 52929 12056.9 1770.8 5219.7 23843.7
VMT per household 52929 27120.6 13315.4 625.3 98954.6
VMT per capita 52929 9372.2 4204.0 85.0 50158.2
BE fac. 1: dis. to non-work destinations 52929 -0.245 0.865 -2.594 3.983
BE fac. 2: connectivity 52929 0.425 1.172 -1.644 11.130
BE fac. 3: inaccessibility to transit & jobs 52929 -0.108 0.973 -2.271 4.583
BE fac. 4: auto dominance 52929 -0.082 0.610 -1.210 6.409
BE fac. 5: walkability 52929 0.080 0.921 -2.664 4.007
DEM fac. 1: wealth 52929 0.594 0.659 -4.084 2.610
DEM fac. 2: children 52929 0.443 0.778 -3.487 3.432
DEM fac. 3: worker 52929 0.082 0.858 -6.902 3.928

 4.2      Regression Results 

Depending upon the selection of dependent variable and model specification, nine models 
are estimated in this study: 

1) OLS model for VMT per vehicle; 
2) OLS model for VMT per household; 
3) OLS model for VMT per capita; 
4) Spatial lag model for VMT per vehicle; 
5) Spatial lag model for VMT per household; 
6) Spatial lag model for VMT per capita; 
7) Spatial error model for VMT per vehicle; 
8) Spatial error model for VMT per household; and  
9) Spatial error model for VMT per capita. 

The spatial lag and spatial error models are estimated with GeoDa 0.9.5 software. Table 5 
summarizes statistics for the regression models. 
 
Table 5 - Estimation Summary 
 
  VMT per Vehicle VMT per Household VMT per Capita 

  OLS Spatial 
Lag 

Spatial 
Error OLS Spatial 

Lag 
Spatial 

Error OLS Spatial 
Lag 

Spatial 
Error 

Obs. 52929 52929 52929 52929 52929 52929 52929 52929 52929 
R-squared 0.528 0.789 0.810 0.419 0.626 0.631 0.342 0.566 0.573 
Log 
Likelihood -451118 -432070 -429928 -563404 -553577 -553490 -505662 -496458 -496290 
Test Statistic  p-value  Statistic p-value  Statistic  p-value 
LM-Lag 86282.7 0 43696.6 0 41125.0 0 
LM-Error 115263.9 0 46204.5 0 43206.0 0 
Robust LM-
Lag 633.4 0 605.6 0 293.6 0 

Robust LM-
Error 29614.7 0 3113.5 0 2374.6 0 
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The R-squared of the OLS models range from 34.2% to 52.8%. Test of residues indicated 
that the error term of the OLS models exhibit significant spatial autocorrelation. The likely 
reasons are the omission of spatially correlated exploratory variables, and the effects of 
travel behavior in surrounding areas. Moreover, both the simple Lagrange multiplier tests for 
omitted spatially-lagged dependent variables (LM-lag) and error dependence (LM-error) are 
statistically significant, indicating the existence of spatial autocorrelation.  
 
To capture the spatial effects, we estimate both spatial lag and spatial error models. Anselin 
et al.’s (1996) Lagrange multiplier tests of spatial lag and spatial error specifications being 
mutually contaminated by each other are employed to compare the two models. Both the test 
for error dependence in the possible presence of a missing lagged dependent variable 
(robust LM-error), and the test for a missing lagged dependent variables in the possible 
presence of spatially correlated error term (robust LM-lag) are statistically significant. But the 
robust LM-error test sees rejection of the null at the higher level of significance, favoring the 
spatial error model. The log-likelihood statistics also support this conclusion, indicating that 
the spatial error model has better fit to the data than the corresponding spatial lag model and 
OLS model. The spatial error models can explain 57.3-81.0% of variation in the three VMT 
variables across grid cells, which is higher than the roughly comparable measures for the 
OLS models and pretty impressive for a study at such fine-grained scale. The goodness-of-fit 
statistics for VMT per vehicle models are higher than those for VMT per household and VMT 
per capita. 
 
Table 6 - Estimation Results of the Spatial Error Models 
 

VMT per Vehicle VMT per Household VMT per Capita 
  Coef. t  Coef. t  Coef. t
BE Fac.1: dis. to non-work 
destinations 446.4 21.3 ** 3785.0 22.9 ** 856.3 15.7 **
BE Fac.2: connectivity -251.8 -23.4 ** -2944.9 -34.3 ** -831.3 -29.1 **
BE Fac.3: inaccessibility to transit& 
jobs 1005.8 32.3 ** 5862.7 29.9 ** 1949.8 30.8 **
BE Fac.4: auto dominance -10.0 -1.0 587.7 6.1 ** 272.0 8.3 **
BE Fac.5: walkability 14.1 1.6 -1551.1 -19.3 ** -588.7 -21.8 **
DEM Fac.1: wealth -30.1 -2.3 * 793.5 6.0 ** 297.4 6.7 **
DEM Fac.2: children -12.3 -1.3 600.0 6.4 ** -45.5 -1.4
DEM Fac.3: working status 31.5 4.7 ** 136.0 2.0 * 60.0 2.6 **
Lambda 0.91 397.1 ** 0.84 231.1 ** 0.83 218.8 **
Constant 12415.1 312.6 ** 30705.4 127.3 ** 10447.7 133.8 **
* and ** denote coefficient significant at the 0.05 and 0.01 level respectively. 
 
Table 6 presents the estimation results of the three models using the spatial error 
specification. As is shown in Table 6, most coefficients for demographic factors are 
statistically significant. One interesting finding is that higher income are associated with lower 
VMT per vehicle, but higher VMT per household and VMT per capita. It suggests that high-
income households tend to own more cars but drive each car less compared to low-income 
households. Household structure also influences vehicle usage. The number of children in 
the household tends to increase VMT per household, presumably because of child-related 
non-work trips. But its effects on VMT per vehicle and VMT per capita are insignificant. One 
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possible explanation is that households tend to buy more vehicles as household size grows, 
but the usage of each vehicle does not change significantly. Factor 3 can be seen as a proxy 
for percentage of population that are working. This factor is positively associated with all 
three VMT variables, presumably due to the commuting trips.  
 
After controlling for the influence of demographic factors, we find that built-environment 
factors are indeed important predicators of vehicle usage at grid cell level, with smart-growth-
type neighborhoods associated with less vehicle usage than sprawl-type neighborhoods. The 
coefficients for the distance to non-work destination factor in the three models are positive 
and significant at the 0.01 level. It suggests that the spatial distribution of non-work activities 
is significantly associated with vehicle usage. As the distance to non-work destinations 
increase, VMT per vehicle, VMT per household, and VMT per capita all increase. The 
negative sign of the connectivity factor in all three models suggests that connectivity – an 
indicator of high-density, grid-type neighborhood tend to reduce household vehicle usage. 
The coefficients of the auto dominance factor are positive and significant in the VMT per 
household and VMT per capita models, while its coefficient in the VMT per vehicle model is 
insignificant. It suggests that an auto-friendly environment influences VMT by increasing the 
number of cars owned by households rather than increasing the usage of each vehicle. As 
revealed by the estimated coefficients of the walkability factor, good pedestrian environment 
are associated with lower VMT per household and VMT per capita, while its effect on VMT 
per vehicle is insignificant. The walkability factor tends to influence VMT by reducing the 
number of vehicles purchased. 
 
By comparing the coefficients of the demographic and built-environment factors, we find that 
built environment factors have higher predication power on VMT than demographic factors. 
Figure 4 plots the change of annual VMT per household due to one standard deviation 
increase of individual factor. As we can see, accessibility to work and non-work destinations, 
connectivity, and transit accessibility make much higher contribution to the model than other 
factors.  
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Figure 4 - Contribution of Factors to the Model 
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5.  CONCLUSIONS 

This study examines the relationship between the built environment and household vehicle 
miles travelled in the Boston Metropolitan Area. The VMT measures are derived using 
annual safety inspection records for all private passenger vehicles registered in Metro 
Boston. We compute a set of built-environment variables at 250mX250m grid cell level using 
GIS techniques, apply factor analysis to mitigate multicollinearity, and integrate the built-
environment and demographic factors into regression models to explain VMT variations. 
Spatial regression techniques are applied to correct spatial autocorrelation.  
 
This study provides some clues to the relationships between the built environment and 
vehicle usage within the Boston Metro area.  The spatial error models explain 57.3-81.0% of 
VMT variation across 250x250m grid cells, which is pretty impressive for a study at such 
disaggregate scale. The regression results reveal that both the built environment and 
demographic factors are significantly associated with VMT. On the demographic side, this 
study finds that income is negatively associated with VMT per vehicles, but positively 
associated with VMT per household, suggesting that high-income households tend to own 
more cars but use each car less. Due to data limitation, the demographic variables are 
computed at block group level, which is more aggregate than built environment variables. 
Thus the results may be influenced by the Modifiable Areal Unit Problem. The built 
environment factors have higher impacts on VMT than demographic factors.  In particular, 
accessibility to work and non-work destinations, connectivity, and transit accessibility are 
negatively associated with VMT, and their impacts are greater than other factors. Although 
finding a strong relationship between the built environment and travel patterns is not the 
same as showing that a change in the built environment will lead to a change in travel 
behavior (Handy 1996), these results still provide some support for those smart growth 
policies that advocate for increasing accessibility to destinations, creating traditional type 
high density, mixed use neighborhoods, and improving transit accessibility. The research 
findings can facilitate the dialogue among regional planning agencies, local government and 
the public regarding growth management and sustainable regional development strategies 
and scenarios.  
 
This study also has implications for urban modeling by revealing the opportunities brought 
about by new spatial data infrastructure. With the development of information technology, the 
amount of administrative data with location information is rapidly increasing. For example, 
standardized GIS data layers are becoming more common for data about road networks, 
parcels, and building footprint, and for transaction information, such as housing transactions, 
vehicle safety inspections, transit fare cards, utility records, and cell phone use. These 
administrative datasets are collected regularly by various agencies. Calibrating urban models 
using administrative data can save the high expense of surveys and enable improved 
monitoring and modeling of metropolitan areas. 
 
In the future, this study can be extended along multiple directions, for example 

1) examine temporal trends in land use-transportation interconnection using time 
series safety inspection data; 
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2) construct profiles of fuel economy so that the built environment can be directly 
linked to energy consumptions and GHG emissions. 

3) employ structure equations models to investigate the causal relationships among 
key variables, such as the built environment, automobile ownership, and travel behavior; and  

4) extend the analysis to other North American metropolitan areas. 
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