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ABSTRACT 

Traffic congestion negatively affects our society, economy, and the environment. In most 

dense urban areas, transportation networks are operating near capacity for extended peak 

periods, due to the population growth and the limited resources for infrastructure expansions. 

As a result, numerous ITS strategies rapidly emerged to better utilize the existing 

infrastructure. Adaptive traffic signal control is a promising technique to alleviate traffic 

congestion. This paper focuses on the development of an adaptive traffic signal control 

method using Reinforcement Learning (RL) as one of the efficient approaches to solve such 

stochastic control problem. A generic RL engine is developed for acyclic-variable-phasing 

sequence adaptive traffic signal control and applied to an isolated traffic signal control case. 

Paramics, a microsimulation simulation platform, is used to evaluate several Temporal 

Difference (TD) learning methods on a major intersection in Downtown Toronto using actual 

observed traffic data. The performance of TD approaches is analyzed and contrasted to an 

optimized pre-timed control strategy as a bench mark. 

 

Keywords: Adaptive Signal Control, Reinforcement Learning, Temporal Difference. Q-

Learning, SARSA, Eligibility Traces. 

INTRODUCTION 

Population is steadily increasing worldwide. Consequently the demand for mobility is 

increasing, traffic congestion is deteriorating, and undesirable changes in the environment 

are becoming major concerns. Until relatively recently, infrastructure improvements have 

been the primarily method to cope with congestion. However, tight constraints on financial 

resources and physical space have accentuated the consideration of a wider range of 

options. Therefore, the emphasis has shifted to improving the existing infrastructure by 
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optimizing the utilization of the available capacity. Intelligent Transportation Systems (ITS) 

have the potential to significantly alleviate traffic congestion by using innovative traffic signal 

control strategies. Pretimed and actuated traffic signal control systems are the most common 

control systems for isolated intersections. Adaptive traffic signal control on the other hand 

adjusts signal timing parameters in response to real-time traffic flow fluctuations; therefore, 

has a great potential to outperform both pretimed and actuated control (McShane et al., 

1998). Several adaptive signal control methods have been investigated in the literature, the 

majority of them are not self-learning. Due to the stochastic nature of the traffic system, a 

control strategy that is adaptive to the fluctuations in traffic conditions is paramount.  

Reinforcement Learning (RL) has shown great potential for self-learning traffic signal control 

in the stochastic traffic environment, the main advantage of which is the ability to perpetually 

learn and improve service over time (Abdulhai and Kattan, 2003). Although several studies 

investigated the potential of RL methods for adaptive signal control (Thorpe, 1997; Abdulhai 

et al., 2003; Lu et al., 2008), and more specifically Temporal Difference (TD) methods, an in-

depth comparative analysis for different TD methods is still largely missing. Also, the above 

studies focused on fixed phasing sequence which limits the adaptability of the system to 

traffic flow fluctuations.  

This paper starts with a brief description of the stochastic control problem and then TD 

learning methods are discussed. The state-of-the-art RL-based traffic signal control systems 

are then reviewed and the gaps in the literature are highlighted. A RL-based adaptive signal 

control system with variable phasing sequence is proposed to test different TD learning 

methods on a real-world multi-phase intersection in downtown Toronto. Finally, a discussion 

and analysis of the results is presented and contrasted to a traditional pretimed control 

strategy which is optimized offline. 

PROBELM DEFINITION: STOCHASTIC OPTIMAL TRAFFIC 
CONTROL  

Stochastic optimal control problems (SOCP) are the control optimization problems in the 

presence of uncertainty. Markov Decision Process (MDP) represents the mathematical 

framework for SOCP. MDP is a discrete time stochastic control process. At each time step, 

the environment (process) is in some state s, and the agent (decision maker) chooses 

certain action a that will affect the environment. The environment responds at the next time 

step by stochastically moving into a new state s', and assigning the agent a corresponding 

reward r(s,a,s') for choosing action a at state s. The probability that the environment moves 

to a next state s' is influenced by the currently selected action a; which is given by the state 

transition function P(s,a,s'). Thus, the next state s' depends on the current state s and the 

agent’s action a, but it is conditionally independent of all previous states and actions (Markov 

property). Due to the stochasticity associated with the traffic flow approaching signalized 

intersections,  the adaptive signal control problem can been approached as  an SOCP. 

The goal of SOCP is to obtain a policy (mapping between states and actions)  , that 

maximizes the expected cumulative discounted reward at each state. The expected 

cumulative discounted reward at state s is defined as the value function of the state 𝑉(s) or 

http://en.wikipedia.org/wiki/Discrete_time
http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Optimal_control_theory
http://en.wikipedia.org/wiki/Markov_property
http://en.wikipedia.org/wiki/Markov_property
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state-action pair Q(s,a), also called Q-Value. For finite MDP (MDP with finite set of states (S) 

and actions (A)), V(s) and Q(s,a) are defined as  follows; 

𝑉𝜋 𝑠 = 𝐸𝜋   𝛾𝑘𝑟𝑘+𝑛+1

∞

𝑛=0

 𝑠𝑘 = 𝑠             

𝑉𝜋 𝑠 =  𝑃(𝑠, 𝑎)  𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉𝜋 𝑠′  

𝑎∈𝐴

                        (1) 

𝑄𝜋 𝑠, 𝑎 = 𝐸𝜋   𝛾𝑘𝑟𝑘+𝑛+1

∞

𝑛=0

 𝑠𝑘 = 𝑠, 𝑎𝑘 = 𝑠  

𝑄𝜋 𝑠, 𝑎 =  𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾  𝑃(𝑠′, 𝑎′)𝑄𝜋 𝑠′, 𝑎′ 

𝑎′∈𝐴

           (2) 

where  𝑃 𝑠, 𝑎 =  𝑃 𝑠, 𝑎, 𝑠′ 𝑠 ′∈𝑆 𝑃 𝑠 ′  ,    𝑃 𝑠 ′ = 1𝑠′∈𝑆  and 𝛾 is the discounted factor. 

Equations 2 and 3 are defined as Bellman equations for discounted reward. They express 

the relationship between the value of a state and the value of its successor state.  

The optimal policy, denoted 
*  , is the policy that has the optimal state-value function, 𝑉∗, 

(optimal Q-value function, 𝑄∗) denoted, and defined as follows: 

𝑉∗ 𝑠 = max
𝑎∈𝐴

 𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′                             (3) 

𝜋∗ 𝑠 ∈𝑎𝑟𝑔 max
𝑎∈𝐴

 𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′                     (4) 

𝑄∗ 𝑠, 𝑎 =  𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾max
𝑎∈𝐴

𝑄∗ 𝑠′, 𝑎′                    (5) 

𝜋∗ 𝑠 ∈𝑎𝑟𝑔 max
𝑎∈𝐴

 𝑃 𝑠, 𝑎, 𝑠′ 

𝑠′∈𝑆

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑄∗ 𝑠′, 𝑎′                 (6) 

While equations 3, 5 are defined as Bellman optimality equations for state-value and action-

state value functions, respectively, equations 4 and 6 represent the corresponding optimal 

policies. Dynamic programming (DP) is widely considered as the only feasible way of solving 

general SOCP (Bertsekas, 1976; Bertsekas, 2007). 
Value iteration is one of the DP techniques that can be used to find the optimal policy (Sutton 

and Barto, 1998). The Value iteration method estimates the optimal state-value function by 

simply turning the Bellman optimality equation into an update rule of the value function as 

shown in Figure 1(a).  

Although plausible method to tackle SOCP problems, DP suffers from the curse of 

dimensionality in which it requires enormous storage space to allow for representing large 

matrices of transition probabilities and rewards. In addition, DP requires pre-specified perfect 

values of the transition probabilities and rewards for every state–action pair which represents 

the theoretical model of the environment, yet the existence of which is questionable for traffic 

networks. Unfortunately, because of these limitations, using DP for real-time adaptive traffic 

signal control is impractical (Abdulhai and Kattan, 2003). 

Reinforcement Learning (RL) on the other hand is a class of algorithms that can generate the 

optimal policy for SOCP in which the agent learns the optimal state (state-action) value 

functions through the interaction with the environment; therefore, it does not require the 

transition probabilities and rewards for every state–action pair. RL endeavours not only 

achieving as much as DP does but also lessening the computation without always assuming 
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a perfect model of the environment (Sutton and Barto, 1998), which are all very useful for 

solving traffic SOCPs. 

THE REINFORCEMENT LEARNING APPROACH: TEMPORAL 
DIFFERENCE ALGORITHMS 

Numerous RL algorithms have been investigated in the literature (Sutton and Barto, 1998; 

Gosavi, 2003); the most relevant algorithms to this study are the on-line value iteration with 

discounted reward algorithms which are called Temporal Difference (TD) learning algorithms. 

Similar to the DP value iteration algorithm (Figure 1(a)), TD methods estimate the optimal 

state (state-action) value functions. In Equation (3), the state value function (and similarly 

Equation (5) for state-action value function) is expressed as an average of a random variable 

 𝑟 𝑠, 𝑎, 𝑠′ + 𝛾𝑉∗ 𝑠′    which can be obtained from the interaction with the environment (e.g. 

within a traffic simulator in our case and in the field after initial deployment). One simple 

algorithm that can estimate the average of a random variable from its samples (that can be 

generated within simulator) is Robbins-Monro algorithm(Robbins and Monro, 1951). Hence, 

Robbins-Monro algorithm can be used to estimate the state value function as follows 

(Gosavi, 2003); 

V𝑘 s = V𝑘−1 s + 𝛼𝑘   𝑟𝑘 + 𝛾𝑉𝑘−1 s′ − 𝑉𝑘−1 s        (7) 

where 𝛼𝑘  is the step-size (or learning rate) at time k. At time k, the value of state s, V𝑘 s , is 

updated using the observed reward  𝑟𝑘  and the estimate 𝑉𝑘−1 s′ . Therefore, TD methods 

can learn directly from experience without a dynamic model of the environment (to generate 

transition probabilities). In addition, TD methods update the estimates of the state values 

immediately after visiting the state.   The temporal difference notion emerged from the fact 

that the value function is estimated based on the difference between temporally successive 

estimations, which is called TD error, denoted  TD𝑘 . 

 TD𝑘 s =   𝑟𝑘 + 𝛾𝑉𝑘−1 s′ − 𝑉𝑘−1 s                      (8) 

Equation (7) represents the simplest form of TD known as TD(0).  Two types of TD 

algorithms are presented in the literature, namely TD(0) and Eligibility Traces TD(λ). 

TD(0) 

TD(0) , also known as 1-step TD resembles the  on-line form of dynamic programming value 

iteration (Pendirth, 2000), in which the agent looks ahead one step in time and update the 

value functions based on the next reward  𝑟𝑘 . 

SARSA: On-Policy Algorithm 

The name SARSA emerged from the fact that the estimates of the state-action pair’s values 

are conducted strictly based on experience which is represented by the quintuple (s,a,r,s’,a’).  

The state-action value functions are updated using the results from executing actions 

determined by a policy that does not always select the greedy action (the action that has the 

highest value) (see Figure 1(b)).  So, the SARSA algorithm is considered an on-policy TD 
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method since it is learning and improving the same policy that is followed in selecting the 

actions.  

 

Q-Learning: Off-Policy Algorithm 

Q-Leaning updates the estimated value functions (Q-values) using greedy actions, 

independent of the policy being followed which involves exploratory actions. Therefore, Q-

Learning is an off-policy because the agent attempts to improve a policy while following 

another one (see Figure 1(c)).  

 

                        (a)                                                       (b) 
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(c) 

Figure 1: Flowchart of (a) Value Iteration Dynamic Programming , (b) SARSA, and (c)  Q-Learning  

Eligibility Traces (TD(λ)) 

In eligibility traces algorithms, the agent looks ahead all the way into and till the end of the 

learning horizon (T) and updates the value functions based on all future rewards.  The TD 

error is then defined as follows (Sutton and Barto, 1998): 

𝑇𝐷𝑘 𝑠 = 𝛼𝑘   1 − 𝜆   𝜆𝑛−1𝑅𝑘
 𝑛 𝑇−𝑡−1

𝑛=1  + 𝜆𝑇−𝑡−1𝑅𝑘 − 𝑉𝑘 𝑠        (9)    

𝑅𝑘
(𝑛)

=  𝛾𝑙
𝑛−1

𝑙=0

𝑟𝑘+𝑙+1 + 𝛾𝑛𝑉𝑘 𝑠𝑘+𝑛        (10) 

 

Where 𝑅𝑘
(𝑛)

  , the n-step return, is defined as the discounted reward of n future steps, each is 

weighted proportionally to 𝜆𝑛−1, where 0 ≤ 𝜆 ≤ 1 and 1 − 𝜆  is a normalization factor ensures 

that the weighs sum to 1. This is known as forward view (theoretical view) of the TD(λ) 

algorithm. If λ= 0, 𝑇𝐷𝑘 𝑠  reduces to Equation 8 and hence, the algorithm becomes the 1-

step TD(0) which explains notion of TD(0).  

 

In fact, the forward view is not directly implementable because it is acausal, i.e. values are 

updated based on future time steps. The backward view on the other hand provides an easy 

implementation of the theoretical view in a causal mechanism that approximates the forward 

view (Sutton and Barto, 1998); which can be achieved using eligibility traces algorithms. An 

eligibility trace is an additional variable for each state that keeps track of how often and how 

recently a state is visited.  In other words, eligibility trace reflects how eligible a certain state 

for update whenever a reward occurs. At each time step, the eligibility trace for each state is 

updated as follows: 
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𝑒𝑘 s =  
 𝛾𝜆𝑒𝑘−1 s              𝑖𝑓 s ≠ s𝑘
 𝛾𝜆𝑒𝑘−1 s + 1     𝑖𝑓 s = s𝑘

                            (11)      

whereλ is referred as the trace-decay parameter. The update is then performed on the 

value estimates of all the states as follows: 

TD𝑘 s = 𝛼𝑘   𝑟𝑘 + 𝛾𝑉𝑘−1 s′ − 𝑉𝑘−1 s  𝑒𝑘 s                (12)         

Implementation of equations (11) and (12) is equivalent to equation (9) (Sutton and Barto, 

1998). 

Eligibility traces thus aim for crediting states for rewards obtained later on. Eligibility traces 

allocates more credit for states visited recently than to states visited longer ago which 

matches biological brain strategies for deciding how recently received incentives should be 

used in combination with current incentives to determine actions (Jang et al., 1997).  

Combination of TD(0) methods (e.g. SARSA and Q-Learning) with eligibility traces results in 

SARSA(λ) and Q(λ) algorithms (Sutton and Barto, 1998).  

SARSA (λ) 

Combining the typical SARSA algorithm (Figure 1(b)) and the eligibility traces concept, 

SARSA(λ) is produced (Figure 2(a)). 

Q(λ) 

Since Q-learning learns about the greedy policy while it typically follows a policy involving 

exploratory actions, a subsequent experience can be used only as long as the greedy policy 

is being followed. Thus, unlike SARSA(λ), Watkins's Q(λ) does not look ahead all the way to 

the end of learning time; however, It only looks ahead as far as the next exploratory action. 

Particularly, all the eligibility traces are cut off to zero every time an exploratory action is 

taken (Figure 2(b)).  
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                                                  (a)                                                                         (b) 

Figure 2 Eligibility Traces Algorithms (a) SARSA(λ), and (b) Watkin’s Q(λ)  

Action Selection Strategy 

One of the key aspects of RL is the trade-off between exploitation and exploration. To 

accumulate the maximum reward, the agent must exploit (or reinforce) the best experienced 

actions. However, it has to explore new actions to discover better selection of actions for the 

future. Also since the condition of convergence to optimal policy is to visit each state-action 

pair an infinite number of times (Watkins and Dayan, 1992), exploration allows visiting larger 

number of state-action pairs. To balance the exploration and exploitation in RL algorithms, 

algorithms such as 𝜖-greedy and softmax are typically used (Sutton and Barto, 1998). 

 -greedy 

In each iteration, the  -greedy method  is used for action selection  in which the agent 

selects the greedy action most of the time except for   amount of the time, it selects a 

random action uniformly (Sutton and Barto, 1998).  

This research adopts and compares two  - greedy exploration methods; one with constant 

exploration rate (  ) and another one with a gradually decreasing rate of exploration, so that 

at the beginning, it is mostly exploration, as the agent does not know much about the 

environment, and more exploitation takes place towards the end of the learning as the agent 
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converges to the optimal policy. Gradual shifting is required to ensure that the entire state 

space is covered during learning. 

The gradually decreasing rate of exploration can be represented by an exponentially 

decreasing function as follows: 𝜖 = 𝑒−𝐸𝑛 , as suggested by (Jacob, 2005), where E is a 

constant and n is the iteration number (the "age" of the agent). Figure 3 demonstrates how 

the exploration rate depends on age for three values of E:0.05, 0.005 and 0.003. To maintain 

the balance between exploration and exploitation 𝜖 is typically gradually decreasing to a 

minimum value of 0.1.  

  

Figure 3 Exploration Rate with Iteration Number 

Softmax 

One disadvantage of the  -greedy selection method is that it treats all exploratory actions 

equally, irrespective of the estimated value function of each action; which means that it is  as 

likely to chose the worst action as it is to chose the next-to-best action.  

To overcome this limitation that may adversely affect the real life applications, particularly 

where the worst action can be drastic, exploration can be concentrated on the most 

promising actions in terms of their estimated values. Thus, the selection of action 

probabilities can be represented by a proportional function to the estimated values, which is 

referred as softmax action selection strategy (Sutton and Bartoo, 1998). The most common 

softmax methods use Boltzman distribution and results in the following probability of action 

selection:  

             𝑃𝑠 𝑎 =
𝑒
𝑄 𝑠,𝑎 

𝜏

 𝑒
𝑄 𝑠,𝑏 

𝜏𝑏∈𝐴

                                                                             13   

The parameter 𝜏 is called the temperature. When 𝜏 is large, each action will have 

approximately the same probability to be selected (more exploration). When 𝜏 is small, 

actions will be selected proportionally to their estimated payoff (more exploitation).  
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Mixed   -Greedy and Softmax (  -Softmax) 

The choice rule suggested by (Wahba, 2008) follows a mixed of  -greedy and Softmax 

action-choice model, with a 1-   probability of exploitation and   probability of exploration:  

when exploiting,  

𝑃𝑠 𝑎 =  
1  𝑄 𝑠, 𝑎 = max

𝑎′∈𝐴
𝑄(𝑠, 𝑎′)  

0                         𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 and when exploring 

𝑃𝑠 𝑎 =
𝑒𝑄(𝑠,𝑎)/𝜏

 𝑒𝑄(𝑠,𝑏)/𝜏
𝑏∈𝐴

  . 

In this method, the greedy action is still given the highest selection probability, and all other 

actions are weighted according to their estimated values. 

Learning Rate 

The learning rate (step-size), , controls how fast the estimates of value functions are 

modified. It is generally recommended to start with high learning rate to allow for fast 

modifications, and then using lowers rates as time progresses (Gosavi, 2003). By reducing  

at an appropriate rate during learning, the convergence can be achieved even with 

nondeterministic setting. The step-size rule suggested by (Gosavi, 2003) has been adopted 

in this research as follows:  

𝛼𝑘 =
1

𝑣𝑘(𝑠, 𝑎)
 

where 𝛼𝑘  is the learning rate at time k and 𝑣𝑘(𝑠, 𝑎) is the number of visits to a particular 

state-action pair (s,a). 

Discount Rate 

The discount rate 𝛾 determines the present value of the future rewards, i.e., a reward that will 

be received k time steps in the future is worth only 𝛾k−1 times what it would have been worth 

it if the reward was received immediately. Thus, with increasing the value of 𝛾 (i.e. 

approaching 1), the agent becomes more far-seeing because it accounts for future rewards 

more strongly (Sutton and Barto, 1998). In this research, 𝛾 = 0.8 is chosen. 

 

IMPLEMENTATION CASE STUDY: RL-BASED SINGLE AGENT 
ADAPTIVE SIGNAL CONTROL:  

The State of the Art 

Abdulhai et al. (2003)and Lu et al. (2008) and, Thorpe (1997)(Thorpe, 1997) introduced the 

Q-Learning and SARSA for isolated adaptive traffic signal control. In (Bingham, 2001), a 

neuro-fuzzy traffic signal controller that uses  RL for learning the neural network. Oliveira et 

al. (De Oliveira et al., 2006) proposed an RL-based method that learns by detecting context 

changes in the traffic network. Although these studies contributed significantly to the 
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literature, the algorithms were tested on hypothetical simplified two-phase intersections. The 

following paragraphs summarize the major challenges and gaps in the existing literature and 

describe how the presented framework addresses these limitations/gaps.  

 The studies that investigated single agent RL for traffic signal control (Thorpe, 1997; 

Bingham, 2001; Abdulhai et al., 2003; De Oliveira et al., 2006; Lu et al., 2008) are  

designed to solve fixed phasing sequence intersections. Considering fixed phasing 

sequence signals can significantly reduce the dimension of action space and 

consequently shorten the computation time of the RL algorithm. However, these 

systems lack the flexibility to fully adapt to traffic flow fluctuations due to the phase 

sequence constraint. To address these limitations, the proposed single agent RL 

controller is designed to account for variable phasing sequence in which the control 

action is no longer an extension or a termination of the current phase as in the fixed 

phasing sequence approach; instead, the algorithm extends the current phase or 

switches to any other phase according to the fluctuations in traffic, possibly skipping 

unnecessary phases. Therefore, this algorithm is envisioned as an acyclic timing 

scheme with variable phasing sequence in which not only the cycle length is variable 

but also the phasing sequence is not predetermined.  Although we opt to investigate 

this option, we are cognizant of potential driver confusion due to phase skipping; 

especially drivers are not used to such systems.  However, the benefits can outweigh 

the disbenefits at least for the purpose of investigation. 

 Different RL algorithms, and more specifically TD algorithms, have been 

quantitatively investigated separately in the literature without qualitatively discussing 

the appropriateness of each TD method in solving the traffic signal control problem. 

Also,  -greedy action selection method is the most commonly used strategy with 

constant value of  . In this paper, different action selection methods are investigated 

with different  -profiles for  -greedy method and more importantly, the performance 

of different TD algorithms in solving the adaptive traffic signal control problem are is 

investigated.  

System Design 

A generic RL engine is developed using Java programming language in away so that 

different learning method and different action selection strategy can be generically tested.  

The interaction between the agent and the environment is represented in Figure 4.  
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Figure 4 Agent-Environment Interaction 

The design elements of the RL structure, i.e., the definitions of state, action, reward, and 

action selection strategies for adaptive traffic signal control are discussed next; 

State 

The state is represented by a vector of N components that are the maximum queue length 

associated with each phase lane-group: 
𝑠𝑖 = max

𝑙∈𝐿(𝑖)
𝑞𝑙    ∀ 𝑖 ∈ {1,2,… ,𝑁} 

where 𝑞𝑙  is the number of queued vehicles in lane 𝑙. The maximum queue length is 

considered across all lanes 𝑙 that belong to the group (set) of lanes corresponding to phase i, 

𝐿 𝑖 .  The vehicle is considered at a queue if its speed is below 5 kph. 

Action 

As previously discussed, a variable phasing sequence is sought in this research and 

therefore the action is the phase that should be in effect next.  

𝑎 = 𝑖 , 𝑖 ∈ {1,2,… ,𝑁} 

It is worth noting that if the action is the same as the current green phase, then the green 

time for that phase will be extended by 1 sec (time interval). Otherwise, the green light will be 
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switched to phase a after accounting for the yellow, all red, and the minimum green times. 

Therefore, the decision point varies according to the sequence of actions taken.  

Reward 

The immediate reward is defined as the reduction (saving) in the total cumulative delay, i.e., 

the difference between the total cumulative delays of two successive decision points. The 

total cumulative delay at time t is the summation of the cumulative delay, up to time t, of all 

the vehicles that are currently in the system. Vehicles leave the system once they clear the 

stop line at the intersection. If the reward has a positive value, this means that the delay is 

reduced by this value after executing the selected action. However, a negative reward value 

indicates that the action results in an increase in the total cumulative delay.  

A typical reward function considers the delay experienced by the vehicles between two 

successive decision points (Abdulhai et al., 2003; Lu et al., 2008). This typical definition 

however does not consider how long the vehicles were delayed before the last decision 

point. 

TESTBED INTERSECTION 

The agent is tested on a major intersection (4-approaches 3-lanes including an exclusive left 

turn lane) in Downtown Toronto in the heart of the financial district (Front and Bay Street, 

Figure 5). This intersection is chosen as an example of an important mutli-phase intersection. 

The morning rush hour observed traffic demand data for year 2006 (latest available) is 

attached to the figure in a form of an Origin-Destination (OD) matrix. Each of EB/WB and 

NB/SB has separate through and left-turn operations, resulting in four phase (movement) 

combinations as shown in Figure 5. The performance of the widely used fixed time control is 

used as a bench mark and is compared to the presented Acyclic Q-Learning control agent. 

The fixed time signal plan is optimized using Webster method (Webster, 1958). Paramics, a 

microscopic traffic simulator, is used to build the testbed intersection. The RL platform is 

developed as a standalone program that interacts with Paramics through the Application 

Programming Interface (API) functions in Paramics.   While it is practically infeasible to 

continue the learning process indefinitely, a stopping criterion is specified to bring the Q-

Learning to an end. In this implementation, the learning process is terminated after certain 

number of one-hour simulation runs. The state definition is discretized into four intervals ([0-

1), [1-3), [3-6), and [6-10]) which results in 256 states. 

Two demand levels are modelled in this experiment; one represents the actual observed 

demand from field data and the other represents a 50% increase in the demand level. The 

latter mimics a future forecasting scenario or a severely congested intersection.  For each 

demand level, two demand profiles (i.e. the temporal arrival percentages) are considered; 

constant (uniform) profile in which the demand is spread uniformly across simulation horizon; 

and variable profile in which each movement has differently randomized arrival rates around 

its mean arrival rate (see Figure 6).  
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Figure 5 Testbed Intersection 

  

Figure 6 Demand Profile Distribution 

EXPERIMANTAL RESULTS AND ANALYSIS 

Action Selection Strategy 

The experiments shown below are conducted using the Q-Learning algorithm to investigate 

the effect of different action selection strategies in the performance of the adaptive signal 

control system.  
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 -Greedy 

Two profiles of   are conducted; constant value of 0.1 and the exponential function 

discussed previously (𝑒−𝐸𝑛 ) where three values of E are tested as show in Figure 3 (0.05, 

0.005, and 0.003).  In this experiment, the learning process is terminated after 1000 

simulation runs. As can be shown in Table 1 , there is no significant difference in the average 

delay values after the convergence for different  - distributions. However, the exponentially 

decreasing   distribution captures more state-action space in terms of the percentage of the 

state-action pairs visited (from the entire state-action space) during the learning time. For 

more gradually decreasing exponential   (the higher the value of E), it is found that more 

state-action space is covered. It is worth noting that under the actual demand level, the 

maximum number of pairs that can visited during the learning time is 76% state-action pairs. 

This is primarily due to the light demand, so states that represent the situation of having long 

queue lengths (e.g. between 6 and 10) for more than two approaches do not occur. But for 

the anticipated higher demand case, almost the entire state-space can be covered with 

exponential decreasing of   and with E=0.003. A possible reason for the insignificant 

difference of the average delay values at the end of learning (Table 1.) is that the % of state-

action pairs that are visited are corresponding to the states that are occurred most of the 

time. Hence, it can also be concluded that it is sufficient to visit the state-action spaces 

corresponding to the important recurring. Table 1 includes the results of experiments 

conducted for the variable demand profiles.  

Table 1 Average delay for different  - profiles and demand levels 

Demand 
Level 

 - Profile Convergence 
Time 
(simulation 
runs) 

% State-action 
pairs visited 

% States 
visited more 
than 10% of 
the time 

% States 
tried with 
all the 
actions 

Average 
delay 
(sec/veh) 

Actual Constant (0.1) 10 46% 40% 40% 7.863 

Exp(-0.05*n) 45 46% 38% 40% 7.842 

Exp(-0.005* n) 450 68% 47% 64% 7.722 

Exp(-0.003* n) 2300 76% 50% 74% 7.619 

High Constant (0.1) 20 81% 75% 76% 12.822 
Exp(-0.05*n) 45 86% 74% 77% 12.815 

Exp(-0.005* n) 450 94% 85% 93% 12.745 

Exp(-0.003* n) 770 99% 89% 98% 12.736 

 -Greedy, softmax, and  -Softmax 

Since the Q-Learning agent can explore the entire state-action space under the 50%increase 

in demand with variable profile, three action selections methods are compared under this 

level and profile of demand;  -Greedy, softmax, and  -Softmax. Since the function 

𝜖 = 𝑒−𝐸𝑛  with E=0.005 resulted in a good compromise between the % of state-action pairs 

visited, the average delay value, and the convergence speed, this function is utilized for   

and  𝜏. As shown in Figure 7, after converges, softmax and  -Greedy algorithms resulted in 

the same average delay. Although softmax explores the actions more intelligently, a possible 

reason for this conclusion is that it exploits less aggressively than   -greedy. Also by using 

the softmax selection method, the exploration rate does not only depend on the value of 𝜏 

(like   -greedy method), but also depends on the magnitude of the Q-Values, so it is harder 

to find a parameter setting for 𝜏 as cited in Sutton and Barto (1998) “Most people find it 
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easier to set the   parameter with confidence; setting 𝜏 requires knowledge of the likely 

action values and of powers of e.”  -Softmax, on the other hand, synergizes the effect of 

both methods and converges to a lower value of average delay with a higher convergence 

speed.  

 

 

Figure 7 Average delay for different action selection methods 

Q-Learning Vs. Pretimed  

The optimal state-action values (Q values) obtained by the Q-Learning using the ϵ-Softmax 

strategy ,where both ϵ and  𝜏 equals exp(-0.005* n), are used to test the following scenarios; 

actual demand level, 50% increase in demand and 100% increase in demand. Also, each 

demand level is tested under uniform profile and variable profile. The average cumulative 

delay per vehicle (average total delay), the average cumulative delay per queued vehicle 

(average stopped delay), and the total vehicle delay are calculated for the above test 

scenarios. The average of 10 one-hour simulation replications is reported in Table 2. The 

results are compared with the pretimed signal plan that is designed for the actual demand 

case. Using Webster’s method the pretimed plan is defined as follows: - cycle length = 65 

sec , - green times = 22 sec, 6 sec,14 sec, and 5 sec for phase 1, 2, 3 and 4, respectively. 
 

Table 2 Average Total Delay and Average Stopped Delay per Vehicle for Different Demand Levels and Profiles 

  
Q-Learning Pretimed % Saving   

 

Level 

Profile Unifrom Variable Unifrom Variable Unifrom Variable 

Total Vehicle Delay (sec) 

Actual  19126 20789 28896 34623 34 40 

+ 50%  38427 48289 48903 65017 21 26 

+100%  80718 86269 94263 95891 14 10 

Average Total  Delay 

(sec/veh) 

Actual  8 8 12 14 34 40 

+ 50%  11 14 14 19 22 26 

+100%  19 20 22 23 14 13 

Average Stopped Delay 

(sec/veh) 

Actual  12 13 19 21 37 41 

+ 50%  15 17 21 26 29 33 

+100%  21 22 29 29 26 26 
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As shown in Table 2, regardless of the demand level or demand profile, the Q-Learning-

based acyclic method with variable phasing sequence control consistently outperforms the 

pretimed signal control. As intuitively anticipated, the intersection delay increased 

proportionally to the demand level. The effectiveness of the Q-Learning-based signal control 

is more vivid in the variable profile case compared to the uniform profile. As shown in Table 

2, in the higher demand levels, however, the effectiveness of the Q-Learning-based signal 

control gradually diminishes. A possible reason is that the green time is almost always max-

out due to the increase of the demand level. Adaptive control in general works better than 

pretimed control if demand is highly stochastic.  Under very heavy traffic conditions, traffic 

flows are steadily heavy from all approaches and hence pretimed control is less inefficient. 

Also, it can be shown from the results that the agent performs well even under 100% more 

demand which the agent was not trained for.  This reflects the ability of the RL agent (when 

the entire state-action space is visited) to operate under abnormal traffic conditions (e.g. 

unusual surges in demand after concerts, games, or during emergency evacuation).  

 

Figure 8 represents an example for the green time allocated for phases 1 using the acyclic 

variable phasing sequence Q-Learning approach compared to the pretimed signal plan for 

the observed demand with variable profile scenario. It is clearly shown from Figure 8 that the 

acyclic approach green splits adapt to the demand profile. On the other hand, the fixed plan 

assigns a constant green time for each phase based on the flow per hour regardless of the 

demand variability within that hour.  

 

Figure 8 Allocated Green Time and Demand Arrival Percentages 

TD Learning Method 

Q-Learning Vs. SARSA 

Q-Learning and SARSA are tested with  -greedy action (   =0.1 ) selection method. In this 

experiment, the learning process is terminated after 50 simulation runs. As shown in Figure 9 

(a), although both Q-Learning and SARSA converge to the same average delay value, the Q-

Learning converges to the optimal average delay faster than SARSA. Early convergence of 

the Q-Learning agent is attributed to the fact that the agent is trained using an off-policy 
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method in which the agent learns actions that are not necessarily performed during the 

learning process which enabled early convergence. In other words, the agent is gaining 

useful experience even while exploring actions that may later turn out to be non-optimal. 

Although Q-Learning converges in less number of iterations, it takes longer time per iteration 

due to the search for the greedy action, especially during early learning stages compared to 

SARSA.  

  
                                                  (a)                                                                         (b) 

Figure 9 Average Delay using SARSA and Q-Learning (a) constant  ,and (b) exponentially decreasing   

 

Q-Learning and SARSA are tested also with  -Softmax where E=0.05. As shown in Figure 9  

(b) , Q-Learning and SARSA converges to the optimal policy with the same convergence 

speed. A possible explanation for this observation is the asymptotically decreasing of  and 

𝜏 as cited in (Sutton and Barto, 1998) “Of course, if were gradually reduced, then both 

methods would asymptotically converge to the optimal policy”. 

Eligibility traces 

Eligibility traces allocates more credit for states visited recently than to states visited longer 

ago which results in faster learning as shown in Figure 10. The higher the value of λ the 

faster the convergence occurs but to a higher average delay value. This possibly means that 

for high values of λ, the algorithm converges to a local minimum. This observation is more 

vivid in Watkins’s Q(λ).In general, Watkins’s Q(λ) has better performance than SARSA(λ) for 

any value of λ. 

 

The performance of the TD(λ) algorithms with low values of  λ is almost identical which could 

be due to the nature of the problem since the control task, in general, is a continuing task 

(i.e., not an episodic) with discounted reward in which looking ahead to future steps  is less 

important compared to the episodic task. To the best of the authors’ knowledge, no study in 

the literature compared the effect of TD methods for such problems; however, most of the 

studies in the literature (de Queiroz et al., 2006; Karaoglu et al., 2006; Leng et al., 2009) 

compared the algorithms for episodic tasks in which there is an initial state and the target is 

to reach to a final state with undiscounted reward.  

Also, the significant effect of TD(λ) appears particularly when rewards are delayed by many 

steps (Kaelbling et al., 1996) which could not be adopted in ourcase since the reward 

definition is the difference in the cumulative delay between two successive decision points.  
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 It should be noted that the online performance of TD(λ) where λ >0 ,in general, is slower 

than TD(0) because the agent updates the eligibility traces , in each iteration, for each state-

action pair. 

 

 
 (a) 

 
 (b) 

Figure 10 Average Delay using (a) Watkins’s Q(λ) , and (b) SARSA (λ)  

CONCLUSIONS 

In this paper, the literature on the use of reinforcement learning for traffic control is reviewed 

and the gaps are highlighted. An RL-based acyclic variable-phasing signal control system is 

presented using several Temporal Difference (TD) RL methods. The agent’s goal is to 

minimize the cumulative delay at the intersection. The different control systems are tested on 

a simulation of a real multi-phase intersection in downtown Toronto.  The RL methods are 

compared to the Webster-based pretimed signal control as a bench mark. The results 

showed that the Q-Learning approach consistently outperforms the pretimed signal 

approach, in terms of the savings in the cumulative delay per vehicle regardless of the 

demand level up to 40%. The effectiveness of the acyclic Q-learning approach is more vivid 

in case of variable demand profiles compared to uniform profile cases; which reflects its 

adaptability to fluctuation in traffic conditions. The study shows that the combination of  - 

greedy and softmax action selection methods achieves the best performance. Also, it is 

found that Q-Learning performs at least as SARSA for different action selection strategies. 

On the other hand, eligibility traces provide an important mechanism that can improve the 

learning speed for TD(λ). However,according to the proposed design of RL-based adaptive 
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signal control problem, the higher the value of λ the faster the convergence occurs but to a 

higher average delay value. 

REFERENCES 

 

 

Abdulhai, B. and L. Kattan (2003). "Reinforcement Learning: Introduction to Theory and 

Potential for Transport Applications." Canadian Journal of Civil Engineering 30(6): 

981-991. 

Abdulhai, B., R. Pringle and G. J. Karakoulas (2003). "Reinforcement Learning for True 

Adaptive Traffic Signal Control." Journal of Transportation Engineering 129(3): 278-

285. 

Bertsekas, D. P. (1976). Dynamic Programming and Stochastic Control, Academic Pr. 

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, Athena Scientific  

Bingham, E. (2001). "Reinforcement Learning in Neurofuzzy Traffic Signal Control." 

European Journal of Operational Research 131(2): 232-241. 

De Oliveira, D., A. L. C. Bazzan, B. C. da Silva, E. W. Basso, L. Nunes, R. Rossetti, E. de 

Oliveira, R. da Silva and L. Lamb (2006). Reinforcement Learning-Based Control of 

Traffic Lights in Non-Stationary Environments: A Case Study in a Microscopic 

Simulator. Proc. of EUMAS06, pp.31-42, 2006, Citeseer. 

de Queiroz, M. S., R. C. de Berr do and A. de Pádua Braga (2006). "Reinforcement Learning 

of a Simple Control Task Using the Spike Response Model." Neurocomputing 70(1-

3): 14-20. 

Jacob, C. (2005). Optimal, Integrated and Adaptive Traffic Corridor Control: A Machine 

Learning Approach. Department of Civil Engineering. Toronto, University of Toronto. 

Jang, J. S. R., C. T. Sun and E. Mizutani (1997). Neuro-Fuzzy and Soft Computing, Prentice 

Hall Upper Saddle River. 

Kaelbling, L. P., M. L. Littman and A. W. Moore (1996). "Reinforcement Learning: A 

Survey." Journal of Artificial Intelligence 4(1): 237-285. 

Karaoglu, N., F. Van de Maele, F. Temmermans and P. Vanhee (2006). "Learning in Multi-

Agent Systems: An Analysis of Learning Algorithms for the Gridworld Problem." 

Leng, J., C. Fyfe and L. C. Jain (2009). "Experimental Analysis on Sarsa ( ) and Q ( ) with 

Different Eligibility Traces Strategies." Journal of Intelligent and Fuzzy Systems 

20(1): 73-82. 

Lu, S., X. Liu and S. Dai (2008). Incremental Multistep Q-Learning for Adaptive Traffic 

Signal Control Based on Delay Minimization Strategy. Proceedings of the 7th World 

Congress on Intelligent Control and Automation June 25 - 27, 2008, Chongqing, 

China. 

McShane, W. R., R. P. Roess and E. S. Prassas (1998). Traffic Engineering, Prentice Hall. 

Robbins, H. and S. Monro (1951). "A Stochastic Approximation Method." The Annals of 

Mathematical Statistics 22(3): 400-407. 

Sutton, R. S. and A. G. Barto (1998). "Introduction to Reinforcement Learning." MIT Press, 

Cambridge Mass. 

Thorpe, T. (1997). "Vehicle Traffic Light Control Using Sarsa." Master’s Project Rep., 

Computer Science Department, Colorado State University, Fort Collins, Colorado. 

Wahba, M. M. (2008). Milatras: Microsimulation Learning-Based Approach to Transit 

Assignment Department of Civil Engineering. Toronto, University of Toronto. 



Comparative Analysis for Temporal Difference Learning Methods in Adaptive Traffic Signal 
Control  

ELTANTAWY,Samah and ABDULHAI,Baher 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
21 

Watkins, C. and P. Dayan (1992). "Q-Learning." Machine learning 8(3): 279-292. 

Webster, F. V. (1958). Traffic Signal Settings, HMSO. 

 

 
 


