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ABSTRACT 

In transport demand modelling, discrete choice models are common.  The major theoretical 

disadvantage of the current transport demand modelling with discrete choice is that it does 

not correspond to a full-fledged decision making by a consumer.  A typical example is a 

choice between „auto‟ and „public transport‟, given a consumer‟s total transport demand is 

unity.  Why his or her demand is restricted at unity is not explained within discrete choice 

models.  In this sense, discrete choice models describes „partial‟ decision making.  On the 

contrary, the standard microeconomic model represents an entire decision making, where all 

variables are endogenously determined within the model.  The approach in this paper 

overcomes the gap between discrete choice models with exogenous total demand and the 

standard microeconomics with endogenous total demand.  We propose a full-fledged utility 

maximization framework of a consumer that is consistent with the results of the discrete 

choice models, and examine various aspects of the characteristics of the utility maximization 

problem, including the form of the utility function, elasticities, and the measurement of 

welfare. 

 

Keywords: Discrete choice, transport demand modelling, representative consumer, logit 

model, generalized extreme value model 

1 INTRODUCTION 

 In transport demand modelling, discrete choice models are common.  Discrete choice 

models have been developed in coordination with econometrics, but their microeconomic 

foundation is not so strong.  In order to clarify the relationship between transport demand 

modelling and microeconomics, there are two approaches.  One approach is to construct the 
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travel demand model from the viewpoint of the standard microeconomics, disregarding the 

fact that discrete choice models are commonly used.  This direction was studied by Anas 

(2007).  He tries to formulate travel demand model that is fully consistent with 

microeconomics, focusing on the fact that transport demand is the derived demand.  The 

other approach is to pursue the microeconomic foundation of the current ordinary transport 

demand modelling with discrete choice models.  This is a fundamental area of research 

related to discrete choice models.  However, perhaps surprisingly, and despite its central 

importance, this is an area of research that has significantly received less attention than the 

exploitation of discrete choice modelling in practice
2
. 

 The purpose of this paper is to formulate the transport demand modelling with 

discrete choice models based on microeconomics and to clarify its implication.  In so doing, 

we resolve a major theoretical disadvantage of the current transport demand modelling with 

discrete choice; it cannot describe a full-fledged decision making by a consumer, because 

there is the fixed total demand, which must be determined outside the model.  For example, 

consider a choice between „auto‟ and „public transport‟.  When we consider this problem in 

discrete choice models, the total demand for auto and transport is exogenously determined.  

A typical assumption is that each consumer demands unity.  Even if we formulate the nested 

structure and include the upper-level choice between „trip‟ or „do not trip‟, this problem 

remains unsolved.  The total number of the upper-level choices must be fixed exogenously; 

typically, each consumer is assumed to select „trip‟ or „do not trip‟ once in the first stage and 

select „auto‟ or „public transport‟ in the second stage.  In this setting, the maximum number of 

demand for „auto‟ or „public transport‟ is restricted at unity.  On the contrary, the standard 

microeconomic utility maximization does not have such a restriction; all variables are 

endogenously determined within the model.  For example, a consumer determines the total 

number of trips as well as the number of trips by auto or public transport. 

 The approach in this paper overcomes the gap between discrete choice models with 

exogenous total demand and the standard microeconomics with endogenous total demand.  

We propose a full-fledged utility maximization framework of a consumer that is consistent 

with the results of the discrete choice models.  The main assumptions are as follows.  First, 

we focus on the GEV model, which is the general form of the logit and nested-logit models, 

because it has closed-form solutions.  Second, we assume consistent aggregation across 

consumers‟ preferences.  Without this assumption, we cannot aggregate each consumer‟s 

demand function to derive the market demand function.  This assumption implies that the 

indirect utility function of a consumer has the Gorman form
3
.   

 The main results we obtain in this paper are as follows. 

 First, the indirect utility function of a representative consumer includes the log-sum 

term as an argument, if it yields the transport market demand function consistent with the 

result of the GEV model.  Personalized prices are not allowed; all consumers must face the 

same prices.  The own-price and cross-price elasticities of the market demand for a transport 

service respectively are the sum of the price elasticity of the total transport demand and the 

                                                 
2
 A few exceptions are Morisugi and Le (1994) and Morisugi et al. (1995).  They try to formulate 

utility maximization problems that are consistent with the logit and GEV models in which the total 
transport demand is endogenous.  However, their analyses lack theoretical consistency and yield 
unsuccessful results. 
3
 See Gorman (1961) and Varian (1992) for a detailed explanation of the Gorman form. 
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usual own-price and cross-price elasticities in which the total transport demand is assumed 

fixed.  The change in welfare can be measured by using any of the four types of demand: a 

consumer‟s demand for a transport service, the market demand for a transport service, a 

consumer‟s total transport demand, or the total market transport demand.  When we 

measure the change in welfare by using a consumer‟s total transport demand or the total 

market transport demand, the corresponding price is the log-sum term. 

 Second, the indirect utility function of a representative consumer that is consistent 

with the mixed GEV model can model the situation where prices are personalized.  The 

corresponding indirect utility function of a representative consumer includes the log-sum term 

as an argument and quasi-linear.  The own-price and cross-price elasticities of the market 

demand for a transport service are derived by „mixing‟ a consumer‟s elasticities of the logit 

model by consumer‟s type.  The change in welfare can be measured by using a consumer‟s 

demand for a transport service or a consumer‟s total transport demand.  In the latter case, 

the corresponding price is the log-sum term.  Since we allow all consumers to face different 

prices in the mixed GEV model, there exists no common price index that corresponds to the 

market demand of a transport service or the total market transport demand.  Thus, we cannot 

calculate the welfare change by using them. 

 Third, the above results of the GEV and mixed-GEV models can be extended to 

include the multiple pairs of OD (origin-destination).  Each OD transport demand plays a role 

of a group of good in the standard microeconomics.  The relationship between ODs is 

unrestricted in our analysis; it can be substitute or complement. 

 The rest of the paper is structured as follows.  In Section 2, we set up a model.  In 

Sections 3 and 4, we examine the logit and mixed logit models for a single OD as the 

simplest cases, respectively.  In Section 5, our analyses are generalized to include multiple 

ODs and to allow the GEV and mixed GEV models.  Section 6 concludes the paper. 

2 MODEL 

 Consumers are heterogeneous with their parameters,  .  The density function of   is 

( )f  .  A consumer with his or her parameter   is called type-   consumer.  Type-  

consumer demands the composite consumer good, ( )z  , and transport service j , ( )jx   

( 1,...,j M ).  We assume that M  kinds of transport service are offered and that a 

consumer may demand all kinds of transport service.  For the time being, we assume that 

there exists a single OD for the sake of simplicity.  This assumption implies that the OD 

transport demand equals the total transport demand.  The multiple ODs will be considered in 
Section 5-1.  The time required and the monetary price of using transport service j  for type-

  consumer are ( )jt   and ( )j  , respectively.  Similarly, the time required and the 

monetary price of consuming the composite consumer good are ( )zt   and ( )z  , 

respectively. 

 The direct utility function of type-   consumer is 1( ( ), ( ),..., ( ), )Mu z x x    .  The 

budget constraint is: 

(1) 
1

( ) ( ) ( ) ( ) ( ) ( )
M

z j j

j

w L z x        



  , 
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where ( )w   and ( )L   are the wage rate and the working time of type-  consumer.  The 

time constraint is: 

(2) 
1

( ) ( ) ( ) ( )
M

z j j

j

L L t z t x    



   , 

where L  is the fixed available time, which is common for all consumers.  Combining (1) with 

(2) yields: 

(3) 
1

( ) ( ) ( ) ( )
M

j j

j

y z p x    



  , 

where 
( )

( )
( )Z z

w L
y

w t




 



 and 

( ) ( ) ( )
( )

( )

j j

j

Z z

w t
p

w t

   


 





 are type-  consumer‟s full income 

and the generalized price of transport service j , normalized by the generalized price of the 

composite consumer good.  Maximizing 1( ( ), ( ),..., ( ), )Mu z x x     subject to (3) yields the 

indirect utility function, 1( ( ),..., ( ), ( ), )Mv p p y    . 

 In this paper, we assume that each consumer‟s preference can be aggregated to a 

representative consumer‟s preference.  Unless this assumption is made, we cannot derive 

the market demand function by aggregating type-  consumer‟s demand function.  This 

assumption is also important in welfare analysis.  If a representative consumer cannot be 

defined, the complete correspondence between the sum of consumers‟ equivalent variation 

and the compensation principle are lost, as Blackorby and Donaldson (1990) explain in detail.  

In such a case, practical welfare analyses are very difficult to implement, because, in order to 

measure the welfare change for the society, we must derive each consumer‟s equivalent 

variation (EV) and aggregate it under a certain rule.  Not only we need formidable information 

in calculating each consumer‟s EV but we also need to decide a rule under which each 

consumer‟s EV is aggregated, which is very unlikely to be unanimously approved. 

 The necessary and sufficient condition for defining a representative consumer is that 

the indirect utility function of type-  consumer has the so-called Gorman form: 

(4) 1 1 1( ( ),..., ( ), ( ), ) ( ( ),..., ( ), ) ( ( ),..., ( ), ) ( )M M Mv p p y A p p B p p y            . 

where 1( ( ),..., ( ), )MB p p    must be common for all consumers.  To satisfy this condition, 

one of the following must be met: 

(5) 1 1( ( ),..., ( ), ) ( ,..., )M MB p p B p p    , or 

(6) 1( ( ),..., ( ), )MB p p B    . 

Eq. (5) shows that the generalized prices are independent of consumers‟ types, that is, 

common for all consumers.  Eq. (6) implies that the indirect utility function of type-   

consumer is quasi-linear if the generalized prices are personalized by consumers‟ types.  As 

we will see in the following section, the logit (or GEV) model corresponds to (5), while the 

mixed logit (or GEV) model corresponds to (6). 
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3 THE LOGIT MODEL 

3-1 Derivation 

 When (5) is met, by aggregating the indirect utility function of type-  consumer, the 

indirect utility function of a representative consumer is: 

(7) 

1 1

1 1

( ( ,..., , ) ( ,..., , ) ( )) ( )

( ,..., , ) ( ) ( ,..., ) ,

M M

M M

V A p p B p p y f d

A p p f d B p p Y





   

  

 

 




 

where ( ) ( )Y y f d


     is an aggregate income.  For the sake of simplicity, we focus on the 

logit model here, and extend our analysis to the GEV model in Section 5-2.  The logit model 

is derived when the indirect utility function of a representative consumer, (7), has the form of:  

(8) 1( , ,..., , ) ( ) ( )MV A LS p p f d B LS Y


    , 

where: 

(9) 
1

1
ln exp( )

M

j j

j

LS p 


 



    ( j  and  ( 0 ) are constants), and 

(10) 

1( , ,..., , ) ( )

0

M

j

A LS p p f d

p



  
 

 
  




 for any jp . 

 In fact, the market demand function of transport service j , jX , is derived from (8) 

as: 

(11) ( , )j jX OD LS Y s , 

where: 

(12) 
1

( , ) 0
V

OD LS Y
B LS


  


, and 

(13) 

1

exp( )

exp( )

j j

j M

j j

j

p
s

p

 

  







. 

Eq. (11) is the logit-type market demand function which is represented as the total market 

transport demand, ( , )OD LS Y , multiplied by the choice probability of transport service j , js .  

Eqs. (8) - (10) are not only sufficient but also necessary to derive the logit-type market 

demand function from (7).  See Appendix A for the proof. 

 This result alerts us to an important point in econometric estimations of the logit 

model.  j j jp     in (13) can be interpreted as the utility gained from consuming a unit 

of transport service j .  Thus, (13) implies that the utility gained from consuming a unit of 

transport service j  must be linear in its generalized price, jp .  In empirical analyses, the 

unit utility of transport service j  can be nonlinearly estimated regarding jp .  In such a case, 

however, there is no corresponding utility maximizing problem of a representative consumer 
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that is consistent with the logit-type market transport demand function, which has the form of 

the total market transport demand multiplied by its choice probability.  That is, when the unit 

utility of transport service j  is nonlinearly estimated regarding jp , the microeconomic 

foundation of the logit-type market transport demand is vague. 

 Two special cases of (8) are worthy of noting here. 

 First, (8) includes the ordinary logit model with the fixed total demand as a special 

case.  For example, when 1 1( , ,..., , ) ( ,..., , )M MA LS p p LSA p p   and ( ) 1B LS  , we obtain: 

(14) 1( ,..., , ) ( )MOD A p p f d


    , 

which is a constant from (10). 

 Second, (8) also includes a direct utility function that corresponds to the logit model 

derived by Anderson et al. (1988, 1992 Ch. 3),  

(15) 
1 1

1

1
ln

M M
j

j j jM
j j

j

j

Xb
U Z h X X

X


 



  

  




  
   
      
   
  

  

 


, 

where Z  is the aggregated composite consumer good, b  is a constant, 0h  , and 0h  , 

as a special case.  See Appendix B for the proof. 

 The indirect utility function of a representative consumer that corresponds to the logit 

model has important implications in the calculation of the elasticities and in welfare analysis.  

The following two subsections will explain them in turn. 

3-2 Elasticities 

 From (11), we can derive the own-price and cross-price elasticities.  We calculate the 

elasticities with respect to the monetary price of transport service j , j .  The same 

procedure applies for the calculation of elasticities with respect to the generalized price of 

transport service j , jp .  The own-price and cross-price elasticities respectively are: 

(16) (1 )
j j

j j j

j j

X
s

X


  




  


 and 

(17) 
j j

j j j

j j

X
s

X


  





  




 


, 

where 
j

j

j

OD

OD










 is the elasticity of the total market transport demand with respect to the 

monetary price of transport service j , j . 

 The results of (16) and (17) represent that j  and j   are disregarded in the ordinary 

logit model in which the total market transport demand is assumed fixed.  Accordingly, the 

estimated elasticities are biased.  Especially, the sign of the cross-price elasticity can be 

reversed; the cross-price elasticity is always positive when the total marked transport 

demand is fixed, but it can be negative when j   is included.  Note also that the cross-price 

elasticities are the same for all transport services and the independence from irrelevant 
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alternatives (IIA) property holds, even if the total market transport demand is allowed to be 

endogenous. 

3-3 Welfare analysis 

 We focus on how to calculate EV.  The same procedure applies to compensating 

variation (CV) if 
WOV  and 

WOv  are substituted for 
WV  and 

Wv , respectively, in the following 

analysis.  Henceforth, the superscripts WO  and W  denote without and with a policy, 

respectively.  The results are summarized below.  The proof is in Appendix C. 

(18) 

1 1

1

1 1

1

( ( ,..., ), ,..., , ( ) , ) ( )

( ( ,..., ), )

( ( ,..., ), ,..., , ( ) , ) ( )

( ( ,..., ), ) ,

WO
j

W
j

WO
j

W
j

WO

W

WO

W

p
W

j M M j
p

p
W

j M j
p

LS
W

M M
LS

LS
W

M
LS

EV h LS p p p p v dp f d

H LS p p V dp

hod LS p p p p v dLS f d

HOD LS p p V dLS





   

   





 
  

 



 



 



 

where 1( , ,..., , ( ) , )W

j Mh LS p p v    is type-   consumer‟s Hicksian demand function for 

transport service j , ( , )W

jH LS V  is the Hicksian market demand function for transport 

service j , 1( , ,..., , ( ) , )W

Mhod LS p p v    is type-   consumer‟s Hicksian total transport 

demand function, and ( , )WHOD LS V  is the Hicksian total market transport demand function. 

 The first and the second lines of (18) show how to calculate EV from each 

consumer‟s transport demand function and the market transport demand function for 
transport service j .  As a result of the assumption of the Gorman form, each consumer‟s 

transport demand function can be aggregated to the market transport demand function 

exactly.  Thus, either transport demand function for transport service j , whose price is jp , 

can be used in calculating EV.  The third and the forth lines of (18) show logit-specific 

calculation methods, where the log-sum term plays a role of the price index; in the logit 

model, we can calculate EV from type-  consumer‟s total transport demand or the market 

transport demand, in which case, the log-sum term acts as their prices.  This result is a 

natural extension of Small and Rosen (1981, Eq. (5.9)) to allow endogenous total demand
4
.  

For a small price change, we can approximate EV by applying the „rule-of-half‟: 

(19)   
1

( , ) ( , )
2

WO W WO W W WEV LS LS HOD LS V HOD LS V   . 

 In (18), we ignore the possibility that a change in the price of transport service j  

affects the price of transport service j , by changing the degree of congestion, for example.  

However, this possibility is easily dealt with by applying the method of Kidokoro (2004).  

Specifically, the first and the second lines in (18) are modified to: 

                                                 
4
 The well-known method of Small and Rosen (1981, Eq. (5.9)), under which EV is calculated as 

the change in the log-sum term multiplied by the number of consumers, N , is derived as a special 

case of the forth line of (18) by assuming ( , )WHOD LS V N . 
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(20) 

1

1

1

( , ,..., , ( ) , ) ( )

( , ) .

WO
j

W
j

WO
j

W
j

Mp jW

j M j
p

j j

Mp jW

j j
p

j j

p
EV h LS p p v dp f d

p

p
H LS V dp

p



   












 
    

 
    





 

The third and fourth lines remain unchanged, because the log-sum term can include the price 

changes of all transport services. 

4 THE MIXED LOGIT MODEL 

4-1 Derivation 

In the case of (6), by aggregating the indirect utility function of type-  consumer, the indirect 

utility function of a representative consumer is: 

(21) 

1

1

( ( ( ),..., ( ), ) ( )) ( )

( ( ),..., ( ), ) ( ) .

M

M

V A p p By f d

A p p f d BY





     

    

 

 




 

Train (2003, pp.138-139) defines the mixed logit model as a model which has the following 

choice probability, 
jMLs : 

(22) 1( ( ),..., ( ), ( ), ) ( )
j jML ML Ms s p p y f d



       . 

Extending this definition to include the case of endogenous total demand, we define the 

mixed logit model as the model in which the market transport demand function has the form 

of: 

(23) 1( ) ( ( ),..., ( ), ( ), ) ( )
jj ML MX OD s p p y f d



        , 

where the total transport demand function of type-  consumer is denoted by ( )OD  .  For 

the sake of simplicity we focus on the mixed logit model here; the analysis is extended to the 

case of the mixed GEV model in Section 5-2.  The mixed logit model is derived when the 

indirect utility function of a representative consumer, (21), has the following form:  

(24) ( ( ), ) ( )MLV A LS f d BY


     , 

where: 

(25) 
1

1
( ) ln exp( ( ))

M

ML j j

j

LS p   


 



   . 

 From (24), the market demand function of transport service j , jX , is derived as: 

(26) ( ( ), ) ( ) ( )
jj ML MLX OD LS s f d



      , 

where: 

(27) 
1

( ( ), ) 0
( )

ML

ML

V
OD LS

LSB
 




  


, and 
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(28) 

1

exp( ( ))
( )

exp( ( ))

j j

MLj M

j j

j

p
s

p

  


   







. 

Eqs. (24) and (25) are not only sufficient but also necessary to derive the mixed logit-type 

market demand function from (21).  The proof is almost the same procedure as in the case of 

the logit model, and then omitted. 

 A major difference from the logit model is that the indirect utility function of the 

representative consumer that is consistent with the mixed logit model is quasi-linear
5
.  The 

generalized price differs among consumers, and consequently, the log-sum term also differs 

among consumers.  Given the Gorman restriction, the coefficient of income must be identical 

for all consumers.  Thus, the coefficient of income cannot include the log-sum term as an 

argument.  By contrast, in the case of the logit model, the coefficient of income may depend 

on the log-sum term, which is the same for all consumers. 

 As is the case with the logit model, ( ) ( )j j jp       in (28) can be interpreted as 

type-  consumer‟s utility gained from consuming a unit of transport service j , and must be 

linear in its generalized price, ( )jp  .  If it is nonlinear, there is no corresponding utility 

maximizing problem of a representative consumer for the mixed-logit-type market transport 

demand function, and the microeconomic foundation of the mixed-logit model is vague. 

4-2 Elasticities 

 The own-price and cross-price elasticities with respect to the monetary price of 
transport service j , respectively, are: 

(29)  
( ( ), ) ( )

( ) (1 ( )) ( )
j

j

ML MLMLj j

j ML j

j MLj MLj

OD LS sX
s f d

X X


  
      



   
   

   
 , and 

(30)  
( ( ), ) ( )

( ) ( ) ( )
j

j

ML MLMLj j

j ML j

j MLj MLj

OD LS sX
s f d

X X


  
      

 



 



   
  

   
 , 

where 
( ( ), )

( )
( )

jML
j

j

OD LS

OD

 
 

 





 is the elasticity of type-  consumer‟s total transport 

demand with respect to the monetary price of transport service j , j . 

Eqs. (29) and (30) are „mixed‟ elasticities of those of the logit model by consumer‟s type.  As 

we can easily see, (29) and (30) coincide with (16) and (17) respectively, if consumer‟s type 

is fixed.  Otherwise, both elasticities become more flexible.  In particular, the IIA property 

                                                 
5
 In the case of the mixed logit model, the market transport demand function, (23), requires that 

type-  consumer‟s transport demand function be written as the logit form, that is, his or her total 

transport demand multiplied by the choice probability.  This condition implies that type-  

consumer‟s indirect utility function incorporates the price of each transport service only through 
the log-sum term like (24).  By contrast, in the case of the logit model, type-  consumer‟s 

transport demand function may not be consistent with the logit model; the requirement is that the 
market transport demand function is consistent with the logit model.  In this case, we only need 
(10), which implies that we cannot exclude the case where type-  consumer‟s transport demand 

function depends directly on the price of each transport service. 
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does not hold, because the cross-price elasticities depend on 
( ( ), ) ( )

jML ML

MLj

OD LS s

X

  
 in (30) 

and accordingly differ by transport services. 

4-3 Welfare analysis 

 The indirect utility function of the representative consumer that yields the mixed logit 

model, (24), is quasi-linear.  Thus, the Hicksian and the Marshallian demand functions 

coincide, and EV, CV, and the change in consumer surplus are also equivalent.  EV can be 

calculated from either type-   consumer‟s demand for transport service j  or type-   

consumer‟s total transport demand; that is: 

(31) 

( )

( )

( )

( )

( ( ), ) ( ) ( )

( ( ), ) ( ) ( ) ,

WO
j

W j
j

WO
ML

W
ML

p

ML ML j
p

LS

ML ML
LS

EV x LS dp f d

OD LS dLS f d











    

    

 
  

 

 
  

 

 

 

 

where ( ( ), ) ( ( ), ) ( )
jML ML ML MLjx LS OD LS s      is type-  consumer‟s demand function for 

transport service j .  The derivation procedure is the same as in the case of the logit model, 

and then is not repeated here. 
 If a change in the price of transport service j  affects those of other transport services 

(through a change in the degree of congestion, for example), we must also calculate the 

welfare changes relating to other transport services.  In this case, the first line of (31) is 

modified to: 

(32) 
( )

( )
1

( )
( ( ), ) ( ) ( )

( )

WO
j

W j
j

Mp j

ML ML j
p

j j

p
EV x LS dp f d

p







    







  
       

  . 

(The second line is unchanged because the log-sum term can include the price changes of 

all transport services.) 

 In the case of the mixed logit model, EV cannot be calculated by using the market 
demand function for transport service j  or by using the total market transport demand 

function.  This represents a contrast from the logit model.  It arises because the price and the 

log-sum term differ among consumers in the mixed logit model, and consequently, there 
exists no price index that corresponds to either the market demand for transport service j  or 

to the total market transport demand.  This implies that we cannot calculate a total welfare 

change by using „averaged‟ price or log-sum term, which integrates out individual consumers‟ 

type,  . 

5 EXTENSIONS 

 The analyses in Sections 3 and 4 focus on the simplest cases.  We consider two 

extensions here.  One is an extension to include multiple ODs, and the other is an extension 

to the GEV model. 
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5-1 The model with multiple ODs 

 The analysis of Sections 3 and 4 can be easily extended to the more realistic case in 

which there are multiple ODs.  (More generally, the analysis of multiple ODs is a variant of 

that of multiple groups of goods.)  We extend the single-OD logit model to the multiple-ODs 

logit model here; the procedure is the same for the mixed logit model.  Suppose that the 

number of ODs is k  ( 1,...,k K )
6
.  We denote the generalized price of transport service j  

and the log-sum term for k th OD by kjp  and kLS  respectively.  In the case of the multiple 

ODs, the indirect utility function of a representative consumer can be written as: 

(33) 1 11 1( ,..., , ,..., , ) ( ) ( ,..., )K KM KV A LS LS p p f d B LS LS Y


   
7. 

 A distinct feature of (33) is that the resulting OD transport demands are endogenous 

in all ODs and the relationship between ODs is unrestricted.  For example, the familiar 

nested logit model can deal with multiple ODs, but the relationship between ODs is limited to 

the logit model.  Eq. (33) does not imply such a restriction. 

 An example of the transport demand forecast that is consistent with (33) is as follows.  

i) In each OD, we construct the logit model to derive the choice probability, kjs , and the log-

sum term, kLS .  ii) Based on the log-sum terms in all ODs, we derive the transport demand 

function for k th OD as 1( ,..., , )k KOD LS LS Y .  iii) The transport demand function for transport 

service j  in k th OD is derived as 1( ,..., , )kj k K kjX OD LS LS Y s .  iv) The market transport 

demand function for transport service j  is derived as 
1

K

kj

k

X


 . 

 The elasticities and the welfare analysis in the case of multiple ODs are simple 

extensions of those in the case of the single OD.  Thus, we only note the differences. 

 First, the cross-price elasticity depends on whether transport services j  and j  

belong to the same OD or not.  When they belong to the same OD, the cross-elasticity is the 

same as (17) except for the notation.  When they belong to the different ODs, the 

corresponding cross-price elasticity is: 

(34) 
kj kj

kj

kj kj

X

X
















, 

where 
kjk

kj

kj k

OD

OD
















.  Eq. (34) shows that the cross-elasticity depends only on the price 

elasticity of the OD transport demand. 

 Second, if a change in the generalized price of transport service j  in k th OD does 

not affect those of other transport services, EV can be calculated in the same way as (18).  If 

it does, (20) is modified to: 

                                                 
6
 We do not distinguish between inbound transport and outbound transport for the sake of 

simplicity.  The analysis is essentially the same if we treat them differently. 
7
 Although we assume that the number of available transport services is the same at M  

regardless of ODs, the analysis remains unchanged even if we allow the number of available 
transport services to differ among ODs. 
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(35)

1 11

1 1

1

1 1

1 11

( ,..., , ,..., , ( ) , ) ( )

( ..., , )

( ,..., , ,..., , (

WO
kj

W
kj

WO
kj

W
kj

K Mp k jW

k j K KM kj
p

k j kj

K Mp k jW

k j K kj
p

k j kj

k K KM

p
EV h LS LS p p v dp f d

p

p
H LS LS V dp

p

hod LS LS p p v



   



 

 

  

 

 

  



  
       

 
    



 



1

1

1

) , ) ( )

( ..., , ) .

WO
k

W
k

WO
k

W
k

KLS
W

k
LS

k

KLS
W

k K k
LS

k

dLS f d

HOD LS LS V dLS



  






 
 
 



 



  

A difference from (20) is that a change in the price of a transport service may affect transport 

services in other ODs, and consequently, calculations are required for all ODs. 

5-2 The GEV model 

 The analysis of Sections 3 and 4 can be extended to the GEV model, which is a 

general form of the logit model.  This extension is useful when modelling hierarchical 

structures within ODs.  For example, consider a model in which, in the first stage, a 

consumer chooses between auto and public transport, and in the second stage, a consumer 

who chooses public transport in the first stage selects bus or rail.  A typical model to include 

such a hierarchical structure is the nested logit model, which is a special case of the GEV 

model.  For the sake of simplicity, we consider an extension from the logit model to the GEV 

model.  The same procedure applies for an extension from the mixed logit model to the 

mixed GEV model. 

 Following McFadden (1978, Theorem 1), the GEV model can be described by using 

the function 1( , , )MG z z  ( exp( ( , ))j j jz u p Y ), which satisfies the following conditions of 

(GEV-1) - (GEV-4): 

(GEV-1) 1( , , )MG z z  is nonnegative; 

(GEV-2) 1( , , )MG z z  is homogenous of degree n;
8
 

(GEV-3) 1lim ( , , )
jz MG z z  ; 

(GEV-4) The  th partial derivative of 1( , , )MG z z  with respect to any combination of 

distinct jz s is nonnegative if   is odd, and nonpositive if   is even.  That is, 0
j

G

z





 for all 

j , 

2

0
j j

G

z z 




 
 for all j  and j , where j j  , 

3

0
j j j

G

z z z 




  
 for any distinct j , j , and j , 

where 1,...,j M   (and so on for higher-order derivatives).  The logit model is a special case 

of the GEV model by assuming 
1

exp( )
M

j j

j

G p  



  . 

 The following are the different points from the analysis in Section 3. 

                                                 
8
 McFadden (1978, Theorem 1) originally assumed homogeneity of degree one.  Ben-Akiba and 

Francois (1983) demonstrate that G  can be homogeneous of degree n .  See also Ben-Akiba 

and Lerman (1985, p. 126). 
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i) The log-sum term is modified from (9) to: 

(36) 
1 1

1
ln (exp( ), ,exp( ))GEV M MLS G p p

n
   


     

ii) The choice probability for transport service j  is modified from (13) to: 

(37) 

exp( )j j

j

GEVj

G
p

z
s

nG

 





  

iii) As in the logit model, the own-price and cross-price elasticities in the GEV model are 

the sum of the elasticities of the OD transport demand and the standard own-price and 

cross-price elasticities in which the OD transport demand is assumed fixed.  The own-price 

and cross-price elasticities respectively are:  

(38) (1 )
GEVj j

GEVj GEVj j jj

j GEVj

X
ns

X


   




   


, and 

(39) 
GEVj j

GEVj GEVj j jj

j GEVj

X
ns

X


   





   




  


, 

where 
j j

jj

j

j

G

z

G

z






 
    
  

   

.  In the logit model, 0jj   from 1
j

G

z





. 

iv) Welfare analysis is the same as that for the logit model, except that the log-sum term 

is modified from (9) to (36). 

v) Extending to the case of multiple ODs in the GEV model is analogous to the analysis 

of the logit model in Section 5-1. 

6 CONCLUDING REMARKS 

 In this paper, we have studied the microeconomic foundation of the transport demand 

modelling with the GEV model.  The main result is that the transport demand modelling with 

the GEV or mixed GEV models is consistent with a consumer‟s full-fledged utility 

maximization problem (or the aggregated utility maximization problem of a representative 

consumer) under certain conditions.  Before concluding our analysis, we comment on three 

issues in relation to an application to empirical analysis. 

 First, the true own-price and cross-price elasticities differ from those derived in the 

ordinary GEV or mixed GEV models in which the total demand is assumed fixed, because 

the elasticity of the total demand is not taken into account.  As Oum et al. (1992, p. 145) 

point out
 9

, the derived elasticities in the ordinary GEV or mixed GEV models should be 

considered as “conditional” elasticities in which the total demand is assumed fixed. 

                                                 
9
 They state “Some discrete choice models are concerned solely with user‟s mode choice 

decisions given a fixed volume of traffic.  Many studies of urban work trips fall into this category.  
The demand elasticities computed from these models are more appropriately interpreted as 
mode-choice elasticities rather than regular demand elasticities since the effect of a price change 
on aggregate traffic is not taken into account.” 
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 Second, the total market transport demand function, (12), is a function of the log-sum 

term, if the transport demand modelling including the GEV model is consistent with a utility 

maximization of a representative consumer whose indirect utility function is (8).  This implies 

that the total transport demand function in the GEV model has a consistent microeconomic 

foundation, as long as it is estimated as the function of the log-sum term.  Even in the case of 

multiple ODs, this result holds true, as long as the total transport demand function is 

estimated as the function of the log-sum terms in all ODs.  This implication is very useful in 

empirical research, because it gives us a clear condition under which any total transport 

demand function can be considered as the derived result from a consumer‟s utility 

maximization.  The same implication holds for the mixed GEV model. 

 Third, to be consistent with our analysis, the following two condition must be met; i) a 

consumer‟s indirect utility function is the Gorman form (or quasi-linear in the mixed GEV 

model)
 10

, and ii) the utility obtained from a transport service is linear in its generalized price.  

These conditions seems restrictive, but the condition i) is required for consistent aggregation 

across consumers and the condition ii) is necessary to derive the demand function for a 

transport service as a form of the total demand function, which is common for all transport 

services, multiplied by the choice probability of a transport service.  When these conditions 

are not satisfied, we cannot derive the exact relationship between the transport demand 

function in the GEV or mixed GEV forms and each consumer‟s utility maximization.  The next 

step would be to focus on the approximate relationship between them in more general 

settings.  This direction merits future research. 

                                                 
10

 Herriges and Kling (1999), McFadden (1999), De Palma and Kilani (2003), and Dagsvik and 
Karlstrom (2005) analyze welfare measurement in discrete choice models with indirect utility 
functions that are nonlinear in income, i.e., non-Gorman form.   These analyses are appropriate 
given that they focus on a „one-consumer‟ economy in which there is only one consumer or there 
are many consumers who all have the same indirect utility function. 
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APPENDICES 

Appendix A Necessity for Logit-type Demand Functions 

 The logit-type market demand function is represented as: 

(A.1) 1

1

exp( ( , ))
( ,..., , )

exp( ( , ))

j j

j M M

j j

j

p Y
X OD p p Y

p Y



  






. 

By Roy‟s Identity, (A.1) can be rewritten as: 

(A.2) 1

1

exp( ( , ))
( ,..., , )

exp( ( , ))

j j

M M

j
j j

j

p YV V
OD p p Y

p Y
p Y



  



 
 

    
  
 
 


. 

Noting that 
1

1

ln exp( ( , ))
exp( ( , ))

exp( ( , ))

M

j j

j j j

M

j
j j

j

p Y
p Y

p Y







 



 



 
  
   






, the indirect utility function of a 

representative consumer includes 
1

ln exp( ( , ))
M

j j

j

p Y  



   as its argument.  That is, from (7), 

the indirect utility function of a representative consumer is: 

(A.3) 1 1( , ,..., , ) ( ) ( , ,..., )M MV A LS p p f d B LS p p Y


    , 

where: 

(A.4) 
1

ln exp( ( ))
M

j j

j

LS p  



   , 

which is independent of Y  because of the Gorman restriction. 

 Applying Roy‟s Identity to (A.3) yields the following market demand function for 
transport service j : 

(A.5) 

1

exp( ( )) ( )1

exp( ( ))

j j j j

j M

j j
j j

j

p pV V
X

B p pLS
p

 

  



 
    
  
 
 


. 

To obtain the logit-type market demand function, (A.1), we need: 

(A.6) 
( )j j

j

p

p




 is a constant, and 

(A.7) 0
j

V

p





. 

From (A.6), we have: 

(A.8) ( )j j j jp p    . 
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Defining: 

(A.9) 
1

LS LS


 , 

we obtain (8) - (10) from (A.3), (A.7), (A.8), and (A.9). 

 From (A.5), (A.8), and (A.9), the total market transport demand can be rewritten as: 

(A.10) 1

1
( ,..., , )M

V
OD p p Y

B LS


 


. 

Since the indirect utility function is nonincreasing in price and nondecreasing in income, we 

obtain: 

(A.11) 

1

exp( )
0

exp( )

j j

M

j
j j

j

pV V

p LS
p

 

  



 
 

 


 and 

(A.12) 0
V

B
Y


 


. 

Eqs. (A.11) and (A.12) assure that the total market transport demand is nonnegative in 

(A.10). 

Appendix B The direct utility function, (15), corresponds to a special case of 
(8) 

 Maximizing (15) subject to the following budget constraint, 

(B.1) 
1

M

j j

j

Y Z p X 



  , 

we obtain the logit-type market demand function: 

(B.2) 
1

1

exp( )

exp( )

j j

j M

j j

j

p
X h LS

b b
p

  

 



 



 
  
  

. 

Substituting (B.2) into (15) yields the following representative consumer‟s indirect utility 

function in terms of LS  and Y : 

(B.3) 
1 1V h h LS LSh LS Y

b b b

       
       
    

. 

We know that (B.3) is a special case of (8), by setting: 

1 1

1( , ,..., , ) ( )MA LS p p f d h h LS LSh LS
b b b



  
        

      
    

  and ( ) 1B LS  . 

Appendix C Derivation of (18) 

 From (7), the expenditure functions of type   consumer and the representative 

consumer are, respectively: 

(C.1) 1
1

( ) ( , ,..., , )
( , ,..., , )

( )

M
M

v A LS p p
e LS p p

B LS

 



 , and 
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(C.2) 

1( , ,..., , ) ( )

( , )
( )

MV A LS p p f d

E LS V
B LS



  




. 

From (C.1) and (C.2), we derive: 

(C.3) 

1

1

( , ,..., , )
( )

( , )

( , ,..., , )
( )

( , )
.

WO
j

W
j

WO
j

W
j

WO

W

WO

W

p
M

j
p

j

p

j
p

j

LS
M

LS

LS

LS

e LS p p
EV dp f d

p

E LS V
dp

p

e LS p p
dLS f d

LS

E LS V
dLS

LS






 


 











 
  

 






 



 



 

Eq. (18) is derived by defining: 

(C.4) 1
1 1

( , ,..., , )
( ( ,..., ), ,..., , ( ) , )W M

j M M

j

e LS p p
h LS p p p p v

p


 





, 

(C.5) 
( , )

( , )W

j

j

E LS V
H LS V

p





, 

(C.6) 1
1

( , ,..., , )
( , ,..., , ( ), ) M

M

e LS p p
hod LS p p v

LS


 





, and 

(C.7) 
( , )

( , )W E LS V
HOD LS V

LS





. 
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