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Abstract— Traffic congestions are nowadays a major problem in 

most countries. Businesses that use roads as means of transport are 

specially affected by this growing problem. Specifically for freight 

carries, traffic congestions are considered as a ―serious‖ to ―critically 

serious‖ problem for their business. Indeed, a timely delivery of 

merchandize is central to the quality of services provided, and 

consequently, to a long-term success. However, to guaranty a timely 

delivery of merchandize is a difficult task. Route optimization is 

fundamental, as are short delivery windows. But any significant 

alteration to traffic conditions can contribute to delays of one or more 

deliveries, proving chosen routes as wrong, and leading to non-

compliance of pre-established delivery windows. Therefore, having up-to-

date information about the current state of traffic conditions contributes 

to an improvement of carrier businesses by means of real time 

adjustments to transport routes and delivery plans. One approach is to 

provide drivers with up-to-date information about localized traffic 

congestions, combined with alternative route suggestions. For this 

purpose, this paper presents a methodology for a real-time data fusion, 

georeferentiation and analysis of road traffic data reported by multiple 

sources. A geographic and ontological data clustering process is 

introduced, followed by traffic impact estimation and data accuracy 

analysis algorithms. This methodology is being tested on a web-based 

prototype for fleet drivers in Portugal, which integrates updated traffic 

information with remote map and routing services. 

Index Terms— Accuracy Analysis, Alternative Route Suggestion, 

Data Clustering, Data Fusion, Georeferentiation, Impact Estimation, 

Real-time Traffic Management  

I. INTRODUCTION 

he road freight transport has shown a regular increase over 

the last years. According to EUROSTAT, between 1996 

and 2007 the quantity of transported goods has risen from 1.3 

billion tkm (ton-kilometer) to 1.9 billion tkm, making the road 

transport the most used form of transportation, holding a 42% 

of the total of transported goods in Europe [1]. One of the 

main problems of this business is traffic congestions. 

According to [2], traffic congestions are considered as a 

“serious” to “critically serious” problem for freight carriers. 

They account for unreliable travel times, driver frustration and 

morale. Furthermore, traffic congestions are a leading cause 

for unnecessary fuel consumption and CO2 emissions.  

Freight carriers usually rely on route optimization 

algorithms and short delivery windows for the improvement of 

their business profits. But any significant alteration to traffic 

conditions can contribute to delays of one or more deliveries, 

 
 

proving chosen routes as wrong, and leading to non-

compliance of pre-established delivery windows. Therefore, 

having up-to-date information about the current state of traffic 

conditions contributes to an improvement of carrier businesses 

by means of real time adjustments to transport routes and 

delivery plans. One approach is to provide drivers with up-to-

date information about localized traffic congestions, combined 

with alternative route suggestions. For this purpose, this paper 

presents a methodology for a real-time data fusion, 

georeferentiation and analysis of road traffic data reported by 

multiple sources. 

Traffic data may come from a wide range of different 

sources, ranging from common drivers that individually and 

proactively report incident and road congestion information, 

on one side of the spectrum, to road sensors and cameras 

specifically installed for the analysis of traffic status, on the 

opposite side. Considering the heterogeneity and multiplicity 

of possible data sources that might contribute with usable data, 

a normalization process is required in order to make sense of 

all the different data formats. Standards for describing road 

data are somewhat recent, being the Datex2 standard an up-to-

date European reference for the interchange of road traffic 

data [3] and the UNETRANS a very thorough model for the 

organization of road related data, covering infrastructure, 

routes and dynamic data [4]. Unfortunately, a generalized 

adoption of standard protocols for the communication of 

traffic data has not happened yet. We decided to abstract 

ourselves from this drawback, assuming that all provided data 

follows a common format, in order to focus on the chosen 

content for this paper, without losing ourselves in data 

normalization related issues. Fig. 1 shows a proposal for the 

normalized data format, which resulted from an iterative 

simplification of a subset of the Datex2 specification.  

The remaining text is divided into the following sections: 

first we introduce a process for the clustering and analysis of 

normalized highway traffic data provided by multiple sources 

with varying reliabilities; we subsequently explain how the 

resulting data can be geographically pinpointed using 

Teleatlas data and a process called dynamic segmentation; 

finally we present the interface of a developed web prototype, 

which integrates online map services with processed data, and 

provides best route calculation based on the current clustered 

traffic data. 
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Figure 1 - Provided data model resulted from a simplification of a subset of 

the Datex2 specification. This subset is related to traffic events description. 

II. DATA GROUPING 

Considering multiple sources simultaneously feeding data to 

the system, leads us to reckon the possibility of more than one 

data record being referent to the same occurrence. In these 

conditions, fusing records not only promotes data unity but 

also contributes to a better ascertainment of the location of the 

registered events, as their respective individual veracity. Thus 

said, the problem we try to solve is how to discern which 

records should be grouped, and how to determine the real 

location of an occurrence composed by multiple records.  

The first challenge we face is how to handle a large amount 

of data distributed across a vast geographic terrain. We base 

our solution on the divide-and-conquer paradigm. First off, 

records are separated into different sets. Each set refers to one 

highway and specific driving direction along it, which results 

in a pair of sets for each individual highway. Then, for each 

set containing traffic data, a grouping methodology is applied. 

This methodology has three main stages: (1) on the first stage, 

we separate the records by applying a variant of an 

agglomerative hierarchical clustering algorithm; (2) for each 

resulting group, an ontological analysis is made so as to 

determine which records are really related to the same 

occurrence; (3) finally, for each subgroup resulting from the 

previous analysis, two calculations are made: first the center 

of mass of traffic records is calculated - where mass represents 

the reliability of a record - so as to estimate the real location of 

the occurrence; second, the linear traffic extent of the event is 

estimated, for impact analysis and time span estimation. Each 

one of these stages will be subsequently described. 

(1) The first stage consists of organizing the georeferenced 

records into separate groups based on their geographic 

proximity. An agglomerative hierarchical clustering algorithm 

is applied. When the algorithm starts, each record consists of a 

separate cluster. On each iteration, the two closest clusters are 

merged. The location of a cluster is calculated through the 

mean of the records’ kilometric points the cluster holds. The 

algorithm stops when there is only one cluster left. 

Formally, a set of clustered records C, has a relative mean 

position Pc defined by: 
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Equation 1 

where    represents the kilometric point of the ith element 

contained in the set  . 

Another way to represent the merged clusters is through a 

dendogram (view fig. 2). Each leaf node represents an 

individual record, whereas the remaining nodes represent 

clustered records, being the root node the only cluster left after 

the final iteration. A dendogram is a typical result of an 

agglomerative hierarchical clustering algorithm. After the 

dendogram is created, it remains only to choose how to cut the 

dendogram into subtrees, so that each subtree has only 

geographically close leafs. Being this somewhat subjective, it 

was determined that leafs considered as geographically close 

should have a standard kilometric point deviation below a 

certain specific threshold. Thus said, each node of the 

dendogram stores the standard deviation of all leafs of the 

subtree it is root:  
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Equation 2 

Standard deviation then tends to increase from bottom nodes 

to the root node of the dendogram. With a depth first search 

starting from the root node, when reaching a node with a 

standard deviation below the defined threshold, this node is 

considered the root of a subtree with geographically close 

leafs, being the whole subtree cut from the dendogram (view 

fig. 3) and it’s leafs stored in an individual group for 

subsequent analysis. 

 

 
Figure 2 – Leaf nodes in (a) represent traffic occurrences. Nodes are grouped 

according to their geographic proximity. In (b), ellipses illustrate the grouped 

occurrences depicted in the dendogram. 
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Figure 3 – A subtree is cut when its root node has a standard deviation below 

a specific threshold. Further analysis can thus be confined to each resulting 

subgroup of records. Root nodes are depicted in blue in (a). (b) illustrates the 

grouped records. 

 

(2) The second stage consists of applying an ontological 

analysis to each one of the identified groups so as to determine 

which records are really related to the same occurrence. A 

depiction of the ontological model is shown in fig. 4. It is 

indicated that a road obstruction is the most generic 

description of an unintended traffic occurrence. Nevertheless, 

obstructions may have a more specific description, as modeled 

through the inheritance relationships. Moreover, they have a 

duration during which normal flow of incoming traffic may be 

disturbed, and also a location specifying the kilometric point 

and the side of the road where the accident occurred. 

Slow traffic may always appear independently of traffic 

obstructions, most commonly due to congested roads on rush 

hours. As depicted in the diagram, “slow traffic” is a 

generalization of “queueing traffic”, “stop and go” and 

“stationary traffic”. It has also an estimated duration and 

location. The directionality of the Location property is the first 

characteristic used to distinguish geographically close traffic 

incidents. If they appear in opposite sides of the road, then 

most probably they are not related. 

 

 

 
 

Figure 4 - Ontological model of the relationships between different incident 

descriptions. Inheritance and possible interchangeable relationships are 

depicted.  Location and duration are mapped, as also a backpropagates 

relationship, which illustrates the effect that an accident may have on traffic 

further down along the road. 

 

The generalization relationships are used to determine if two 

traffic records are in fact related to the same event despite of 

different descriptions. Note that an observed accident may be 

related to observed slow traffic some distance back down the 

road. This is modeled through the “backpropagates” 

relationship. Furthermore, previously reported accidents may 

be related to newly ones, depending on proximity and time 

span. Adequate proximity and time span thresholds are best 

when determined through data mining analysis of preexisting 

data; if not possible, simple intuitive assignments might 

suffice for satisfactory results.  

The ontological classification algorithm has the following 

steps: 

(a)  First, divide the records into two separate groups based 

on the directionality of the events and store each individual 

record in a separate set. 

(b)  For both groups, determine which records represent 

generalizations of others. For those who are, determine if 

proximity and time span are below specified values. In case 

they are, merge both sets together. 

(c)  For each traffic flow record, verify, to a previously 

defined extent, if accident records exist further down the road. 

If records are found and all of them are on the same set, group 

them together. If not all of them belong to the same set, group 

the traffic flow record with the set which has the most recent 

records. For all traffic flow records that remained ungrouped 

to accident records, group them together. 

 

(3) The third stage consists of determining, for each set 

resulting from the ontological analysis, the real location of the 

occurrence referred by each set’s records, as also the estimated 

linear impact extent of each event along the road. There are 

three types of possible sets: sets with traffic congestion 

records only, sets with congestion and accident records, and 

sets solely with accident records. Each one of those is treated 

in a slightly different way.  

For sets with congestion records only, the goal is to 

determine the real extent of the congestion, using the reported 

records as reference. Assuming that communicated records 

tend to have a higher frequency near the center of the traffic 

congestion, we presume that the distribution could be 

approximated to a normal distribution. Moreover, since the 

number of records should usually be rather small, the T-

Student distribution presents itself as an even better 

approximation. Based on this assumption, we use the T-

Student Distribution to calculate the confidence intervals of 

90%, 80% and 70%. In this case, confidence intervals are used 

to answer the following question: assuming a specific set of 

records, calculate a kilometric interval that determines, with a 

confidence of X, where other congestion records related to this 

event might fall. Each confidence interval gives us the left and 

right side confidence limits, which in this case, represent 

kilometric points. Formally we have: 

 

                   
 

√ 
 

 

Equation 3 
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where A corresponds to the value from the T-Student table 

that is retrieved based on the provided confidence interval and 

number of degrees of freedom. 

 

Pairs of limits translate to different extents of where the traffic 

congestion starts and ends, respectively (view fig. 5). These 

extents - stacked bottom up from 70% to 90% - give us a 

visual and kilometric perception of three levels of congestion: 

being the 90% confidence interval the one with the largest 

extent and representing a low level of congestion, as opposed 

to the 70% interval, holding the shortest extent and a high 

level of congestion. 

 

 
 

Figure 5 – Confidence Intervals are calculated for the kilometric points of 

three congestion reports. Depicted interval distances are only representative. 

 

 

For sets with accident records only, the goal here is to estimate 

the actual location of the accident. Taking into account that 

each record has a specific reliability, we apply the center of 

mass theorem using the records reliabilities as their individual 

masses (view fig. 6). Formally: 
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Equation 4 

where    represents the individual reliability of the ith record. 

The result is a kilometric point that best describes where the 

accident should be, based on the reliability weights of the 

reported records. 

 

 
Figure 6 – The triangle in (a) represents the center of mass of the grouped 

records. The reliability of the new node is not yet defined. As illustrated in 

(b), the center of mass is closer to node 2 because of its higher reliability. 

 

The last type of set is the one that contains congestion and 

accident records. The process applied here is similar to the 

ones above: first we divide the set into two subsets, on for 

congestion records and one for traffic records. For the 

congestion records we calculate the confidence intervals as 

described above, and for the accidents records the center of 

mass. Finally, the kilometric end limits of all confidence 

intervals are readjusted to end on top of the calculated center 

of mass of the accident records (view fig. 7). 

 

 

 
 

Figure 7 – End limits are readjusted to meet with the calculated center of 

mass of the accident records. Accident records are omitted for simplicity. 

 

III. DYNAMIC SEGMENTATION AND RECORD 

GEOREFERENTIATION 

 

Taking into account the normalized traffic data format 

provided in annex, data transmitted by external sources may 

come with three distinct description formats for their spatial 

locations: they may have only a textual description for their 

location; they may already be spatially referenced with an 

assigned geographic location; or they may have both. Each 

format needs to be treated in a specific manner. Highway 

traffic data with only a textual description for their location 

needs to be geographically pinpointed, a process called 

geocoding or georeferentiation. Oppositely, traffic data 

accompanied only with geographic coordinates needs the 

inverse treatment, formally named as reverse geocoding. This 

process consists of determining the textual description that 

best describes the location of a geographic coordinate, 

typically by determining the closest address to the given 

coordinate, or in our case, by determining its kilometric point 

along the highway. The third format needs only to be checked 

for concordance between geographic coordinates and textual 

description. In order to accomplish any of these tasks, 

geographically located geometric and route data of the 

highways in question needs to be readily available. 

Geographically located geometric data of road networks is 

available for purchase by various vendors. These data consist 

typically of short contiguous geometric features 

geographically positioned in respect to a specific coordinate 

system or Datum, being each one associated with a set of 

attributes related to driving rules and conditions, such as 

directionality, impedance, turning, velocity limits and so forth 
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[5][6]. Highways are described in a similar fashion too. 

However, these data only goes so far. In respect to 

determining a kilometric point of a specific location along a 

highway represented by geometric features, the available data, 

as it stands, does not suffice. The route that fully describes the 

highway must be determined, and its shape and location 

identified (one route for each driving direction along it). A 

process called dynamic segmentation solves this problem, and 

provides other advantages too. 

Dynamic segmentation consists of a runtime computation of 

routes and route properties. Each route construction comprises 

an iterative process that runs through a set of previously 

identified calibrated linear features, assembling preselected 

properties along the way. In our case, distance measures were 

calculated (view fig. 8). The resulting route enabled us to 

calculate the metric distance of any chosen point along a 

preprocessed route. One of the main advantages of dynamic 

segmentation consists of the abstraction it provides from the 

features it is composed of. Changes to the underlying network 

may be made at any time, being those immediately reflected 

on the route’s shape and properties. This hides the complexity 

of a route and encapsulates all route changes to one single 

place, making them innocuous to all route users. 

 

 
Figure 8 - The left table shows how route segments are stored in a dynamic 

segmentation table. The right table shows incident kilometric points ready for 

georeferentiation. 

IV. CASE STUDY 

 

A hypothetical scenario was elaborated for one of the main 

Portuguese highways - named A1 -, which traverses half of the 

Portuguese territory, responsible for connecting the two main 

cities, Lisbon and Porto. The scenario was thought of as an 

especially hazardous day, with various accidents along the 

highway and various traffic and congestion reports. First off a 

layer of control data was created. It served as reference for the 

preparation of a set of simulated reports regarding traffic and 

congestion situations, and for subsequent comparison with the 

data produced by the system. The simulated reports were 

distributed on top of the reference data, being reliability 

typically correlated with the accurateness of the reports. All 

data, control, simulation and processed data were integrated in 

a geographic context and presented in a web interface (view 

fig. 9). This figure focuses on a specific highway segment 

with registered traffic and congestion data. The left image 

presents the control data layer, where red triangle represents 

where the accident occurred, and the yellow strip line the 

extent of congestion at the moment. The second image 

presents where the simulated traffic and congestion records 

were georeferenced. Triangles represent accident related 

records, whereas green dots represent congestion related 

records. The size of triangles is proportional to the reliability 

of the sources. The third image presents the processed data, 

with accident location and impact estimation. 

 

 
Figure 9 - Control data is shown on the left. The red triangle represents the 

accident location. The yellow line represents the extent of the congestion. 

Simulated data contains accident and congestion reports. Reliability of 

accident reports is depicted through black triangle size. On the right side, 

estimated accident location is shown, as well as congestion extent. 

 

Routing capabilities were easily integrated in the system. For 

that purpose, ESRI European routing services were used. Each 

service call requires the specification of at least to stop points 

(start and finish), and an optional list of road barriers. The 

result of the service call consists of a route that traverses 

through all the specified points, avoiding the specified 

barriers, if located on the best route path. A routing example is 

shown in fig. 10. 

The provided system service enables best route estimation, 

between two points, taking into account the collected traffic 

events. For each service request, first off, a list of all clustered 

traffic events is compiled. Then, for each clustered traffic 

event, its distance to the route start point is measured. The 

resulting distance is used as an estimate for the necessary 

travel time from start point to event. If estimated travel time is 

longer than the estimated end-time for the event, the event is 

removed from the list. The resulting list consists of all traffic 

events that are located close enough to be reachable from the 

route start point. This list is recalculated before every route 

request, and sent along as parameter to the remote routing 

service call. 
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Figure 10 - Alternative route suggestion, presented on the right side of the 

image, is calculated after incident detection. Travel time and travel distance 

are both recalculated for the new route. 

 

V. CONCLUSIONS 

 

One of the main problems of freight carriers is related to 

traffic congestions, considered as a “serious” to “critically 

serious” problem for their business. One way to mitigate this 

problem is to collect current traffic data and use it as leverage 

for best route calculation. Contemplating current traffic data 

for route choice improves average driving speeds, which in 

turn contributes for the morale of the drivers, lower CO2 

emissions and more predictable delivery times. For this 

purpose, this paper presented a methodology for a real-time 

data fusion, georeferentiation and analysis of road traffic data 

reported by multiple sources. A method for the fusion and 

georeferentiation of real-time highway traffic data, so as to 

provide a geographically enabled, time and impact aware view 

of current traffic status in highways was described. A 

grouping algorithm based on hierarchical clustering and 

ontological analysis was presented. Center of mass theorem 

and confidence intervals were used for the estimation of traffic 

event locations and respective cue lengths. We used a dynamic 

segmentation algorithm for route definition and subsequent 

geocoding and reverse geocoding operations. All data was 

integrated through SQL Server 2005 and ESRI ArcGIS 

Desktop 9.3.1. The resulting data was published through 

ArcGIS Server 9.3.1, and consumed by a Silverlight web 

application. Feature identification and routing tasks were 

easily integrated. Routing took into account clustered traffic 

data for best route estimation. 
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