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ABSTRACT 

This paper proposes a transit assignment model considering the correlation between 
vehicles’ arrival at stops. The correlation of arrival is represented with a correlation coefficient 
matrix, and the expected waiting time and the arc split probabilities at stops are calculated 
with a Monte Carlo simulation-based method where the correlated random variates follow a 
given distribution function. This function is generated using dependent random variates 
which follow a normal distribution and a correlation coefficient matrix. Since the correlation 
coefficients are defined as a function of the number of boarding and alighting passengers, it 
is possible to consider two sources of correlation in the proposed model; i) increasing 
boarding and alighting time due to passengers’ concentration to a certain vehicle, ii) 
concentrating vehicles on a certain road segment. The proposed model is formulated as a 
fixed point problem and the solution approach is illustrated with a toy network. 
 
Keywords: Transit assignment model, Bus bunching, Monte Carlo Simulation 

INTRODUCTION 

A main reason why not more passengers are using public transport is known to be 
uncertainty about waiting times at the stops. In particular if passengers are not sure whether 
lines arrive on time passengers might be frustrated by waiting. Due to the waiting time, the 
shortest path to the destination is not always the route with minimum in-vehicle time. In case 
of no information on the platform as to the arrival of the next vehicle, the fastest way to get to 
the destination might be to take the first vehicle arriving among an “attractive set” of lines. 
This is referred to as the “common lines problem”, which is more formally defined as the 
problem to find the optimal set of lines among all possible lines that brings the traveller closer 
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to his destination (Chiriqui and Robillard, (1975)). “Optimal” is usally referred to as “shortest 
expected travel time. Suppose passengers arrive randomly and vehicles also arrive 
statistically independent with given exponentially distributed headways, then the probability 
that passengers choose line i, pi, and the expected waiting time at a stop, T, are calculated 
as follows: 
 ∑ ∈

=
Kk kii ffp          (1) 

 ∑ ∈
=

Kk kfWT 1          (2) 

where, K and fk represent the set of attractive transit lines and frequency on transit line k∈K 
respectively． As a result, the optimal route between origin and destination is not a single 
path anymore. Nguyen and Pallottino (1988) defined attractive lines as the “hyperpath”. 
Spiess and Florian (1989), refer to it also as “strategy” and expanded this idea to an 
equiribrium assignment framework. Since then many researchers incorporate the congestion 
effect into the transit assignment model (Kurauchi et. al. (2003), Cepeda et. al. (2006)) and 
further expand the assignment model into a dynamic one (Schmöcker et al. (2008)). 
 
The approach by Spiess and Florian (1989) which is utilised in the above mentioned work on 
crowding effects implies five assumptions; i) vehicles and passengers arrive randomly, ii) 
passengers have no information as to when the next vehicles arrives iii) arrival times follow 
an exponential distribution, iv) stopping time at a stop due to passengers’ boarding and 
alighting is neglictable and v) the interarrvial time between lines is constant. In order to relax 
the second assumption, Shimamoto et. al. (2005) proposed a model which considers the 
arrival time information provision to passengers when the passengers have the choice 
between two lines. Billi et al (2004) and Gentile et al (2005) proposed more general 
approaches which are summarised in Nökel and Wekeck (2007) as “5 cases of passengers’ 
information”. Nökel and Wekeck (2009) extend this further comparing passengers’ route 
choice models considering that depending on information provision the optimal alighting point 
of passengers might vary as well. In order to relax the last assumption, Larrain et. al. (2008) 
proposed a model in which the travel time between stops is a function of the number of 
boarding and alighting passengers. Teklu et. al. (2007) proposed a composite frequency-
based and schedule-based Markov process model that considers the day-to-day dynamics of 
transit network. Since the passengers’ and buses’ movement in each day is based on micro-
simulation in their model, it is possible to consider delay of arrival at a stop due to the 
passengers’ boarding and alighting. However, none of the models referred to so far consider 
the correlation of arrival times due to the network configuration such as lines’ overlapping, 
which is often seen in the urban bus networks. 
 
The two main factors causing the bunching effect between vehicles of the same line as well 
as between vehicles of different lines are i) increasing the boarding and alighting time due to 
the passengers’ concentration to a certain vehicle, ii) concentrating vehicles to a certain road 
segment due to line configuration. In their seminal paper Newell and Potts (1964) describe 
service loads according to “bunching effects” caused by the first factor. If a certain service is 
for some reason delayed, a larger number of passengers will be boarding this bus, leading in 
turn to longer dwell times at the stops, hence leading to further delays. As a further 
consequence the following service will have to carry less passengers, leading to less dwel 
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time and the bus catching up with the previous service which is the well known bunching 
effect of two buses arriving at the stop shortly after another. Newell and Potts only describe 
the bunching effects on a single line not considering any assignment effects that passengers 
might have a choice between several lines. Shimamoto et. al. (2009) propose a transit 
assignment model considering the effects of bunching effects on line loads in a network. In 
their paper the bunching effects are assumed to be independent of dwell time but 
exogenously given with the correlation coefficients which represent for example the service 
schedule being disturbed due to road congestion, therefore, they only consider the second 
factor of the bunching effects. This paper further expands this model; here the bunching 
effects depend on dwell time which is dependent on the number of boarding and alighting 
passengers. This is achieved by representing the correlation among lines as a function of the 
number of boarding and alighting passengers. Therefore, the proposed model can consider 
both of the above mentioned factors causing the bunching effects. 
 
The remainder of this paper is structured as follows. The formulation and solution algorithm 
of the arc transition probabilities and the expected waiting time for a single OD pair network 
is shown in the next section. Section 3 explains how correlation of lines can be illustrated in a 
graph description and the mathematical formulation and solution algorithm for a general 
network are shown in Section 4. Finally, a case study for a simple network is shown in 
Section 5. 
 

ARC TRANSITION PROBABILITY AND EXPECTED WAITING 
TIME UNDER LINE CORRELATION 

Assumptions 

We adopt following assumptions in the model: 

1. Passengers arrive randomly at every stop node, and always board the first arriving 
vehicle included in their hyperpath; 

2. In-vehicle travel times between stops are constant; 

3. The service is frequency-based and the headway of all transit lines follow a given 
probability distribution which depend on each other; 

4. This correlation of the headways among vehicles or lines is a function of the number 
of boarding and alighting passengers. 

Note that the first and the second assumption are the same as in the previous model 
described in Shimamoto et al (2009). The third and forth assumptions are set to describe the 
vehicles’ arrival correlation, which implies that the correlation is generated only on bus stops 
and the degree of the correlation is a function of the number of boarding and alighting 
passengers. 
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Arc Transition Probability Considering Line Correlation 

In this section, it is illustrated how the arc transition probabilities and expected travel times 
depend on the correlation of arrival times. For simplicity a simple network with one OD pair 
and n lines is included in the hyperpath. 

Formulation 

As we assume that passengers take a line arriving first among n lines, the probability of 
taking line i equals the probability that the waiting time of line i is minimum, which can be 
formulated as follows; 
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Where 
ti : Waiting time at line i 
g(t) : Multi-dimensional probability density function representing the headway of 
each line. 
 
Note that g(t) is introduced to represent the dependency of each line’s headway. The 
expected waiting time at a stop can be formulated as below; 
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In summary, if the headway of each line independently follows the exponential distribution, 
then the arc transition probability and the expected waiting time at a node can be determined 
as in Eqs. (1) and (2). In contrast Eqs. (3) and (4) describe the more general case that the 
probability density functions might be correlated. The problem of this more general 
formulation is, however, the complexity and with it computational expensiveness to solve Eqs. 
(3) and (4) analytically. Therefore, alternatively a heuristic Monte-Carlo simulation based 
method is proposed where the waiting time of each line is expressed as a random number. 
This number is generated as described in the following section. Then, Eqs. (3) and (4) can 
be approximated with Eqs. (5) and (6). 
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where, 
N(*) : The number of samples which satisfies (*) 
tjm : Waiting time on line j with the mth random number generated, 
M : The number of samples (=random numbers generated). 
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Generation of Correlated Random Variate 

The procedure of generating multivariate, non-normal, correlated random variates is based 
on Chang et.al (1994). Instead of obtaining the joint distribution, they transform the 
correlation coefficients of the original distribution (X) into the correlation coefficients of the 
standard normal distribution (Y) using Nataf’s bivariate distribution model shown as below; 
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where, 
ρij

* : The correlation coefficient between the distribution of Yi and Yｊ, 
ρij : The correlation coefficient between the distribution of Xi and Xj, 
fi : The mean of Xi (service headway of line i), 
σi : The standard deviation of Xi, 
φij : The bivariate normal PDF of zero means, unit standard deviation, and 
correlation coefficient ρij

*. 
 
Note that from the definition of X and Y, it follows; 
 ( )[ ]iii XFY 1−Φ=          (8) 

where 
Fi(Xi) : The marginal distribution function of Xi 
 
Although it is difficult to obtain ρij

* from Eq. (7) with a given correlation coefficient ρij and the 
marginal distributions of Xi and Xj Der Kiureghian and Liu (1985) develop a semi-empirical 
formulation as below; 
 ijijij T ρρ ⋅=*           (9) 

In Eq. (9), Tij is the transformation factor which depends on the marginal distributions of the 
two random variables Xi and Xj. It takes the value one if both Xi and Xj follow the normal 
distribution and a constant if both follow the exponential distribution. Using Eq. (9), we can 
transform the correlation coefficient matrix RX, which follows a given distribution, into the 
correlation coefficient matrix RY, which follows a normal distribution, where; 
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Based on above relationship, the procedures of the correlated random variate generation are 
as below; 
 
(Step1) Transform the correlation matrix RX into RY using Eq. (9).  
(Step2) Diagonalise RY as below; 
  
(Step3) Transform the independent standard normal variates Z into the correlated 
standard normal variates Y by inverting the orthogonal transformation. 
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(Step4) Transform the correlated standard normal variates Y into the correlated non-
normal variates X with the inverse transformation of Eq. (8). 

The Relationship Between the Correlation Coefficient and the Punctuality of the 
Transit Service 

In this model, the correlation of arrival among lines is represented with ρij. In order to confirm 
the relationship between ρij and the punctuality of the service, we generate two correlated 
random variates whose marginal distribution follows an exponential distribution with the 
average being the service frequency in this case assumed to be 6 trains per hour (in other 
words the expected waiting time is 10 minutes). Figure 1 illustrates the waiting time for 
different correlation between the two lines. ρij being positive is equivalent to the case that, if 
the waiting time of line i is small, then that of line j is also small. Similar, if the waiting time of 
line i is large, then that of line j is also large. This means the arrival time difference between 
the vehicles of line i and j is also short; hence, a positive ρij represents for the bunching 
effect among lines i and j. Contrary, in case ρij is negative, if the waiting time of line i is small, 
then that of line j is large and vice versa. If passengers are assumed to have both lines in 
their attractive set of lines, the expected waiting time becomes hence smaller and therefore a 
negative ρij represents co-ordianted services. The expected waiting time calculated from Eq. 
(6) is 5.0, 8.6 and 3.1 respectively for the three cases illustrated in Figure 1 (ρij =0.0, 0.9 and 
-0.9). Figure 2 illustrates the probability distribution of waiting time for each correlation 
coefficient. As seen the figure, in case ρij =-09, the probability that the waiting time is greater 
than 10 miniutes is almost 0 whereas it is still positive in case ρij =0.0 and 0.9. Note that this 
only empirically demonstrates the relationship between the correlation coefficient and the 
punctuality of the service, hence in future work one should theoretically prove this 
relationship. 
 

(a) ρ=0.0 (b) ρ=0.9 
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(c) ρ=-0.9  
Figure 1 – Relationship Between Correlation Coefficient and Waiting Time 

 

Figure 2 – Probability Density of the Expected Waiting Time for Each Correlation Coefficient 

NETWORK TRANSFORMATION AND NOTATIONS 

Section 2 only considers the simple case with one OD pair. In order to load passengers to a 
general network, we transform a transit network into the graph model shown in Figure 3 
following the idea in Kurauchi et. al (2003). An origin node represents a trip start node. It has 
no predecessors and at least one successor. A destination node represents a trip end node. 
It has no successors and at least one predecessor. A stop node represents a platform at a 
station. Any one or more transit lines stopping at the same platform are connected via 
boarding arcs. The arc transition probabilities and the expected waiting time is calculated at 
stop nodes and passengers are assigned to any of the attractive lines in proportion to the arc 
transition probabilities. A boarding node is a line-specific node at the platform where 
passengers’ board and similarly an alighting node is a line-specific node at the platform 
where passengers alight. 
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A line arc represents a transit line connecting two stations. A boarding arc denotes an arc 
connecting the stop node to the boarding node. The flow on this arc represents the boarding 
for the transit line from a specific platform. An alighting arc denotes an arc from an alighting 
node to a stop node. A stopping arc denotes a transit line stopping on a platform after the 
passengers alight and before new passengers’ board. Creating this arc is also needed to 
express the available capacity and the priority rules on the line explicitly. A walking arc 
connects an origin to a platform or a platform to a destination. 
Hereafter, we use below notations in this paper. 
ca : Arc cost on arc Aa ∈ , 
λlh : Probability of choosing any particular elementary path l of hyperpath h, 
pah : Arc transition probability on hyperpath h, 
αah : Probability that traffic traverses arc a, 
βih : Probability that traffic traverses node i, 
δal : Takes 1 if arc a is included in l, otherwise 0, 
εil : Takes 1 if elementary path l traverses node i, otherewise 0, 
I : Set of nodes, 
S : Set of stop nodes, 
Ah : Set of arcs on hyperpath h, 
Vh : Set of elementary paths on hyperpath h, 
Sh : Set of stop nodes on hyperpath h, 
Ih : Set of nodes on hyperpath h, 
O : Set of origins, 
D : Set of destinations, 
In(i) : Set of arcs going into node i, 
Out(i) : Set of arcs going out from node i, 

 
Figure 3 – Network Representation 
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Qod : Travel demand between od, 
Ω : The set of feasible flow satisfying below flow conservation, 
x k

al(l) : The number of alighting passengers from stop node k on line l, 
x k

b(l) : The number of boarding passengers from stop node k on line l, 
ρ          : Matrix of correlation of lines from the same stops (with ρk

ml ∈ρ where k denotes 
the stops, m and l denotes the lines departing from stop node k) 

κk
ml : Scale parameter related to the number of boarding and alighting passengers, 

νk
ml       : Scale parameter related to factors except the number of boarding and 

alighting passengers, 
δk

ml        :  Dummy variable which takes 1 if line m and line l belongs to the same route, 
otherwise takes 0 

MATHEMATICAL FORMULATION AND SOLUTION ALGORITHM 

Incorporating of Correlation Coefficients 

The correlation coefficient matrix is required to generate the set of correlated random 
numbers as shown in Chapter 2. It is assumed that the correlation coefficient is a function of 
the number of boarding and alighting passengers in order to describe the increase in dwell 
time as the number of boarding and alighting passengers’ increases, which causes a 
reduction of punctuality. Since a larger correlation coefficient means bunching effects 
between lines m and l are more likely to occur, the correlation coefficient between lines m 
and l at bus stop k is defined as below; 
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Note that above formulation is also an assumption which should be verified with observed 
bus operation data. δk

ml is introduced to consider the arrival correlation only for the same line, 
which implies that different bus lines run on different roads. The first term of Eq. (11) is 
defined as twice of the logistic function which takes values from 0 to 1, therefore, ρk

ml takes 
values from -1 to 1 and closer to 1 as the number of boarding and alighting passengers 
increases. Also, we introduce two positive scale parameters, κk

ml and νk
ml. κk

ml is a scale 
parameter related to the number of boarding and alighting passengers which takes a small 
value if the boarding and alighting time per passenger decreases due to, for example, 
introducing an IC card fare collection system. νk

ml is assumed to be related to other factors, 
such as the bus network configuration or the quality of the facilities, i.e., νk

ml takes a larger 
value if many lines gather in the same road section and a smaller value if the accelerating 
performance of the buses is good. Therefore with these two scale parameters, it is possible 
to consider both factors of the bunching effects; i) increasing the boarding and alighting time 
due to the passengers’ concentration to a certain vehicle, and ii) concentrating vehicles to a 
certain road segment. 
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The Cost of Hyperpath  

Let us formulate the cost of the hyperpath h, gh, in the general network as follow; 
 ∑∑
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Note that WTkh in Eq. (12) represents the expected waiting time at stop node k, which is 
calculated with Eq. (4) or Eq. (6) at every stop node. The arc transition probabilities at stop 
node k correspond to Eq. (3) or Eq. (5). The first and the second term of Eq. (12) represent 
the in-vehicle time and the expected waiting time, respectively. As Eq. (12) is node separable, 
Bellman’s principle can be applied to find the minimum-cost hyperpath from every destination 
node (See Appendix A)., The arc transition probabilities and the expected waiting time at 
stop nodes (Eq. (5) and (6)) can then be defined as below; 

 h

M

m

m
aAiOuta

i
ah SitaN

M
p

h

∈∀=≈ ∑
= ∩∈

,)min.arg(1
1 )(

''
     (19)

 

 h

M

m AiOuta

m
a

m
aAiOuta

ih SittaN
M

WT
h

h

∈∀⋅=≈ ∑ ∑
= ∩∈ ∩∈

,)min.arg(1
1 )( )(

''
   (20) 

Formulation and Solution Algorithm  

In Eq. (3), the arc transition probabilities DI RR ×∈p  are a function of the probability 

density function representing the waiting time of each line, SR∈)(tg  whereas in Eq. (11), 
ρk

ml in g(t) is a function of the number of boarding and alighting passengers x which in turn is 
a function of arc transition probabilities p. Hence, the right hand side of Eq. (3) is also a 
function of p. In addition, if travel demand and destination specific arc transition probabilities 
are given, one can uniquely obtain arc flows x applying the destination-specific Absorbing 
Markov Chains assignment (See Appendix B). Therefore, the proposed transit assignment 
model can be formulated as a fixed point problem defined as below; 
 Ω∈∀= xxpxρx ))(),((f         (21) 
Note that Eq. (11) is not continuous with regards to arc flow x, therefore we can not 
theoretically prove the existence of the solution. The proposed model is solved using the 
method of successive average as below; 
(Step 0) Set n:=0，x(n):=0; 
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(Step 1) Calculate hyperpath cost gh from Eq. (12) and arc transition probability p using 
Eq. (19) at every stop node. 

(Step 2) Loading passengers to the network using Absorbing Markov Chains according 
to the destination specific arc transition probabilities p and then obtain arc 
flows xtemp. 

(Step 3) Update x by x(n+1):= (1-1/n)*x(n)+ 1/n *xtemp 
(Step 4) If is x(n+1) is close enough to x(n), stop the calculation, otherwise set n: =n+1 and 

go to (Step 1) 
 
Note that (Step 1) and (Step 2) are excuted destination specific. By summing up all 
destination specific arc volumes, the total arc volume is obtained;, 
 ∑

∈

=
Dd

dxx           (22) 

where, 
xd : Destination specific arc volume vector. 

NUMERICAL EXAMPLE 

Case Setting  

Since the vehicle capacity has not been considered in the proposed model so far, the 
passengers’ flows from upstream do not affect the route choice behaviour at downstream 
stations. Therefore, the proposed model is applied to a single OD network shown in Figure 4 
in order to capture the fundamental features of the model. The headway of each line is 
assumed to follow an exponential distribution and average headway and the travel time of 
each line is shown in the figure. We assume that no correlation occurs between Line I and 
Line II because they are on the different roads. In order to describe the correlation of two 
subsequent services of the same line, each line is virtually converted into double lines. Since 
there is only one stop node in a converted network and the correlation is generated only in 
the same line in this network, the correlation coefficients and their parameters is represented 
as σl, κl, νl (l=1,2) for simplicity. 
 

 
Figure 4 – Single OD network 
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Convergence Check  

Figure 5 shows the relationship between the number of iterations and the distance to fixed 
point solution (“flow error”) assuming κ1=0.05, ν1=10, κ2=0.1, ν2=10 and travel demand=100 
passenger/ minute. Note that the flow error is defined as below; 
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where, 
N : The number of arcs in the converted network 
x(n)

i : The flow on the ith arc in the nth MSA iteration 
 
By looking at Figure 5, the flow error becomes small as the iteration number increase, 
therefore it can be said that the proposed model converges. 
 

 
Figure 5 – Relationship Between Iteration and Flow Error 

Comparison of Line Usage Rate and Correlation Coefficient of Each Line 

Firstly, we compare the relationship between ν1 or κ1 and the usage rate of Line I while fixing 
the demand as 100 and parameters in Eq. (11) regarding to Line II as κ2=0.1, ν2=10. Figure 6 
shows the relationship between ν1 and the usage rate of Line I under the condition of κ1 as 
0.1. From the definition of Eq. (11) ρ1 decreases as ν1 increases, as a result, the usage rate 
of Line I slightly increase. At the same time, although the parameters regarding to Line II is 
fixed, ρ2 also slightly decreases due to the reduction of the usage rate of Line II. Figure 7 
shows the relationship between κ1 and the usage rate of Line I assuming ν1 = 10. From the 
definition of Eq. (11) ρ1 increase as κ1 increases, as a result, the usage rate of Line I 
decreases. Also, ρ1 is close to 1.0 if κ1 is greater than 0.2, which means the two buses run 
continuously (bunching effect). 
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Figure 6 – Relationship Between ν1 and Usage Rate of Line I 

 

 
Figure 7 – Relationship Between κ1 and Usage Rate of Line I 

 
Secondly, we set the parameter κl, νl (l=1, 2) in Eq. (11) as κ1=0.1, ν1=50, κ2=0.1, κ2=10 and 
compare the relationship between the arc transition probabilities and the travel demand 
shown in Figure 8. Note that ρ1 is always smaller than ρ2 under the same travel demand, 
which means that Line I is less likely to suffer from the bunching effects than Line II under the 
same travel demand. When the travel demand is small, the difference of ρ1 and ρ2 is small, 
therefore, the usage rate of Line I is close to 50%. For low demand, as the travel demand 
increases, ρ1 increases less rapidly than ρ2, and as a result, the usage rate of Line I increase. 
However, as the travel demand exceeds 60 passengers / minute, ρ1 increases smoothly 
while ρ2 increases rapidly, which causes the reduction of the usage of Line I. Finally, as the 
travel demand becomes enough large, both ρ1 and ρ2 are close to 1.0, meaning that the two 
buses run continuously, and as a result, the usage rate of Line I is close to 50 % again. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40

42

44

46

48

50

52

54

56

58

60

5 10 15 20 25 30 35 40 45 50

Co
rr
el
at
io
n 
Co

ef
fi
ci
en

t

U
sa
ge
 ra
te
 o
f L
in
e 
I

ν1

Usage rate of Line I ρ1 ρ2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40

42

44

46

48

50

52

54

56

58

60

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Co
rr
el
at
io
n 
Co

ef
fi
ci
en

t

U
sa
ge
 ra
te
 o
f L
in
e 
I

κ1

Usage rate of Line I ρ1 ρ2



Transit Assignment Model Incorporating the Bus Bunching Effect 
Shimamoto, Kurauchi, Schmöcker and Bell 

 
12th WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
14 

 
Figure 7 – Relationship Between Passengers’ Demand and Usage Rate of Line I 

(κ1=0.1，ν1=50，κ2=0.1，ν2=10) 

CONCLUSION 

This paper proposes a transit assignment model considering the correlation between 
vehicles’ arrival at stops. Following the afore-constructed model (Shimamoto et. al.(2009)), 
the correlation of arrival is represented with a correlation coefficient matrix, and the expected 
waiting time and the arc split probabilities at stops are calculated with a Monte Carlo 
simulation-based method where the correlated random variates follow a given distribution 
function. This function is generated using dependent random variates, which follow a normal 
distribution, and a correlation coefficient matrix. The previous model assumed the correlation 
coefficient exogenously given, whereas in this paper it is derived endogeneously by 
assuming that it is a function of the number of passengers boarding and alighting. As a result, 
it is possible to consider both sources of correlation in the proposed model; i) increasing the 
boarding and alighting time due to the passengers’ concentration on a specific vehicle, ii) 
concentration of vehicles to a certain road section. The proposed model is formulated as a 
fixed point problem. The solution procedure and the influence of the model parameters are 
demonstrated with an application to a toy network. 
 
In future work, one should verify the relationship between the correlation of vehicles’ arrival 
and the number of boarding and alighting passengers using observed data. Also, since the 
calculation cost of the proposed model is expensive, there is room to develop more effective 
algorithms to apply for the approach to larger size networks. Furthermore, the congestion 
effect should be considered by introducing the vehicles’ capacity. 
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APENDIX 

Separability of the Cost Function 

The separability of the cost function (Eq. (12)) can be shown in the same way as in Kurauchi 
et. al. (2003). By substituting Eq. (13), (17) and (18) into Eq. (12), we obtain 
 

 ∑ ∑∑
∈ ∈∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

h hhVl Sk
khkl

Aa
aahlh WTcg εδλ        (24) 

Above result suggests that the cost for hyperpath h is a sum of the costs of the elementary 
paths weighted by their choice probabilities. Let g’

ih denote the cost of the sub-hyperpath 
from i to s on hyperpath h, and define λlh(i) as: 
 ( ) ∏

∈

=
ih

al

Aa
ahlh pi δλ          (25) 

 ( ) 1=∑
∈ hVl

lh iλ           (26) 

Then, clearly, 
 ( )( ) ( )( )ajai lhahlh λτλ = , ihAa ∈∀        (27) 

where i(a) and j(a) respectively are a head node and a tail node of arc a. Using λlh(i) , g’
ih can 

be written as follows. 
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     (28) 

where ϕiS is 1 if node i is a stop node and 0 otherwise, and a(i,l) denotes an arc on 
elementary path l leading out from node i. Eq. (28) gives the cost of the hyperpath from the 
intermediate i to the destination node s as the sum of the cost at node i, a cost for arcs 
connecting to other nodes weighted by the respective arc split probabilities, and a total cost 
from node j to s also weighted by arc split probabilities. Since the costs of subsequent nodes 
are separable, Bellman’s principle shown by Eq. (28) can be applied for finding the minimum 
cost hyperpath. 
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Note that WTik in Eq. (29) represents the expected waiting time at stop node i if passengers 
choose lines among line set K and pa

i represents arc split probability at stop node i. 
Therefore, by finding the arc sets which minimise the third column in Eq. (28) at each stop 
node, we can find the minimum cost hyperpath without enumerating all possible hyperpaths. 

Traffic Assignment by Markov Chain 

By using the recursive equation shown in the previous Appendix, the optimal arc split 
probability, p*as explaining passenger choices can be found. To assign the traffic to the 
network, a Markovian loading process is applied. A Markov chain is characterised by a 
transition matrix defining the probability of an entity (in this case a traveller) moving from one 
state to another. Conservation requires the rows of this matrix to sum to one. The states of 
the Markov chain represent the origins, the intermediate vertices of the graph and a 
destination. The destination constitutes absorbing states (Bell et al. (2002), Akamatsu 
(1996)). In this study, all traffic is absorbed into their destinations. Defining a = (i(a), j(a)), p*as 
can be rewritten as p*

i(a)j(a)s, which is equivalent to the outcome of an optimal hyperpath 
search. Let Ps denote a transition probability matrix for trips destined for s, whose size is n x n 
(where n is the number of nodes). Then Ps can be written as follows: 
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sss Qr
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where rs is a vector of probabilities that traffic is absorbed to s from node i, and Qs is a matrix 
of transition probabilities between intermediate nodes. By definition, rs corresponds with 
transition probabilities of arcs leading into s. When we multiple P by itself k times, we obtain: 

 ⎟⎟
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where rks is the first column (without the first element). When the transition is repeated ad 
infinitum, all traffic should be absorbed into the destination, i.e. 0lim =

∞→

k
sk

Q . By using this 

relationship, the probability that traffic destined to s traverses from i to j can be calculated as 
follows: 
 ( ) 10 −−=+++ s

k
ss QIQQ LL         (32) 

Note that Qs can be written as 
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Where g is the number of origins. Then,  
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Let os be the vector of traffic produced at origin i destined to s. Then the traffic traversing 
intermediate node j ( SjRj ∉∉ , ), bs, can be obtained as follows: 

 [ ] 1
21
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t

ss QIQob          (35) 

Finally, arc traffic volumes x are calculated using bs as: 

 ( )∑∑ ⎟⎟
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s
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The above discussion implies that once we obtain a set of transition probabilities between 
nodes by the minimum cost hyperpath search, the arc traffic volumes are given by Eq. (34) to 
(36). 
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