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ABSTRACT 

This paper aims at predicting bus travel time and its day-to-day variability using a range of 

independent variables including traffic flow data. Among many factors impacting bus travel time, 

existing prediction approaches have not considered a traffic measure making their predictions 

unresponsive to the time dependent fluctuations in traffic flow and dynamic changes in traffic 

congestion. In addition, existing methodologies have mainly predicted the average travel time by 

finding the average value in a range of travel times likely to happen when a certain set of input values 

is considered. However, little attention has been given to predict the spread of that range created by 

the stochasticity of determinant factors which reflects travel time variability. 

This paper explains how an Artificial Neural Network (ANN) can be modified to predict the 

variance of a dependent variable. An integrated framework is then proposed which consists of two 

ANNs to predict both the average and variance of travel times. The proposed framework is developed 

on GPS based travel time data for a bus route in Melbourne, Australia, traffic flow data collected by 

the Sydney Coordinated Adaptive Traffic Systems (SCATS) loop detectors, and a measure of schedule 

adherence. The results demonstrate the value of traffic flow data in the prediction of bus travel time as 

well as the ability of the proposed method to provide fairly robust prediction intervals. 

 

INTRODUCTION 

Accurate predictions of travel time help operators in real time management strategies such as 

holding and expressing (Osuna & Newell, 1972, Fu & Yang, 2002), and off-line planning including 

fleet size planning and schedule design (Ceder, 2007). This information also enables passengers to 

better select departure times to minimize their waiting times.  

Information about the variability in travel times also benefits operators and passengers. It assists 

operators in defining optimal slack times to maximize the on-time arrival performance of buses 

(Kimpel et al., 2004), and in determining the reliability of systems (Turochy & Smith, 2002). A 

reduction in travel time variability reduces passengers’ anxiety caused by uncertainty in decision 

making about departure time and route choice (Bates et al., 2001, Lam & Small, 2001), which is why 

it is found as valuable (Sun et al., 2003), or even more valuable than a reduction in travel time (Bates 

et al., 2001). 
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Previous studies have identified a range of determinants of bus travel time primarily through 

examining data from Advanced Public Transportation Systems (APTS) such as Global Position 

Systems (GPS), Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) 

systems. They include traffic flow at intersections (Abdelfattah & Khan, 1998, Chien et al., 2002), 

passenger demand at stops (Shalaby & Farhan, 2004), traffic accidents (Abdelfattah & Khan, 1998), 

weather conditions (Hofmann & O'Mahony, 2005), different bus and driver characteristics (Mishalani 

et al., 2008, Strathman & Hopper, 1993), route characteristics (Abkowitz & Engelstein, 1983, Ng & 

Brah, 1998), and the effect of drivers’ timetable compliance on travel time (Lin & Bertini, 2004, Chen 

et al., 2005, Mazloumi et al., 2008).  

Predicting transit arrival/travel times has been the focus for many existing studies. Table 1 

summarizes existing studies with respect to their adopted methodologies. As seen, existing 

methodologies can be generally grouped into four categories: Regression models, Kalman filter 

models, Artificial Neural Network (ANN) models, and Analytical approaches. Table 1 also shows the 

variables utilized to predict bus arrival/travel time as well as the data source used. Only two studies 

(Abdelfattah & Khan, 1998, Chien et al., 2002) have used traffic measures in their predictions. 

However, in both cases, the traffic data were sourced from simulation modelling. No previous study 

has adopted a real world traffic flow measure to predict bus travel time; therefore, their predictions 

may be unresponsive to the time dependent variations in traffic flow and dynamic changes in traffic 

congestion. 

Due to the stochasticity of bus travel time determinants, there may be a range of values 

corresponding to a certain set of input values. However, existing studies have primarily predicted the 

average in that range, and no research has been directed to quantify the spread of that range by 

predicting a measure of variability in travel times. This paper focuses on day-to-day variability which 

is the variation between the travel times of similar journeys made at the same time on different days. 

This paper proposes an integrated framework to predict bus travel time and its variability based 

on a range of independent variables including traffic flow data collected by the Sydney Coordinated 

Adaptive Traffic Systems (SCATS) loop detectors. The results are then used to construct a prediction 

interval corresponding to each input value set. Next section explains the proposed predictive 

framework, and its application in a case study is then presented. A closing summary, conclusions, and 

future research directions are included in the final section of the paper. 
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Table 1: The explanatory variables used in different studies with respect to the adopted methodology. 

Study 
Route 

characteristics 

Passenger  

demand/dwell 

time 

Temporal 

variables/ 

scheduling 

Traffic 

measures 

Schedule 

adherence 

Bus progress 

data 

Historical travel 

times/speed/ 

trajectory 

weather 
Data 

source 

Regression models 

Abdelfattah and Khan 

(1998) 
        Simulation 

Patnaik et al. (2004)*         APC 

Artificial neural network models 

Kalaputapu and Demetsky (1995)        AVL 

Jeong and Rilett (2004)         AVL 

Park et al. (2004)*         GPS 

Chen et al. (2007)         APC 

Kalman filter models 

Chien et al. (2002)         Simulation 

Shalaby and Farhan (2004)         AVL-APC 

Chen et al. (2004)         APC 

Dailey et al. (2001)         AVL 

Chen et al. (2005)         AVL-APC 

Analytical models 

Lin and Zeng (1999)         GPS 

Lin and Bertini (2004)         GPS 

Sun et al. (2007)         GPS 

Mishalani et al. (2008)         GPS 

 * The study developed a bus arrival/travel time estimation model 
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MODEL DESCRIPTION 

ANN models have shown a promising ability to solve nonlinear and complex problems (Hagan 

et al., 1996), which is why they have been widely adopted in modelling travel times. The proposed 

integrated framework in this paper consists of two components of ANNavg and ANNvar. Based on a 

certain set of input values, the former predicts the average and the latter predicts the variance of travel 

times that may happen between two consecutive timing point stops (Figure 1), where arrival/departure 

times are recorded to check consistency with timetables. Prior to each bus departs from the upstream 

timing point stop, traffic flow data collected by the SCATS loop detectors in the last k  minutes along 

with information about other important variables are sent to the framework for prediction purposes. 

The outcomes of the proposed framework can then be used to obtain a prediction interval and to 

construct the probability distribution of travel times on the basis of certain input values. 

Among various available structures for ANNs, the study selects fully connected feedforward ANN 

which has proven its capability to solve complex transportation problems (Hagan et al., 1996). The adopted 

networks comprise three layers: Input, Hidden and Output layers. Only one hidden layer is used since it is 

shown sufficient to closely map any relationship (Jain & Nag, 1997). Sigmoid activation functions are used 

in the hidden layer neurons, whilst linear ones are used in the input and output layer neurons.  

During the training of an ANNavg, the model parameters are adjusted to minimize a predefined 

objective function, which can be defined as the sum of squared errors of the predictions over the set of 

N training examples as formulated in Equation 1: 

  

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                            (1) 

Where 

)|();(ˆ nn
y xyEwx  : the estimated average of y conditioned on 

nx ,  

ny : the 
thn example of dependent variable, 

nx : a vector including the values of input variables, which is corresponding to 
ny and 

w : a vector containing the values of the model adjusted parameters.  

 

 

 

  

 

 

 
 
 

 

 

 

 

 

 

 

Figure 1: The proposed framework to predict the average and variance of travel times. 
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In the problem of bus travel time prediction, y is bus travel time, and the vector of input values (
nx ) 

may contain the data of variables believed to affect bus travel time such as traffic flow, weather 

conditions, passenger demand, etc.  

ANNs might be trapped in an overfitting problem, where they generalize poorly given unseen 

examples. This generally occurs when the model parameters are too large. This study adopts the 

Bayesian Regularization training method (Bishop, 1995), which minimizes a combination of 

prediction error (Equation 1) and parameters, and then determines the correct combination so that the 

model generalizes well. 

The variance of y conditioned on input vector
nx , )|( nxyVar , can be calculated using 

]|))|([()|( 2 nnn xyxyEExyVar  . Considering that )|( nxyE  is estimated by an ANN with an 

error function presented in Equation 1, replacing y in Equation 1 with
2))|(( yxyE n  gives rise to 

]|))|([( 2 nn xyxyEE  instead of )|( nxyE . Therefore, assuming );(ˆ wxn
y  to be equal 

to )|( nxyE , the ANNvar estimates the variance using Equation 2 as the error function (Bishop, 1995). 
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Where 

);(ˆ uxn
y : the estimated variance of y  conditioned on input

nx , and 

 u : a vector containing the values of the ANNvar model adjusted parameters.  

Assuming that travel times follow a Normal distribution and using );(ˆ)|( uxZxyE n
y

n   , the 

prediction interval for y can now be constructed. For example, to construct the 95% prediction interval, 

Z  equals to 1.96. In our problem, this prediction interval is interpreted as a range where travel times 

may occur with 95% probability when certain values of input variables are considered. This range 

takes into account the fact that travel times vary, even if the same values for input values are taken, as 

a result of uncertainties in factors such as dwell time and signal delay experienced by different buses. 

 

CASE STUDY 

The study data were supplied from bus route 246 in inner Melbourne, Australia. Figure 2 is a 

schematic presentation of this test bed, which is about eight kilometres in length, and comprises four 

sections demarcated by five timing point stops including Clifton Hill, Johnston St., Bridge Rd., Toorak 

Rd., and St Kilda junction. The sections are relatively equal in length, and experience high levels of 

passenger demand and traffic flow especially in peak hours. Bus headways vary from ten minutes in 

peak hours to about half an hour in the off peak. Buses operate in mixed traffic and there is no separate 

lane allocated to buses. 
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Figure 2: A schematic presentation of the study test bed. 

 
A collection of the buses over this route were equipped with GPS devices recording bus 

arrival/departure times corresponding to timing point stops. A six month travel time dataset (starting 

from February 2007) was supplied for the research, which includes about 1,800 travel time 

observations corresponding to each section between two consecutive timing points. To show how 

travel times might vary over different days, Figure 3 presents the distribution of travel times across the 

day over one of the sections (Johnston St. to Bridge Rd). Accordingly, travel times vary considerably 

over different days. For instance, travel times at 2:00pm range from about 200 seconds to just over 

500 seconds over different days. This might be attributable to many factors such as variations in 

passenger demand and traffic flow over different days as well as various signal delays experienced by 

different buses, and dissimilar driving behaviours. Figure 3 also suggests that travel times can be 

classified with respect to four time periods: AM peak (7am-10am), Inter peak (10am-4pm), PM peak 

(4pm-7pm) and Off peak (before 7am and after 7pm). 

Signalized intersections over each section are equipped with the SCATS loop detectors 

collecting traffic counts and Degree of Saturation (DS) values. For each signalized intersection, traffic 

information over different signal cycles were collected by the detectors, and average traffic counts and 

DS values over different signal cycles are derived. 

Alternative weather conditions have been reported to affect bus travel time by influencing 

drivers’ performance and vehicle headways (Hofmann & O'Mahony, 2005). The amount of rain (in 

millimetres) that fell over the corresponding hour is also explored if it affects bus travel times. 

Schedule adherence at each upstream timing point can affect bus travel time to the next timing 

point stop (Mazloumi et al., 2008). Early buses show higher travel times compared to those that are 

late relative to the scheduled travel time. This variable is also examined for inclusion in the model, and 

is quantified by subtracting observed arrival time from scheduled arrival time at each timing point stop. 
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Figure 3: Travel time observations of the section Johnston St. to Bridge Rd. 

 

Input variable selection 

To select input variables for prediction, the ANalysis Of VAriance (ANOVA) technique is used, 

which identifies the variables that best explain the variability in a dependent variable. In this study, the 

dependent variable is bus travel time for each section between two consecutive timing point stops, and 

variables whose effects on bus travel times are explored include the SCATS traffic flow data, weather 

conditions, and schedule adherence measured at the upstream end of each route section. 

The SCATS data for each signalized intersection include traffic counts and DS values averaged 

over a predefined aggregation period ( k ) prior to the departure of each bus from the upstream timing 

point. To examine the effect of different aggregation period lengths on the level of variability 

explained, alternative periods of 2, 15, 30 and 60 minutes are considered. When k equals to 15 

minutes, the average of traffic counts and DS values over the signal cycles of the previous 15 minutes 

are taken into account for the analysis. Table 2 reports the portion of the variability explained by each 

variable in terms of the adjusted
2R .  

As the results suggest, although both traffic counts and DS values affect travel times, use of DS 

values acts to provide a more significant explanation of the variability of travel time. This could be 

because traffic counts describe demand fluctuations, whereas DS values capture variations caused by 

changes in supply (signal cycle/green time) as well as those in demand. In addition, when DS values 

are combined with traffic counts, minor improvements can be seen in the corresponding adjusted
2R . 

As a result, only DS values are adopted to account for dynamic changes in traffic flow. 

In each route section, when the weather variable (rainfall) is the only variable examined, the 

adjusted
2R  becomes zero implying that rainfall does not contribute to the variability of the travel 

time values. This conclusion might be related to the low number of rainfall observations made during 
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the analysis period. Schedule adherence is associated with a positive adjusted
2R  suggesting that this 

variable should be adopted for predicting travel time. 

 
Table 2: Proportion of travel time variation explained by different variables in terms of adjusted R

2
. 

Section 

Aggregation 

period k 

(minute) 

Selected input variable* 

Traffic Count 

(TC) 

Degree of 

Saturation 

(DS) 

TC & DS 
Weather 

(W) 

Schedule 

Adherence 

(SA) 

DS, W, & 

SA 

Clifton Hill 

to 

Johnston 

2 0.49 0.50 0.50 

0.00 0.02 

0.51 

15 0.51 0.52 0.52 0.53 

30 0.44 0.45 0.46 0.47 

60 0.35 0.35 0.34 0.35 

Johnston 

to 

Bridge 

2 0.26 0.38 0.38 

0.00 0.02 

0.40 

15 0.28 0.39 0.40 0.42 

30 0.23 0.32 0.32 0.34 

60 0.19 0.28 0.29 0.31 

Bridge 

to 

Toorak 

2 0.47 0.49 0.50 

0.00 0.03 

0.51 

15 0.54 0.55 0.55 0.57 

30 0.50 0.51 0.52 0.54 

60 0.45 0.45 0.46 0.49 

Toorak 

to 

St Kilda 

2 0.21 0.21 0.22 

0.00 0.02 

0.23 

15 0.22 0.22 0.24 0.25 

30 0.18 0.18 0.18 0.20 

60 0.17 0.17 0.17 0.18 

* All two and three way interaction terms are considered 

 

Different aggregation period lengths k for collecting the SCATS data show differing influences 

on the level of variability explained. The results suggest that the optimal k  equals to 15 minutes. In 

larger intervals, travel time values are less related to the selected variables. In shorter intervals, say 2 

minutes, sometimes two signal cycles fall into the interval, while in some other occasions only one 

signal cycle corresponds to the interval. This causes non-smooth average traffic counts/DS values in 

successive intervals. 

Based on the preceding results, the explanatory variables adopted include the average of DS 

values (in the last 15 minute interval prior to the departure of the bus from the upstream timing point 

stop) along with schedule adherence.  

 

Model development 

To train the ANNs, the travel time dataset of each section randomly split up into a training 

dataset (80% of data) and a testing dataset (20% of data). To develop an ANN, the number of its 

hidden layer neurons has to be determined. This task is a trade-off between model complexity and its 

generalizing ability. More hidden neurons may empower the model to better describe the relationship 

between input and output values, which may make the model more prone to overfit the data and hence 

have poor generalization. On the other hand, a simple model may not be able to adequately describe 

the complexity of a problem. 



Mazloumi E., Currie G. and Rose G.  

 9 

The study adopts a conventional trial and error procedure using different numbers of hidden 

neurons for each neural network. Several network structures with differing hidden layer neuron 

numbers are tested, and those with the least error are selected. For each model, the Route Mean 

Squared Error (RMSE) is reported, which is calculated using Equation (4): 

M

oYoY

RMSE

M

n
nn





 1

2))()((

                                                            (4) 

where M is the total number of input-output pairs in the testing dataset, )(oYn is the 
thn observed travel 

time value, and )(oYn is the corresponding predicted travel time. The results with respect to different 

route sections are reported in Table 3. This Table also shows the number of input variables used to 

predict each section travel time. The number of input variables minus one reflects the number of 

signalized intersections within each route section. 

 

Table 3: The summary of training different the ANNavg and ANNvar models. 

Dependent 

variable 
Section 

Number of 

input 

variables 

Number of 

training 

examples 

Number of 

hidden layer 

neurons 

RMSE* 

Average 

travel time 

(ANNavg) 

Clifton Hill to Johnston 5 1390 3 82 

Johnston to Bridge 6 1400 2 88 

Bridge to Toorak 6 1400 2 73 

Toorak to St Kilda 6 1300 3 94 

Variance of 

travel times 

(ANNvar) 

Clifton Hill to Johnston 5 1390 2 14062 

Johnston to Bridge 6 1400 2 11790 

Bridge to Toorak 6 1400 2 7436 

Toorak to St Kilda 6 1300 3 19508 

* The unit of RMSE for ANNavg models is seconds and for ANNvar models is seconds2 

 

Model evaluation 

As noted, for each route section, given a certain set of values for input variables (DS values and 

schedule adherence), travel times (which may occur) will form a probability distribution and each 

observed travel time is a randomly drawn value from the distribution. The ANNavg predicts the average, 

whereas the ANNvar predicts the variance of this distribution. These two give rise to a prediction 

interval, say 95% prediction interval, corresponding to each input value set. This interval reflects a 

range where individual travel times may occur with 95% probability, and might have resulted from 

different buses experiencing different dwell times and signal delays. 

For illustration purposes, an arbitrary selected trip is used as an example to demonstrate the 

outcomes of the proposed prediction model. Figure 4 shows information about this bus trip over 

alternative route sections, including the observed and predicted (average) travel times together with 

the lower and upper bounds of the 95% prediction interval. Each observed travel time could have been 

randomly drawn from a distribution of travel times that are likely to occur based on a certain set of 
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input values. Hypothesized distributions are also schematically drawn in Figure 4. The ANNavg model 

predicts the average in this distribution, which does not necessarily always correspond to the observed 

travel time (for instance, Bridge to Clifton section). The ANNvar model determines the spread of the 

distribution (e.g. the distance between the lower and upper bounds in each prediction interval) by 

predicting the distribution variance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: A sample of travel time observations, predicted travel times and prediction intervals. 

 
For better presentation of the results, Figure 5 shows the values of predicted average travel time, 

the lower bound and the upper bound of each prediction interval aggregated in 15 minute intervals 

across the day (for the section Johnston St. to Bridge Rd.). It can be seen that unlike the average travel 

time, which is not able to explain the whole variability in travel times, the 95% prediction interval 

length provide a more reliable outcome by fairly representing the range of possible travel time values. 

This range can benefit planners in offline designs such as defining slack times in timetables as well as 

in real time strategies such as holding and express services. The provision of this range to passengers 

can also act to ease stress and anxiety associated with variability in travel time.  

Further insights into model performance can be obtained by calculating the Prediction Interval 

Coverage Probability (PICP) and comparing it to the expected coverage probability. It is expected that 

the 95% prediction intervals encompass the observed travel times at 95% of the occasions. Table 4 

reports the PICP of each route section by time period. As seen, except for minor deteriorations in the 

AM peaks, in other periods, the probability range covers the observed travel times well. In the AM 

peaks, the coverage probability values are less than 95 suggesting that the prediction intervals 

underestimate the actual/observed 95% intervals. Further variables (such as passenger demand) 

impacting travel times may exist in the AM peaks, whose unavailability makes the predictive model to 

underestimate the actual observed intervals. 
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 Figure 5: Travel time observations of the four sections along with predictions across the day 

 

 
Table 4: The obtained coverage probability of the 95% prediction interval (percent). 

Section 
AM peak 

7am - 10am 

Inter peak 

10am - 4pm 

PM peak 

4pm -7pm 

Off peak 

7pm -7am 

Clifton Hill to Johnston 74 95 89 96 

Johnston to Bridge 93 96 94 97 

Bridge to Toorak 87 96 92 92 

Toorak to St Kilda 87 90 98 95 

           Note: the expected coverage probability is 95%, 

 

SUMMARY AND CONCLUSION 

Despite the importance of traffic flow in bus travel time prediction, existing studies have not 

considered real world traffic flow data in predictions. Therefore, their models may not be able to 

effectively consider the dynamic changes of traffic flow in predictions. In addition, existing models 

mainly predict average travel time based on a given set of input values, and no research has been 

conducted on predicting the variance of travel times (travel time variability) and on providing a 

prediction interval rather than a prediction point. 

This paper proposed an integrated framework consisting of two ANN models to predict both the 

average and variance of travel times. A part of a bus route in Melbourne, Australia, was the test bed of 

this study. Using the ANOVA technique, DS values collected by SCATS in the last 15 minutes prior 

to the departure of a bus from the upstream timing point and schedule adherence were found to have 

the greatest impact on the variation of travel time values, and hence were selected to predict travel 

times to the next timing point stops. It was found that the amount of rainfall did not contribute in the 

variation of travel times, and therefore was not selected for prediction purposes. The use of a traffic 

measure ensures that the model effectively responds to the dynamic changes in traffic flow when 

making predictions. The results suggest that unlike the predicted average travel times which are not 
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able to explain the whole variability in travel times, prediction intervals could fairly construct the 

ranges where the travel times were most likely to occur.  

The proposed modified ANN can be used to predict the variability of any variable with 

stochastic determinants. The robust ability of the proposed structure in quantifying the uncertainty in 

predictions suggests a wide range of applications in transportation engineering. In the context of 

public transport, the proposed framework can be a promising means to help operators in developing 

timetables and defining slack times to maximize on time performance. The outcomes of the proposed 

framework can be also disseminated to passengers acting to reduce their anxiety caused by uncertainty 

in travel decision making.  

This research has explored the effect of traffic flow, schedule adherence and weather conditions 

on bus travel time. Expanding the analysis to include data on other important variables such as 

passenger demand could be a promising direction for future research. 

  

ACKNOWLEDGMENT 

The authors would like to acknowledge Ventura bus Company, VicRoads, and Bureau of 

Meteorology for supplying the GPS, SCATS and weather data respectively.   

 

REFERENCES 

Abdelfattah, A.M. and Khan, A.M., (1998), 'Models for Predicting Bus Delays', 

Transportation Research Record, Vol. 1623, pp. 8-15. 

Abkowitz, M.D. and Engelstein, I., (1983), 'Factors affecting running time on transit routes', 

Transportation Research Part A, Vol. 17, 2, pp. 107-113. 

Bates, J., Polak, J., Jones, P. and Cook, A., (2001), 'The valuation of reliability for personal 

travel', Transportation Research Part E, Vol. 37, pp. 191-229. 

Bishop, C.M., (1995), 'Neural networks for pattern recognition', Clarendon Press, Oxford. 

Ceder, A., (2007), 'Public Transit Planning and Operation: Theory, Modelling and Practice', 

Elsevier, Oxford, the UK. 

Chen, M., Liu, X. and Xia, J., (2005), 'Dynamic prediction method with schedule recovery 

impact for bus arrival time', Transportation Research Record, Vol. 1923, pp. 208-217. 

Chen, M., Liu, X., Xia, J. and Chien, S.I., (2004), 'A dynamic bus-arrival time prediction 

model based on APC data', Computer-Aided Civil and Infrastructure Engineering, Vol. 

19, pp. 364-376. 

Chen, M., Yaw, J., Chien, S.I. and Liu, X., (2007), 'Using automatic passenger counter data in 

bus arrival time prediction', Journal of Advanced Transportation, Vol. 41, 3, pp. 267-

283. 

Chien, S.I., Ding, Y. and Wei, C., (2002), 'Dynamic Bus Arrival Time Prediction with 

Artificial Neural Networks', Journal of Transportation Engineering, Vol. 128, 5, pp. 

429-438. 

Dailey, D.J., Maclean, S.D., Cathey, F.W. and Wall, Z.R., (2001), 'Transit Vehicle Arrival 

Prediction-Algorithm and Large-Scale Implementation', Transportation Research 

Record, Vol. 1771, pp. 46-51. 

Fu, L. and Yang, X., (2002), 'Design and implementation of bus holding control strategies 

with real time information', Transportation Research Record, Vol. 1791, pp. 6-12. 

Hagan, M.T., Demuth, H.B. and Beale, M., (1996), 'Neural Network Design', PWS, Boston. 



Mazloumi E., Currie G. and Rose G.  

 13 

Hofmann, M. and O'Mahony, M. (2005). The Impact of Adverse Weather Conditions on 

Urban Bus Performance Measures. The 8th International IEEE Conference on 

Intelligent Transportation Systems. Vienna, Austria. 

Jain, B.A. and Nag, B.N., (1997), 'A performance evaluation of neural network decision 

models', Journal of Management Information Systems, Vol. 14, pp. 201-216. 

Jeong, R. and Rilett, R.L., (2004), 'Bus Arrival Time Prediction Using Artificial Neural 

Network Model', IEEE Intelligent Transportation System Conference, Washington, 

D.C., USA. 

Kalaputapu, R. and Demetsky, M.J., (1995), 'Modelling schedule deviations of buses using 

automatic vehicle location data and artificial neural networks', Transportation 

Research Record, Vol. 1497, pp. 44-52. 

Kimpel, T.J., Strathman, J.G. and Callas, S., (2004), 'Improving scheduling through 

monitoring using AVL/APC data', the 9th international conference on computer-aided 

scheduling of public transport (CASPT), San Diego, USA. 

Lam, T.C. and Small, K.A., (2001), 'The value of time and reliability: measurement from a 

value pricing experiment', Transportation Research Part E, Vol. 37, pp. 231-251. 

Lin, W.H. and Bertini, R.L., (2004), 'Modelling schedule recovery processes in transit 

operations for bus arrival time prediction', Journal of Advanced Transportation, Vol. 

38, 3, pp. 347-365. 

Lin, W.H. and Zeng, J., (1999), 'Experimental Study of Real-Time Bus Arrival Time 

Prediction with GPS Data', Transportation Research Record, Vol. 1666, pp. 101-109. 

Mazloumi, E., Currie, G. and Rose, G., (2008), 'Causes of Travel Time Unreliability: a 

Melbourne Case Study', 31st Australian Transport Research Forum (ATRF), Gold 

Coast, Australia. 

Mishalani, R.G., McCord, M.R. and Forman, S., (2008), 'Schedule-based and autoregressive 

bus running time modelling in the presence of driver-bus heterogeneity', in 'Lecture 

Notes in Economics and Mathematical Systems: Computer-aided Systems in Public 

Transport', Edited by, Springer Berlin Heidelberg, pp. 301-317. 

Ng, C.P. and Brah, S.A., (1998), 'A running time model for bus operations in Singapore', 

Road and Transport Research, Vol. 7, 3, pp. 48-57. 

Osuna, E.E. and Newell, G.F., (1972), 'Control strategies for an idealized public 

transportation system', Transportation Science, Vol. 6, 1, pp. 52-71. 

Park, T., Lee, S. and Moon, Y.J., (2004), 'Real time estimation of bus arrival time under 

mobile environment', Computational Science and Its Applications – ICCSA, Assisi, 

Italy. 

Patnaik, J., Chien, S.I. and Bladikas, A., (2004), 'Estimation of Bus Arrival Times Using APC 

Data', Journal of Public Transportation, Vol. 7, 1, pp. 1-20. 

Shalaby, A. and Farhan, A., (2004), 'Prediction Model of Bus Arrival and Departure Times 

Using AVL and APC Data', Journal of Public Transportation, Vol. 7, 1, pp. 41-61. 

Strathman, J.G. and Hopper, J.R., (1993), 'Empirical analysis of bus transit on-time 

performance', Transportation Research Part A, Vol. 27, 2, pp. 93-100. 

Sun, C., Arr, G. and Ramachandran, R.P., (2003), 'Vehicle Reidentification as Method for 

Deriving Travel Time and Travel Time Distributions', Transportation Research Record, 

Vol. 1826, pp. 25-31. 

Sun, D., Luo, H., Fu, L., Liu, W., Liao, X. and Zhao, M., (2007), 'Predicting bus arrival time 

on the basis of global positioning system data', Transportation Research Record, Vol. 

2034, pp. 62-72. 

Turochy, R. and Smith, B., (2002), 'Measuring variability in traffic conditions by using 

archived traffic data', Transportation Research Record, Vol. 1804, pp. 168-172. 

 


