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ABSTRACT 

Chaos is a phenomenon that may occur in systems which are dynamic, nonlinear, sensitive 

to their parameters, sensitive to their initial conditions, or possess self-similarity (Disbro and 

Frame, 1989; Dendrinos, 1990; Moon, 1992; Cambel, 1993; Chen and Leung, 1998; and 

Kapitanik, 2000). This study has examined the application of the theory of chaos in an urban 

transport network. 

 

Starting with speed-flow-density relationships and unstable flow concept in basic freeway 

sections, analogous relationship has been devised at network level for speed-throughput of 

the network. Network throughput is defined as the sum of O/D trips which are finished 

satisfactorily. Simulation runs have been made to produce network speed-throughput 

relationship similar to the ones presented by Greenshields and others for a basic freeway 

section. A real network has been used for this purpose. A simulation process has been 

devised which inputs demand into a real network and measures the throughput from the 

network at various times and conditions. Random variation has been considered both for 

demand and transport network. Random variation of demand in this study comes (a) from the 

variation in the starting times of trips with trip purposes such as work and school which 

should happen and end before certain times, and (b) from the variation in the starting time as 

well as total daily demand of other trips with more flexible trip purposes such as shopping, 

recreation and social, and personal business. Variation in transport network comes from the 

closure of selected links due to accidents. For this purpose the probability of an accident 

occurrence in each link has been defined.  

 

A Lyapunov exponent measure has been devised for a series of equilibrium maximum 

throughputs to investigate whether chaos occur in the network at a certain transport demand 

level. The exponent was suggestive of this phenomenon, and ways to avoid it were 

discussed by defining a population capacity for the city, or expanding the network capacity. 

 

Keywords: :     Urban Transportation, Chaos, Greenshields Functions 
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1. INTRODUCTION 

Traffic on an urban transport network can be considered as a dynamic system. Some recent 

studies using chaos theory to describe the traffic flow phenomena have attracted the interest 

of many researchers and practitioners (Li and Gao, 2004).  

 

Van Zuylen et al. (1999) discussed the implications of human behavior, chaos and 

unpredictability for urban and transportation planning and forecasting. Safanov et al. (2002) 

showed that chaotic behavior in traffic flow can be due to the delays in human reaction. 

Weidlich (2000) demonstrated how random-utility-based models of relatively simple social 

behaviors produced chaotic behavior. Li and Gao (2004) study the characteristic behavior of 

traffic flow at low and intermediate density values by the nonlinear time series analysis 

approach. 

 

This work offers a detailed application of chaos to an urban transport network. The purpose 

of this paper is to model an urban area in terms of the viability of its transport system to back 

the city as a life line. It, first, revisits an old road level observation in section 2. Sections 3 to 

5 discuss the famous speed-density-flow relationships at network level, and specify a speed-

throughput relationship. Section 6 tries to provide simple description of theory of chaos and 

its measures, which is later applied on the real network of the case under study in section 7. 

Section 8 takes advantage of this concept to define a limit to the growth of the city, and 

introduce ways to relax the constraints exerted upon the city and concludes the paper. 

2. GREENSHIELDS MODEL REVISITED  

Greenshields (1934) proposed a linear speed-density model based on several field studies: 

D
D

v
vv

j

0
0     (speed-density relationship)  (1)  

where v is the (space) mean speed (e.g., in km/hr), v0 the free flow speed, D the flow density 

(e.g., in veh/km), and Dj the jam density. For q, as the (rate of) flow (e.g., in veh/hr), a basic 

speed-flow-density relationship for a basic freeway section under ideal conditions may be 

stated as: 

 

D.vq           (2)  

 

Substituting D from Equation 1 into Equation 2 results: 

2
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D
vDq     (flow-speed relationship)  (3)  

Computing v from Equation 2 and substituting in Equation 1 results: 

2

j

0
0 D

D

v
Dvq     (flow-density relationship)  (4) 

McShane and Roess (1990) report a study by Drake et al. (1967) (see McShane and Roess 

(1990)) in calibrating the Greenshields' model (as well as those of others) for speed-flow-



Application of the Theory of Chaos in an Urban Transport Network 
Khorgami, Mohammad 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
3 

density relationship for a basic freeway section data. Figure 1 shows the data and two sets of 

the calibrated models for the data in that study. For the Greenshields model the relationships 

and the parameters are calibrated as follow: 

 

D 0.46558.6v           (5) 
2 v15.202.261q  v          (6) 
2D 0.465D 58.6q           (7) 

v0 =58.6 mph 

Dj =126.02 vpm 

 vph1846.6 qmax   at mph  29.31v   

 

In this figure, there is a clear dislocation, or discontinuity, of data points at the point where 

the flow rate reaches its maximum. This flow rate is, also, referred to as "unstable flow" 

(McShane and Roess (1990)). This break-down in data points has persuaded the analysts to 

present a two-segment model, one for each side of the discontinuity point, as shown in 

Figure 2 (Ellis (1964), as referenced in McShane and Roess (1990)). McShane and Roess 

(1990) report other models in this category in order to explain the variation in the data better.  

There are a few points worth mentioning regarding Figure 1(or 2). First, it is believed that 

drivers may only sense density and adjust their speeds accordingly. Flow, which is a point 

measure, may not be sensed by them, and is a product of their behaviour (McShane and 

Roess 1990). This is why speed-density relationship is the core relationship in the 3 

relationships discussed above. Increase in the incoming flow in a freeway section would 

increase the density of the flow, which in turn reduces the speed. This reduction in the level 

of service is compensated by the increase in the rate of flow, until a point is reached where 

flow rate is maximum. 
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Figure 1. Greenshields’ speed-flow-density  Figure 2. Two segment speed-flow-density 

relationships (from McShane and           relationships (from McShane and  

Roess (1990)).The x-axis in part (b)             Roess (1990)). 

should read “Volume” and in part (c)  

“Density.” 
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Second, at the point of maximum flow rate the process ceases to retain a clear relationship 

between the state variables speed, density, and flow, so that turbulence occurs. From this 

point on, increase in density would reduce the speed further while reducing the flow rate as 

well, both tending to zero. 

 

Third, as may be seen in Figure 2, there are two peaking characteristics exhibited by the 

process, one showing a higher capacity when the flow is approaching from a stable 

condition, and the other (lower) capacity is attained when the flow is in a forced condition. 

Thus, before the freeway breaks down, rate of flow departing the section is higher than when 

it does break down. This could be an important concept in design of networks: Design a 

network so as not to let it get into unstable flow. 

3. SPEED-DENSITY-FLOW RELATIONSHIPS AT NETWORK 
LEVEL  

In this section an attempt will be made to create a speed-density-flow relationship at network 

level similar to those at link level (such as in Figure 1 or 2). To do this, a simulation process 

has been devised which inputs demand into a real network and measures the throughput 

from the network at various times and conditions. 

 

The network under study is an aggregate version of the network of Mashhad, Iran, comprised 

of 872 nodes and 1184 links, and 15 super sources and super sinks distributing the traffic of 

141 origins and destinations through the network. Figure 3 shows this network. 

 

The demand system constitute the following set of models, all based on an extensive 

origin/destination (O/D) survey data base conducted in 1994. There are 7 trip production and 

attraction models, one for each of 7 trip purposes. These models are functions of several 

policy variables, such as car-ownership, zonal employment level, and school enrolment. 

 

The trip distribution model is a doubly-constrained growth model of the following form: 

 
pγ

ij

p

j

p

i

p

j

p

i

p

ij dDOβαT          (8) 

 

where 
p

ijT  is the total O/D trips from origin i to destination j for trip purpose p; 
p

iO  and 
p

jD  

are, respectively, the total trip produced from zone i ,and attracted to zone j, for trip purpose 

p; ijd
 is the distance from i to j; and 

p

iα  , 
p

jβ  are two balancing factors and 
pγ  a model 

parameter. The model is subject to the following two constraints: 
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Figure 3. The aggregate network of the city of Mashhad 
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ij OT    , i         (9) 

p

i

i

p

ij DT    , j         (10) 

where  
j

p

j

i

p

i DO . The model is calibrated by successive row-column balancing for each 

trip purpose, p. 

The mode choice model for each trip purpose is of multinomial logit type: 






Mk

u

u

pm,

ij
pk,

ij

pm,
ij

e

e
p          (11) 

 

where 
pm,

ijp is the probability of choosing mode m among the set of alternative modes M in a 

trip from zone i to zone j for purpose p, and 
pm,

iju is the utility of mode m for that trip, which is 

a function of the characteristics of the mode of travel, passenger, origin, destination, etc., as 

follows: 
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
l

ijl

pm,

l

pm,

ij Xαu          (12) 

where 
pm,

lα  is a mode specific/generic coefficient of the ith variable ijlX  of the utility function 

for the trip purpose p. The set of modes for any trip purpose include bus, taxi, two-wheeled 

vehicles, and private car, as well as minibus for the school trips. Examples of variables ijlX  

are in-vehicle travel time, out-vehicle travel time, number of boardings for bus; car-

ownership, and travel time for private automobiles; and two-wheeled vehicle ownership, and 

O/D distance for two-wheeled vehicles. 

 

The Traffic assignment problem is an algorithm which assigns public transport demand to the 

respective network based on optimal strategy procedure (Speiss and Florian, 1989), and 

passenger cars (or the equivalent demands for five other vehicles) according to user 

equilibrium flow criteria by using a convex programming routine (Sheffi, 1985). The auto 

assignment takes care of traffic signal settings, turn prohibitions, and 6 volume-delay 

functions, and the public transport assignment takes into account several vehicle types in the 

fleet of public transport vehicles.  

 

A rather comprehensive and extensive routine is written in EMME/2 environment (INRO,  

1996 to estimate (hourly) demand, assign demand to the network, and estimate the 

operational characteristics of the network, such as vehicle-kilometers, vehicle-hours, average 

speed of vehicles, network congestion levels and distribution, fuel consumption, pollution 

emissions, to name a few, in various categories such as geographical regions, road type, 

vehicle type, network type (public/private), or demand type (person/vehicle trips) (Aashtiani 

et al., 1997). 

 

4. SIMULATION OF NETWORK FLOW  

The system of concern is the network of the city under study, represented by ),( AVN where 

V is the set of nodes and A the set of links of network. Given the O/D demand and the 

network, the distribution of flow over the network is a deterministic procedure, as defined in 

Section 3, producing a constant flow over the links of the network. In a given day, and for a 

given network, demand varies over time from 00:00 to 24:00. However, assuming the 

demand and its distribution over time are given, the flow for an hour, say peak hour, will be 

known (constant) over the links.  

 

Nevertheless this (hourly) flow distribution is subject to some variation due to small changes 

in the timing of the demand appearing in the network, and small variation in the network due 

to, e.g., lane closures because of traffic accidents or road repairs. That is, small variations 

such as few minutes of early/late arrivals of demand and few lanes/roads closures due to 

certain events cause changes in the flow distribution of the network. Such random variations 

of demand and supply would simulate the traffic pattern in the network more realistically in 

the long run than the constant demand/supply case. This study concerns itself to the patterns 

of flow in the various time intervals of the day, observed in many days, and tries to analyze 
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the variation of traffic characteristics of the network, such as average speed and throughput 

of the network over times of observation. 

4.1. Random Variation of Demand  

Random variation of demand in this study comes (a) from the variation in the starting times of 

trips with trip purposes such as work and school which should happen and end before certain 

times (they constitute 36 and 18 percent of total non-return daily trips in the study area, 

respectively), and (b) from the variation in the starting time as well as total daily demand of 

other trips with more flexible trip purposes such as shop (9%), recreation and visit (15%), and 

personal business (8%). 

 

For simplicity, and as a starting exercise, let  
ksd  represent the total demand for travel from 

origin k to destination s during a given time interval. Suppose that this quantity is distributed 

randomly with mean 
ks

d and standard deviation ksσ . (Suppose ksσ
=0.1

ks

d for computational 

purposes presented in this paper.) Let, 

 

Zσd ks

ks  ksd          (13) 

 

where Z is a standard normal random variable. Then, )σ,dN(~d 2

ks

ksks
. (Banks et al., 1996) 

present a procedure for generating standard normal random numbers by two independent 

uniformity distributed random numbers in interval [0,1].) 

4.2. Random Variation of Supply 

Supply of transportation is a variable quantity for a multitude of reasons, including closures of 

lanes due to traffic accidents, unauthorized stops and parkings, and bus stops in a moving 

column of vehicles in a lane (as operational factors); rain falls, water ponds, icy pavement, 

and low visibility due to fogs or rain (as weather-related factors); and slow moving and 

unsuitably maneuvering vehicles (as human-related factors). Generally, variation of link 

capacity may take a value between 0 to 100 percent of the capacity of the link in its ideal 

condition. However, for simplicity, it is assumed that only accidents affect the link capacity 

(appreciably), and if it happens in a link it closes the link completely. (Clearly, such 

assumptions may be relaxed easily.) 

 

Suppose accidents occur in the links of the network independent of each other, proportional 

to the vehicle-kilometers traveled in those links, as a function of link type (k) as follows: 






Aa

k

aa

k

aak

a
vl

vl
p           (14) 

where 
k

ap  is the probability of an accident occurrence in link a of type k, 
k

av  is the passenger 

car equivalent volume of traffic in link a, and al the length of link a. 
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Suppose, also, that accidents in the network are stochastic events following a Poisson rule 

with average rate of occurrence 
k for road type k. Available data for a real network shows 

that the average rate of occurrence of accidents in 618 km of arterial links is 6 accidents per 

hour, and this rate for 162 km of expressway links is 2 during 6:00 AM to 12:00 PM of a 

working day. Then, the probability of 
kn accident occurrence in a unit time (1 hour) interval 

(t=1) may be computed as: 

 

!

)(
}{

k

nk
kk

t
n

e
nNP

kk



  , k=a (arterial), e (expressway)     (15) 

 

where }0;{ tN k

t is a Poisson process representing the accident arrivals of road type k (= a, 

e). Observations for the case mentioned before show that link closures because of accidents 

and return of traffic movement to a normal situation takes about 1.0 hour. 

 

Based on the above statements, the following procedure has been devised to simulate the 

effect of traffic accidents upon the performance of the network: (a) Based on a Monte Carlo 

simulation (using a practically absolute maximum number of accidents, and Equation 15, the 

number of accidents for the next 1.0 hour morning peak is estimated for each road type k. (b) 

Based on another Monte Carlo simulation and equation 14 for each road type k, the link(s) (if 

any) where accidents occur during the next morning peak hour would be identified, and 

closed (for that hour). In this study, it is assumed that users of the network become aware of 

the accident location(s) (e.g., by local media), and change routes so as to avoid afflicted 

link(s). (This assumption may be relaxed.) 

4.3. Network Throughput 

Throughput of a system may be envisaged as an output of that system. In an urban network 

this quantity may be defined as the number of person or vehicle trips that are served 

satisfactorily by the network per unit time period. 

 

Definition 1. Trips from origin k to destination s are served satisfactorily during time period u 

if 
ks

ks

u

t

t

0

, where 
ks

ut  and 
kst0  are the time period u actual and free flow ( k, s) O/D travel time 

respectively, and   a real number representing the level of service expected from the 

network. 

 

Definition 2. The network throughput in time period u, uq , is the sum of all O/D trips which 

are served satisfactorily: 

 





Psk

ks

u

ks

uu zdq
),(

.         (16) 
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where 
ks

ud  is the demand for travel from origin k to destination s during the time period u, and 

P the set of all O/D pairs, and 
ks

uz  equals 1 if (k, s) O/D trips are served satisfactorily during 

time period u, and 0 otherwise. 

 

In this study demand rates are defined for 1 hour, and   is taken as 3.0. That is, if the O/D 

travel time exceeds 3.0 times the average free flow travel time the demand is considered 

under critical state (and unsatisfied). To get  a feeling of the study network, it may be worth 

mentioning that the average free flow travel time for a typical O/D trip is about 20-30 minutes 

during the peak hour period at an average speed of 30 km/hr. 

5. Speed-Throughput Relationship of the Network  

In this section of the paper a speed-throughput relationship at network level will be presented 

in correspondence with the speed-flow relationship of Greenshields for a basic freeway 

section. Suppose the network understudy is operating over time and one is monitoring the 

state of the network during the morning peak hour. The equilibrium flow in the network is a 

deterministic function of the demand system }0,),(;{  uPskd ks

u  and the network 

specifications ),( uAVN , where uA  is the set of working links during the time period u. Thus, 

for given demand and network the flow during time period u is known and constant. 

 

Suppose that the parameters of the problem are changed by a small amount as follows: 

 

(a) O/D demand starting times change so that  the demand for each O/D pair varies 

about the respective mean normally with a standard deviation about 10% of the mean 

as an example for the numerical computations. 

 

(b) Traffic accidents in the network occur according to two independent Poisson 

processes with average rates of 6 and 2 accidents per hour (6 AM to 12 PM) for 

arterial and expressway links, respectively, causing link closures in the afflicted links 

for that hour. It is assumed that traffic is aware of the accident locations in each time 

period. 

 

The system is run 30 times, starting with some low O/D demand values equal to a small 

fraction of the estimated peak O/D demand, and the O/D demand multiplier is increased to 

several times the estimated values, and the equilibrium values of the state variables of the 

system, here average speed (v) and throughput (q), for each (demand, supply) parameter 

specification are observed. The average speed is computed as the ratio of total veh-km over 

total veh-hr in the network. 

 

Figure 4 shows the results of these runs in terms of v-q relationship. As may be seen in this 

figure, a relationship similar to that of v-q relationship for a basic freeway section exists for 

the network: As demand increases in the network, average speed of the network decreases 

while increasing the throughput of the network. This happens until an average speed of 
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about 28 km/hr, at which point the flow becomes unstable showing a wide range of 

throughput. This instability holds as O/D demands rise and bring the average network speed 

down to about 15.5 km/hr, at which further increase in O/D demand decreases both the 

average speed and the throughput of the network.  

 

Regression analysis of the observations presents the following two expressions for the two 

portions of the v-q relationships, less the unstable throughput region:  

 

)5.129()2.114(

97.0,7.130888.296 22



 Rvvq
     (17) 

)3.31()6.65(

94.0,9.506429.10322 2



 Rvq
    (18) 

 

Figure 4- Relationship between the average speed v and throughput q when the network is subject to small 
variations in demand and supply parameters. 

 

The values of t-statistics in parentheses under estimated parameters show that they are 

significantly different from 0, and the null hypotheses may be rejected at high confidence 

levels. Moreover, 
2R  for the estimated relationships show high fitness of the expressions to 

the observations. It is worth noting that when q=0, 5v  km/hr, showing that there are 

links/paths connecting nearby zones in the network that pass flow through themselves with 

non-zero average speed, despite the fact that demands are not satisfied at all according to 

Definition 1. 
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Figure 5.a shows how increase in demand from a small portion of peak hour demand to the 

highest throughput level in region (a) of Figure 4 changes the starting laminar flow from the 

beginning  (runs) to a turbulent one at the end. Figure 5.b shows the same picture when 

further increase in O/D demand drags the system into region (b), and then to (c), with highly 

turbulent states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) region (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) regions (b) and (c) 

 

Figure 5.-  Variation in throughput for various levels of O/D demand values in 30 runs of the 

 network system. 
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6. CHAOS IN URBAN TRANSPORT NETWORKS  

Chaos is a phenomenon that may occur in systems which are dynamic, nonlinear, sensitive 

to their parameters, sensitive to their initial conditions, or possess self-similarity (Chen and 

Leung 1998; Cambel 1993, Moon 1992; and Kapitanik, 2000). Schuster and Just (2005), 

also, present several possible qualitative criteria for chaotic motion: "looking chaotic," 

exhibiting broadband noise, decaying correlation function, and showing space filling points in 

Poincare' map, and introduce some quantitative measures to characterize deterministic 

chaos such as Lyapunov exponent, invariant measure, and correlation function for one-

dimensional Poincare' maps, as well as quantitative measures for other cases. 

 

The purpose of this section is to show that the network system of concern in the previous 

sections exhibits a chaotic behavior when demand passes certain threshold level. To do this, 

the concept of Lyapunov exponent will be employed, as described below. 

 

6.1. Lyapunov Exponent  

Lyapunov Exponent measures the exponential separation in time of the adjacent points 

which leads to chaotic behavior (when the exponent is positive) (Schuster and Just (2005)). It 

is a measure of the average separation of adjacent points. Adjacent points are points 

defining the parameters of the system which are infinitesimally separated from each other. 

Thus, positive Lyapunov exponent implies average (as becomes clear from the following 

definition) rate of separation of the states of the system started from those points and run for 

a long time. 

 

To elaborate further on this concept regarding to the system of traffic flow in an urban 

network, let A)N(V,  be the network of concern with the set of (k, s) O/D pairs P, having the 

demand system  D: }),(;{ Pskd ks  . Let, also, be: 

 
 : a path in the network , 

ks : the set of path from k to s, P)s,k(  , 

ksx : the flow in path   from k to s, 
ks and P)s,k(  , 

ijx : the flow in link ),( ji , Aji ),( , 

ijt : the travel time in link ),( ji , Aji ),( , which is a convex function of the flow ijx
, 

kst : the travel time in path   from k to s, 
ks  and Psk ),( , 

 

Then, the user equilibrium (UE) flow problem may be stated as follows (Aashtiani and 

Magnanti (1981), and Sheffi (1985)): 

 (UE)  (1) Pskutx ksksksks  ),(,,)(    

(2) Pskut ksksks  ),(,,)(    

(3) Pskx ksks  ),(,,      (19) 
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(4) Psku ks  ),(,  

(5) Pskdx
ks

ksks 


),(,


  

where the first three expressions state that if flow on path   from k to s is positive then the 

respective (path) travel time equals that of the shortest path from k to s; otherwise (i.e., if this 

flow is zero) then the respective travel time is greater than that of the corresponding O/D 

shortest path; and vice versa. The third expression ensures non-negativity of the path flow, 

and the fourth the non-negativity of the shortest path travel times. The last expression 

guarantees the sum of the path flows originating from origin k to destination s to equal the 

demand for travel from k to s. 

 

This problem may be written equivalently as the following convex programming (CP) problem 

when link travel times are convex function of the respective flows and the demand is fixed; as 

assumed: 

 

(UECP)

du)u(tMin
A)j,i(

ij
x
0 ij 

  

s.t.:   (1) Pskdx
ks

ksks 


),(,


    (20) 

                   (2)  Pskx ksks  ),(,,    

        (3) Ajixx
Psk

ks

ij

ks

ij
ks

 
 

 ),(,.
),(

,



   

where 
ks

ij  ,  equals 1 if ),( ji belongs to path   from k to s, otherwise 0. This is the (simplified 

version of) problem solved by the routine explained in section 3 of the paper, as a traffic 

assignment problem, in EMME/2 environment. 

 

In a metropolitan area, most of early morning demand constitutes only two trip purposes, 

namely "work" and "school." (For the study area this totals about 80% of the overall demand 

during 7 to 9 AM.) Such trips are daily "mandatory" trips, to known destinations. The makers 

of these trips are, by virtue of the repetition of them, well aware of the network congestion 

situation, travel times, and other characteristics, and hence consciously choose time of 

starting the trips, modes of travel, as well as of paths, to minimize their travel times and to 

reach their destinations on time. These choices are, of course, influenced by uncontrollable 

parameters (such as trip starting time distribution on demand side, as in our case). Thus, the 

flow pattern in the network in an hour (and, extending this statement to limits, to say at any 

time) may be considered to be (basically) in (user) equilibrium (in the sense of UE). Such 

equilibrium flow may be conceived of running the system for a long time, as in the case of a 

dynamical system. Figure 6 shows this perception of the system. In the first m days of the 

time the system is in a transition state, and after this period of learning, equilibrium flow 

pattern develops. People in urban areas remember this state of equilibrium and take 

advantage of this information even after a change in season, and adapt themselves to the 

new situation equilibrium conditions using the information regarding the last such season in 

the past. This argument shows that daily maximum throughputs are equivalent to running the 

system for a long time each time the parameter is changed by a small amount. Note that 
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there is a relation between the trajectories and the day clock time, as shown in Figure 6. The 

right-most figure in Figure 6 shows the trajectories of speed-throughput of the network during 

equilibrium days which show variations due to change in the parameters of the system (such 

as time of starting the trip, traffic accidents in the network, etc.). The equilibrium critical 

(capacity, or maximum) throughputs encircled in this figure are what this paper is concerned 

about. Note that all
e
cq

's are throughputs obtained from a (different) small disturbance of an 

original set of parameters and are time series of a specific quantity under basically the same 

conditions (e.g., the throughput of the network during 7-8 AM.) as shown in Figure 7. 

 

Now, let
1e

cq ,
2e

cq ,
3e

cq , …,
me

cq  be m maximum throughputs of the network observed after a 

long time of running the system (equilibrium condition). Each 
ei
cq (i=1,2,...,n) is the result of 

starting a recurrent system from very early in the morning, and from the same, but 

infinitesimally disturbed, parameter condition as defined in Section 4.1 for trip starting time 

and section 4.2 for traffic accidents assuming rapid information propagation (e.g., through 

certain communication media for this change in parameter). 

 

 

 
Figure 6- Conceptual speed-throughput trajectories for some transition and equilibrium periods in the morning 

peak in an urban area. 
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Figure 7- Daily variation of network throughput, and time series of maximum throughput. 

 

Let 0p  denote the initial state of the parameters of the system. The difference between two 

initially adjacent parameters 0p  and 0p  eventually leads to an equilibrium throughput 

change from )(
0

pqe
c to )(

0
pqe

c . According to the arguments represented before 

superscript e represents an equilibrium state resulted from a past learning process so that e 

is equivalent to the limiting behavior as n , n being a learning step. Thus, following the 

usual argument of Lyapunov exponent derivation (see, e.g., Schuster and Just, 2005): 

 
)(

0000
0)()()()(

pe

c

e

c epqpqimpliespp
    (21) 

from which one may write: 

 

)(00
0

)()(
p

e

c

e

c
e

pqpq






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or: 






)()(
ln)( 00

0

pqpq
p

e

c

e

c 
       (22) 
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In order to see an average behavior, and not a single or extreme behavior, of the system one 

may write Equation 22 for
1

0

1 pp 
,

2

0

2 pp 
,

3

0

3 pp 
, …,

m

0

m pp 
, and then 

obtain an average  , where
i  is the deviation from the deterministic state with known 

original parameter 0p : 

 







m

l
l

e

c

le

c pqpq

m
p

1

00
0

)()(
ln

1
)(




      (23) 

A correct value of   is when m tends to infinity: 

 





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

m

l
l

e

c

le

c

m

pqpq

m
p

1

00
0

)()(
ln

1
lim)(




      (24) 

Now, one may view ln a as a change in )(e
cq as a result of a change from 

lp to
llpp 0 ,  l =1, 2, 3, …, m : 

 


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
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l
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
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In the limits, when 0s'l  , assuming that they exist: 
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m 1
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Equation 26 resembles the definition of   for two trajectories of a dynamical system where 

mlp l ,...,,2,1,   are the successive states of the system, and hence existing softwares may 

be used to compute )( 0p  for the network under study. 

 

7. Application of the Theory of Chaos 

To see whether the transport network system in this case study become chaotic under a 

certain condition of demand and supply, 300 observations have been made in the area of (b) 

in Figure 4. Figure 8 shows aspects of the change in the input parameters, and the 

throughput of the system in these 300 observations. The reader recalls that two parameters 

of the system were of concern in the case study in this paper: change in demand due to 

distribution of arrival times into the network, and closures of link/lane in the network due to 

traffic accidents. Figure 8a shows the total O/D demand over the average value of this 

quantity for 300 observations, and Figure 8b shows the total length of the links of the network 

over the average value of this quantity for 300 observations, as aspects of the variation of the 
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two input parameters. Figure 8c shows the variation of the maximum throughput in these 

observations in terms of the total O/D demand served satisfactorily over the average value of 

this quantity for 300 observations. As may be seen in Figure 8, the variation of demand and 

supply are very little, while that of maximum throughput is appreciable. 

 

Using a software in the environment of MATHLAB (Swope (internet)), the Lyapunov 

exponent of the series 








 


300,...,2,1;300;
300

1

iqMMqq
l

el

c

ei

c

i
 is computed as 0.0236, 

a positive value, suggesting that the process is chaotic.  

 

 

 

 
 

 
Figure 8-  Aspects of input, and throughput, variation in 300 observations of maximum throughputs 
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8. SUMMARY AND CONCLUSIONS  

The paper discussion starts with an observation made by Greenshields in 1934 and several 

other researchers regarding the speed-flow-density relationships (McShane and Roess 

(1940)), pointing unstable flow when density of flow reaches a critical point leading to critical 

speed and flow, at which the system looks “chaotic” (Figures 1 and 2). 

 

Next a model is built for a real network of a metropolitan area to estimate link flows for given 

demand and network specifications. This model is a deterministic system with many 

parameters, two of which are selected to be changed by small amounts in order to study the 

level of the variation of the performance of the network. These two parameters are the 

demand arrival into the network, which is assumed to be normally distributed with mean (as 

estimated) and variance about 0.1 of the respective mean value; and the links of the network 

which may be affected (e.g., closed) by traffic accidents according to certain Poisson 

processes governing the occurrence of these events. 

 

Network throughput is defined as the sum of O/D trips which are finished satisfactorily. 30 

simulation runs have been made to produce network speed-throughput relationship similar to 

the ones presented by Greenshields and others for a basic freeway section. This is done for 

the city of Mashhad. 

 

Next, A Lyapunov exponent measure has been devised for a series of equilibrium maximum 

throughputs similar to that of two initially adjacent trajectories. Using a 300 observation 

series of maximum throughputs of the study network, it has been shown that the Lyapunov 

exponent is positive, suggestive of chaotic behavior of the network at the demand level which 

caused this phenomenon. 

 

An interesting exercise is estimating the population threshold of the city under study, beyond 

which the network would collapse by chaotic behavior. Suppose crD  is the total demand (in 

passenger car equivalent per hour, pce/hr) just before the network is driven into chaos. Let 
ao  be the average occupancy of each pce. Then, crDao   is the total passengers entering 

the network at the brink of network break-down. Assuming t vehicular trips per capita during 

peak hour, an estimate of the population threshold (population capacity) of the city may be 

estimated as follows: 

 

)( ftDao
networktiontransportagiventhe

forcitytheofcapacityPopulation
cr 








    (27) 

where f is the ratio of peak hour O/D demand over daily O/D demand. For the city of 

Mashhad crD
 was about 127,978 pce trips, and pcepersonao 65.3 , daytripst 6.1  

and 0772.0f , resulting: 

persons
networktiontransportagiventhe

forcitytheofcapacityPopulation
000,800,3

0772.06.1

65.3978,127














 

 



Application of the Theory of Chaos in an Urban Transport Network 
Khorgami, Mohammad 

 

12
th
 WCTR, July 11-15, 2010 – Lisbon, Portugal 

 
20 

The above aggregate computations show that in order to prevent the city network to get into 

a chaotic situation, one may either observe the population capacity of the city, or expand the 

network capacity so as to push the maximum throughput to the right in Figure 9. Detail 

analyses of the problem, using the presented model of city transportation, may reveal where 

the population capacity should be allocated in the city, or where the network should be 

expanded to achieve better performance. 

 

Analogous to the case of basic freeway section, network density may be defined and speed-

density as well as throughput-density relationships may be derived at network levels, and 

used for further analyses of the network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9- Investment in the network to prevent chaotic behaviour. 
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