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This paper deals with three very practical 
problems of mode choice modelling: threshold 
effects, modal captivity and consistency with the 
independence from irrelevant alternatives axiom 
(IIA), which excludes the possibility of com-
plementarity among alternatives. The first two 
are illustrated in Fig. 1, where the share of the 
mode is on the y-axis and the Representative 
Utility Function (RUF) corresponding to this 
mode is on the x-axis. Intuitively, a threshold 
effect occurs when the utility reaches a critical 
value (Va), after which a further increment pro- 	Pm;n 

yokes very substantial growth of the share of the 
mode. In this paper, threshold effects result from 
an asymmetry of the reaction curve, a property 
not taken into account with well known Logit 
and Probit models. 

Another practical issue is the possibility of having non zero observed shares for very 
unattractive modes. In Fig. 1 this means that the minimum share is P, no matter how 
poor the level of service is. So far, the only model that handles captivity or loyalty towards 
a mode is the dogit model (Gaudry and Dagenais, 1979). The IPT model developed by 
Gaudry (1981) takes into account both captivity and threshold effects. In this paper, we 
study the empirical and numerical properties of one member of the IPT class, the Linear 
IPT model. 

Because of the way in which the IPT model deals with threshold and captivity effects, 
it allows as a by-product the use of full or complete representative utility functions for 
each mode: not only can the characteristics of X11, modes can be entered in each utility 
function, but the socioeconomic variables as well. The enriched specifications of repre-
sentative utility functions are made possible by either the asymmetric shape or the variable 
tail thickness of the reaction function. The enriched specification enables complementarity 
among alternatives, is unconstrained by the IIA assumption and, lastly, permits the esti-mation of a generic socioeconomic specification unaffected by the choice of a reference 
mode. 
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In this paper, a completely full form of the utility functions is specified and estimated, 
seemingly for the first time in mode choice analysis. Furthermore, the interactions among 
such enlarged specifications of utility functions, asymmetry of the reaction functions and 
modal captivity are analyzed. Statistical tests are carried out on a binomial case using 
urban data in order to examine both the theoretical properties of estimators and the empirical 
gains of the Linear IPT Logit model over its simpler linear Logit root. All three additional 
dimensions are found to be of practical use. 

1. THE LIN-IPT-LOGIT MODEL 

Formally, the Linear IPT-Logit model is written 

Pi 	= Y';  / 	, where 
i=i 

exp(Vr)+ 1)t'5')+111, 

(1) 

0 (2-A) 

= exp(exp(V))+µ;, (2-B) 

with X;  0 andµ;  ? —1 , 	 (3) 
where P;  is the share of the ith  of M alternatives and V;  is called the representative utility 
function (RUF) of alternative i. The Logit model is a nested special case and is obtained 
when X;  = 1, µ; = —1, Vi . It is useful to insure by (3) that computed shares be non-negative 
and smaller than one for all potential values of V ;'s 

1.1. Full representative utility functions, IIA and complementarity 

In general, the representative utility function (V;  ) contains two categories of variables: 
•service level or network variables (N; ) that differ across the M modes or alternatives; 
•socioeconomic variables ( S ) that do not vary across alteratives.' 

The Lin-IPT-L model makes it possible to enlarge the representative utility function 
of each mode with all the variables: level of services variables of all modes as well as 
socioeconomic variables. The reason for this is that a term common to all utility functions 
cannot be factored out any more: this is obvious in (2) when the X differ from 1 but is also 
true if they are equal to one because of the remaining l's and.t's . The application of the 
Lin-IPT-L form therefore solves the underidentification problem of the Logit. 

We now define various specifications of the representative utility function which 
exploit this property, starting with the simplest Logit format. For simplicity, the number 
of modes is assumed equal to three. 

1.1.1. Alternative-Specific Logit (A-S, L)  
The alternative-specific Logit specification of the representative utility functions 

( 	1, µ; = —1) is given in Table 1. The RUF are clearly incomplete since network 
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variables only appear once and measure the direct effect of network variables of a specific 
mode on the corresponding utility function. Moreover, socioeconomic variables only 
appear in the first two utility functions, because 13; , (3 4341, and 1342 are the only 
parameters that can be identified: here the third mode is assumed to be the reference mode. 

1.1.2. Alternative-Specific Logit Extended (A-S, LE)  
When asymmetry and/or captivity are present, the Lin-IPT-L model enables to "ex-

tend" the above specification by including socioeconomic variables in the utility functions 
of all the alternatives, as indicated in Table 2. We shall refer to this specification as the 
alternative-specific "Logit Extended" (LE) specification. The Logit specification is 
restrictive since it means that (34 is zero or that only the difference of ((34 — (3;) and 04 — (3;) 
can be estimated. 

The estimation of the extended utility function is interesting since it renders possible 
to identify the effects of socioeconomic variables on each utility function. For instance, 
as income increases the utility of each mode may increase but, since the shares must add-up 
to one, at least one share must increase and another must decrease. Therefore, income 
effects on the shares may be misleading as one could conclude that modes are inferior. 
We argue that a more appropriate measure of the effect of one socioeconomic variable on 
one mode is through its effects on the RUF. This means that it could be possible for a 
transportation mode to be a normal or non-inferior good, when measured through its effect 
on the RUF, even though its share decreases as income increases. 

1.1.3. Alternative-Specific Universal Logit (A-S, UL)  
Again, if asymmetry and/or captivity are present, the Lin-IPT-L model enables to fill 

Table 1 with network variables in each utility function as shown in Table 3. We call this 
specification of the RUF the "Universal Logit" (UL) specification. The UL specification 
ensures that the Lin-IPT-L model is no longer consistent with the lIA assumption since 
relative shares now depend upon service levels of all modes. 

As a consequence of the UL specification, complementarity among modal shares may 
arise, which means that improvement of the level of service of one mode may not nec-
essarily reduce the share of the other modes, as occurs with the Logit model. To see this, 
let Xk be an attribute of mode i and be included not only in the vector of network variables 
N1, but in the others as well (Ni , j = 1, .., M, j i); the elasticity of the mode i and j with 
respect to Xk are for own and wn an

dd 

cross elasticities, respectively:2 

Pk 	 E, 	1( s,` Pk') X 
	

;J1W 	 11 

 
 (4— A) 

= 	 I-'kIjl 'E1 ~1
J

—~j~'
E j/F~klXk 

/ ~~~~1~!~~/ 

where, 'I = (`P; — 1.1;)(1 )eXP(V) (5) 
First, notice how, if A = 1, and t.. = —1 for Vi , P̀; = `P; = exp(V;) , and 

= 0 , for i # j , then ill and rik reduce to the well-known formulas for the Logit model: 

rlk = 
aP, Xk 
axk P; 

71"k= aP
; Xk 

aXk P, (4—B) 
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Bk = ak(l —P;)Xk for the own elasticities 	and 	 (6 —A) 

rlk = —1'A' Y'k 	for the cross elasticities 	 (6 —B) 
From (6), modes i and j are necessarily substitutes in the Logit model given the sign 

of (3's : (6-B) is necessarily of a sign opposite to that of (6-A). Moreover the cross-elasticity 
is the same for all j modes. Now two properties are of special interest. 

Complementarily. In the real world, cross elasticities may be positive or negative, 
may differ among mode pairs considered. Two modes may even be substitute or 
complements depending on the level of the variables. For instance bus and car may be 
substitutes, if travel time by car is relatively low but may be complements as travel time 
by car becomes relatively high. Depending upon the conditions in a specific market, 
complementarity or substitution may arise. 

All the preceding cases are possible with the Lin-IPT-L model. From (4-B), if the 
number of modes is greater than two, Ili may be positive or negative and may vary with i 
or j. Moreover, rlk may be negative (positive) with low value of X k but positive (negative) 
with high value of Xk since ¶ and P functions are not, in general, independent of X k 

Rejection of the HA property. One important limitation of the Logit model is its 
inability to yield a differentiated reaction from existing modes following the introduction 
of a new mode. A new mode getting 5% of the market means that the shares of the existing 
modes have all been reduced by 5%. As shown by equation (7)3 if RUF does not have a 
UL specification, then the RUF will be unaffected by the introduction of the new mode 
M+1, and the result will follow. But with service variables of all modes in each RUF then 
the RUF are modified by the introduction of a new mode and a differentiated reaction of 
modes is now possible, as in equation (8). This is not surprising in view of the fact that 
cross elasticity patterns are different for each mode pair considered. 
(P;° 	 M++1 

= TM+1 / 
C E 

`. I = 

= 1 	L 	
E

1 
tir? / 

1.1.4. Alternative-Specific Universal Logit Extended CA-S, ULE)  
Combining the two preceding generalizations, one obtains the ULE specification, 

which admits of complements, is generally not consistent with IIA, and clearly does not 
exhibit underidentification of parameters associated with socioeconomic variables or 
mode-specific constants. 

1.1.5. Abstractness and specificity of the utility function  
So far we have defined the utility function by assuming that explanatory variables 

N. and S have alternative-specific influences on the RUF. If one is interested in the 
potential effect of a new mode, an abstract or generic specification may be required. Table 
5 describes the general form of a generic spefication for the Logit model. It is readily 
observable that socioeconomic variables are not "really" generic. One well-known problem 

PM+1  

J ,if 1P ~`I`B, 
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Table 1. 
Alternative- 

Utility function Networkvariables Socioeconomic 
variables Direct Cross 

Specific Logit V, _ fi; N, + 13i S 

(A-S,L) V2  = 31N2 + (3,S 

V3 = (33 F'J N3 

Table 2. 
Alternative- 

Specific Logit 
Extended 

(A-S, LE) 

Utility function Networkvi-iables Socioeconomic 
variables Direct Cross 

V, 	_ 
V2 	= 

V3 	= 

NN, + 

NN2  + 

f33 N3 	+ 

Ns 
(3,S 

13; S 

Table 3. 
Alternative- 

Specific Universal 
Logit 
(A-S,UL) 

Utility function Socioeconomic 
.,.  0 	... 

V, 	= 
V2 	= 

V3 	= 

131N, 	+ 

N N2 + 
133 N3 	+ 

(32N2+[3N3 + 
13? N, + M N3  + 

NN1 +1N2+ 

R l< S 
Ns 

Table 4. 
Alternative- 

Utility function Network variables Socioeconomic 
variables Direct Cross 

Specific Universal V, 	= PiN, 	+ G32N2+(3,N3 + (3,`S 
Logit Extended V2 	= 13  N2 + (3îN1 +(33N3 + (3;S 

(A-S, ULE) V3 	= R3 N3 	+ f3  N1+ f3  N2+ 13  S 

Table 5. 
Generic Logit 
(G, L) 

Utility function Network variables Socioeconomic 
variables Direct Cross 

V, 	= 
V2 	= 
V3 	= 

y1  N, 	+ 
y, N2 	+ 
71 N3 

y, S 
y3 S 

Table 6. 
Generic Universal 
Logit Extended 
(G,ULE) 

Utility function Networkvariahles Socioeconomic 
variables Direct Cross 

V, 	= 
V2 	= 
V3 	= 

y, Nl 	+ 
ylN2 	+ 
yl N3 	+ 

y2  (N2+N3 ) + 
y2 (NI +N3)+ 

yJ (N1 + N2) + 

y3  S 
y3S 
y3 S 
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related with this specification is that estimated y coefficients are not invariant with respect 
to the mode of reference, in this example the third mode. This problem did not occur in 
alternative-specific logit formats. Here, the underidentification of parameters associated 
with variables common to all alternatives, combined with the further requirement that the 
f31, and Râ of Table 1 be equal, yields 'y parameters that depend on the mode of reference 
(except in the two-alternative case). 

Again, if asymmetry and/or captivity are present, the Lin-IPT-L model enables to 
define an abstract or generic version of the Universal Extended Logit of the RUF as shown 
in Table 6.4 The generic version of the ULE is completely free from an ad hoc choice for 
the reference mode. 

1.2. Asymmetry and modal captivity 

The role of the X and µ parameters can be 
analyzed with the reaction curve. The parameters X 
and µ determine the asymmetry of the reaction 
function and the captivity level, respectively. In 
Figure 2, three different reaction functions are drawn. 
The continuous line denotes the reaction curve of the 
Logit model: its sigmoid shape has an inflection point 
where modal shares are equal. If the X parameter is 	ÿ 
smaller than one, the reaction curve becomes steeper 
or introduces the threshold effect mentioned above. 
The share is less sensitive to the RUF if X, is greater 
than one. The minimum share of a mode is different 
from zero, and a captivity effect is present, if .t is 
greater than -1. We now present a way to measure 
both the asymmetry of the reaction curve and the level 
of captivity. 

1.2.1. Modal captivity  
The modal captivity of mode i is defined as the modal share (Pm;n) with a very poor 

level of service ( V; 	) or, more formally, as a non-zero limit of the share: 
( 

p~(i ) = (1+ 	/ 1+µ; + 1 j 
1 

■ ;xr 

It is clear that, in practice, captivity is a limit concept and that its presence can be 
explained by the absence of various explanatory variables in the V; functions.' 

1.2.2. Asymmetry measure  
Although the presence of asymmetry is quite intuitive, a more formal definition is 

useful. First note that, on the x-axis in Fig.2, we show the RUF and are therefore "in utility 
space". We might as well have shown any variable contained in RUF, for instance a service 
level, and presented the curve "in characteristics space". Had we shown the service level, 

(9) 
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however, it would not have been true that asymmetry is not possible with a Logit or Probit 
model: indeed, non linear transformations, such as the natural logarithm of a variable 
present in a linear-in-parameters RUF, imply an asymmetric response for these models in 
characteristics space -but not in utility space. 

Let (RUFF) be the value of the RUF associated with the inflexion point of the reaction 
curve, i.e. the point at wich its curvature changes from concave to convex. This point can 
be found by equating to zero the second derivative of the Lin-IPT-L mode share, 
a(P;(V; =RUFf))2 / a2V; = 0 . 	 (10) 

A reaction curve can be said to be symmetric if any points equidistant from RUFF 
yield the same variation from the share evaluated at the inflexion point, 
P;(RUF f)—P;(RUF f — A) = P.(RUFf +z)—P;(RUFf) , VA . 	 (11) 

This suggests a definition of asymmetry, or v; , of a curve in terms of the partial 
correlation of two series of numbers, P,(RUF,), and 1—P;(RUF,J : 

p[ P; (R UF,), 1— P; (R UF2) ] 
with 	RUF1(t) = RUFf + 0,, and 

RUFZ(t) = RUFf — A„ t =1,..,T . 	 (12) 

They; measure has the property that it is equal to one if the reaction curve is symmetric 
( ?; = 1) and is between 0 and 1 if the curve is asymmetric (~• # 1) . Note that, with two 
modes, an asymmetric reaction curve for one mode does not imply a complementary 
asymmetric reaction curve for the other mode. This is possible since the reaction curve 
is defined with the utility function and the share of the same mode. In consequence, the 
complementary share of a mode is not the reaction curve of that other mode. 

2. NUMERICAL AND STATISTICAL ISSUES 

2.1. Data base 

The empirical model to be used is a variant of Cléroux et al. (1981), the ULE version 
of this model is: 
Vb., = 0;TZ1MP1 + (3TFB US + p;A UTIM1 + (i4TA UT + p40INC + 13 OCAR + p;MEN1 +13; 

Vbm = 132,A UT/MI + p2TA UT + p3TZJMP1 + p4TFB US + [5OINC + 36OCAR + p;MEN1 +1328 (13) 

The transit impedance time (TZIMP1) variable is defined as the sum of the travel time 
plus three times the non-travel time (access, egress and waiting time). The other variables 
are trip transit price (TFBUS), travel time by car (AUTIM1), trip car price (TAUT), average 
income per household in the origin zone (OINC), average car ownership per household in 
the origin zone (OCAR) and proportion of men travelling at the peak hour (MEN1). The 
data base comes from a 1976 origin-destination survey (20% of households) in Winnipeg. 
The calibration is carried out using work trips during the 7:30-8:30 AM peak period. The 
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origin-destination pairs were chosen according to two criteria: that there should be trips 
by car and by bus, and that the total numbers of trips by the two modes be greater than 60. 
There are 211 pairs which satisfy those two criteria. 

2.2. Estimation procedure 

2.2.1, Log-Likelihood function  
In order to define the log-likelihood function, we randomi7e the Lin-IPT-L model by 

associating to each to term a random term E;, pertaining to the share i for the O-D pair t. 
The statistical Lin-IPT-L model is then defined as 

2 
= LTT„exp(E;,) / 	E 	exp(Ei,) 	, where 

J= 1 

_ 	 eXp(V0+1)(ux)+µn 	 ;#0 

= exp(eXp(Vu))+µ 	 --> 0 	(15) 

with X; >_0 and II, >_-1 , 	 (16) 
Assuming that each random term is normally distributed with constant variance, the 

log-likelihood function (L) corresponding to (14) can be written for our bimodal case as: 

	

1 T 
rr 

( p (\ 	\2 

L 	= — 2 r ~ l lln 	
P 1 

—W1t +`I'y 	— 2ln(2tt) 	 (17) 
ll 	y / 

The maximization of (17) was done with the SHARE program (Liem and Gaudry, 
1989) which uses the Davidon-Fletcher-Powell algorithm (Fletcher and Powell 1966). 

2.2.2. Numerical constraints 
In order to insure that no numerical problems arise during the estimation of the Lin-

IPT-L model, eq.(14)-(16), several numerical constraints are needed. 
Constraints against underflow. Very small Vu may cause problems related to the 

computation of the exponential function and the computation of the inverse Box-Cox 
transformation. We need, 

• V;, > Bl , 	 (18) 
• `I'u > µ; + 1 	 (19) 

Constraint (18) is meant to garantee that the computation of the exponential function 
is above the inferior limit ( B1 ) of the computer, Constraint (19) garantees that the inverse 
Box-Cox transformation is numerically meaningful. 

Constraints against overflow. Reciprocally, very high Vu may cause problems when 
computing the exponential function or the inverse Box-Cox transformation. Indeed the 
argument of the exponential function should be smaller than the superior limit (Bs ) of the 
computer, 

Pu 

~u 

(14) 

746 



Marc GAUDRY, Richard LAFERRIERE 

• V ;, < Bs . 	 (20) 
The inverse Box-Cox transformation is numerically meaningful if the addition of the 

number one to the base is numerically significant, namely if 
• (k exp(VV,))t1(4') < (k exp(Vrf)+ 1)t' ) 	 (21) 

Note that eq. (21) must be tested only with positive values of V„ , since it will always 
hold when V; < 0 and its computation with negative values may lead to underflow 
problems. 

Finally, the last constraint prevents the result of the inverse Box-Cox transformation 
from going beyond the numerical capacity of the computer: 

•(~; exp(V;,)+1)" ) < exp(Bs) , 	 (22-A) 
which may also be applied after a logarithmic transformation 

• ln(k  exp(V1) + 1)/k„ < Bs . 	 (22-B) 
We did not meet any particular problems of maximization, which leads us to believe 

that the log likelihood is well behaved. However, the presence of constraints limit the 
usefulness of any plot of the function since the constraints produce local maxima. To 
clarify this point, we now proceed to a study of the distribution of the parameter estimates, 
thus focussing the analysis on the purpose of estimation-unbiased parameter estimates. 

2.3. A Monte Carlo study 

As the computational burden for the estimation of the Lin-IPT-L model is relatively 
high, a better understanding of the properties of the estimates is in order. For this reason, 
we decided to perform a Monte Carlo study. Instead of using synthetic data, the true model 
is based on a subset of variables contained in the Winnipeg data set: the variables TAUT, 
TFBUS, and OINC were left out of the Monte Carlo study. The use of real data is intended 
to reduce the inherent arbitrariness of a Monte Carlo study and at the same time provide 
a better understanding of the empirical results. 

Based on 1000 replications, the (3 , 2 and µ estimates are biased. But despite these 
biases, the predictive capability of the Lin-IPT-L model is very reasonable as the average 
forecast error' is only 0.0014. This suggest that some compensations take place among 
parameters, notably across shares; a high value of 24 may be offset by a correspondingly 
high value of 2 and/or high values for the f3 parameters. 

As equation (4) indicates, the computation of the elasticities involves all the parameters 
of the model. Clearly, if the parameters are offsetting one another, this should be revealed 
by the elasticities. Except for the constant terms, the estimated elasticities are unbiased 
as shown in Table 7. Moreover, the distributions of the estimated elasticities are relatively 
small: more than 10 times smaller than the true parameters. Generally speaking, the 
standard deviations of all the estimated elasticities are about 5 times smaller than that of 
the residuals (0.2). Despite the appearances, the distributions of the elasticities do not 
follow a normal distribution according to the Kilmogoroff-Smirnoff test. After exami-
nation of (4), the opposite would have been surprising. 
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Table 7. Empirical Distribution of the Elasticities 
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In essence, the Lin-IPT-L model envelops the exponential functions of the Logit model 
in an inverse power transformation, more specifically the inverse Box-Tukey transfor-
mation, which differs from the inverse Box-Cox transformation by the addition of the .t 
parameters. We have shown elsewhere that the direct Box-Cox transformation (Gaudry 
and Laferrière, 1987) is invariant to power transformation of the variable or of function 
to which it is applied. There is therefore no doubt that the inverse Box-Tukey used here 
implies unique values of the A, and p. parameters. However, the share format makes it 
easy for some parameters to behave as close substitutes to others -to "offset" them-, even 
if all parameters are strictly identified. This shifts interest away from the values of 
individual parameters to that of elasticities. 

We argue on the basis of unbiased elasticities results that the estimation of the Lin-
IPT-L model is certainly relevant and appropriate. With a very nonlinear model, the 
moments of the distributions for the estimated parameters (0's , X's and µ's ) are far from 
being obvious and to some extent not so relevant. In our mind, it seems more interesting 
to have good distributions for the elasticities, which are, after all, the most meaningful 
model coefficients. 

2.4. Bimodal urban application 

This last section presents an empirical analysis of the Lin-IPT-L model using speci-
fication (13). The statistical test on which all the tests in the present subsection are based 
on is the likelihood ratio test. More details are supplied in the full paper, available from 
the authors. 

Testing asymmetry. We have tested asymmetry by specifying the RUF as L or ULE 
and allowing one generic X. or two X's. In all those cases, asymmetry of the reaction 
functions could not be rejected. 

Testing captivity. With the same two specifications of the RUF, modal captivity cannot 
be rejected, wether one generic µ , or one p. specific to each mode, are used. 

Testing the IIA assumption. Even if the number of modes availables is only two, it is 
possible to test the HA asumption with the approach suggested in 1.1.3. This is done by 
testing wether or not the coefficients (33,134i  (3;, l342 in (13) are simultaneously significantly 
different from zero. The IIA assumption is rejected under both UL and ULE specifications. 

Specificity and interaction effects. In the Logit model, modal specificity is defined 
solely in terms of constraints on the 03's. In our case, it should be recognized at first that 
specificity with the Lin-IPT-L model may not necessarily be caused by 0 parameters but 
could be due to X. or p. parameters as well. Therefore, it might be interesting to know if 
specificity is brought about by an asymmetric reaction functions and/or by modal captivity 
and/or by the RUF. The answer to this question is that each dimension has a significant 
contribution to the modal specificity. Furthermore, it appears that positive interactions 
take place among the three dimensions. 
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