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1. INTRODUCTION 
1.1 Definition of Measurement Errors 

A general measurement process consists of the system under inspection which has 
objects with certain properties, and the measuring system which includes the components 
acquiring the measurement information, the components processing the information 
acquired to get a measured result, and the components interpreting the measured results. 
Measurement errors originate from the measured system, the measuring system, and the 
interface between them. 

All measurements are subject to error because of imperfections in the measurement 
procedures and technologies used. Even if these imperfections were not present, there is 
inherent variability in the measured items and influences from uncontrolled sources that 
affect the result of measurement. This error can be defined as e, where: 

= d —d. 	 (1) 
and d represents the measured value while d.  represents the true value. The components 
of the total error e, are discussed next. 
1.2 Classification of Measurement Errors 

The total error e, can have components that are intrinsic to the measured or measuring 
system, and can be observed in laboratory or experimental conditions when all known 
influencing factors are controlled. Alternatively, influence errors can arise due to factors 
that are not part of the measurement, such as physical variables in the measuring 
environment that were not controlled in an experimental setting during the design of a 
measurement system. For example, the presence of a film of water on a pavement surface 
when inspecting after a rainy period can change the reflectance property of the pavement 
surface. The system may not necessarily be designed to account for such a change. 

Intrinsic and influence errors have both a systematic and a random component. 
Systematic measurement biases can be determined and eliminated if the measurement 
principles applied are known. Random measurement errors, on the other hand, cannot be 
predicted on an individual measurement basis, but can be statistically estimated from 
multiple measurements. They are sometimes referred to as uncertainty. 

Consider the case of a pavement surface observed by human inspectors, who are 
making detailed maps of a sample of the pavement section (say a segment covering 20%) 
and measuring the distresses appearing on the surface to predict the extent of distress on 
the pavement section. If the pattern of distress occurrence varies from location to location 
in a non-systematic way, as on flexible pavements, then it would not be possible to predict 
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the error due to sampling from a single inspection. Instead, the inspectors would have to 
perform multiple inspections on a random assignment of sample locations on the pavement 
segment to obtain a distribution of the measured values of distress. This distribution can 
then be used to estimate the sampling error. 

Both systematic and random measurement errors can occur together, as demonstrated 
by the example above, and can arise from the same source. Most mathematical 
investigations carried out in the literature are aimed at estimating and controlling random 
measurement errors. Systematic errors require physical-technical investigations as well 
as statistical investigations to be detected. That is, one needs to know the physical process 
from which measurements result before being able to form a model that will allow the 
detection of systematic errors. 

In addition, measurement errors can be classified as additive or multiplicative. 
Additive measurement errors are independent of the numerical value or size of the measured 
quantity. Multiplicative measurement errors vary with the size of the measured quantity. 
Resolution limitations are an example of a multiplicative error, as they only allow a 
technology to pick up distressed elements above a given size, thus missing a fraction of 
the true distress. This is demonstrated in more detail in the next section. 
2. FORMULATION OF THE MEASUREMENT PROBLEM 

In this section we develop measurement error models that account explicitly for the 
error types discussed in the past sections. Consider the measured extent of distresses dyk 
on section i, by technology j, measuring distress type k. The measurement depends on a 
number of parameters characterizing the technologies, distress types, and sections. The 
values of these parameters are unknown a priori, and the main objective is to determine 
the size, sign, and inter-relationships of these parameters. 

Generally, this can be formulated as follows: 
d;;k = f(d;k, 0„ 0;, ek) 	 (2) 

where: 
f(.) = function representing the relationship between the measured distress, the true 
value of distress, and factors affecting the measurement; 
d~ = the unobserved true value of distress on a section; 
8;, 0 Ok = vectors representing section, technological, and distress characteristics 
affecting measurement respectively. 
The vectors 0;, Or and 0k are termed "error-generating" factors, and qualitative 

descriptors are used to classify the effect of these factors on measurement. These 
descriptors are presented below and the influence of the characteristics they represent are 
derived. 
(a) Section characteristics 0; include the distresses that appear on a section and how they 
relate to the surrounding background, or the scene of measurement. They can be 
characterized by: (i) the density of distress occurrence (dense, moderate, and sparsely 
deteriorated pavements); (ii) the contrast between the distress and the background on which 
it occurs (high, moderate, or low contrast); (iii) the pattern of distress occurrence 
(systematic and even spacing or haphazard occurrence); and (iv) the location of the section 
with respect to the surrounding environment for effects such as shadows from trees, or oil 
spots. 
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(b) Technological characteristics 0i  include components of the measurement technology 
such as instrumentation, data processing hardware and software, and data collection 
strategies. They can be characterized by the: (i) measurement principle (direct or indirect); 
(ii) inspection strategy (sampling or no sampling); (iii) data reduction format (individual 
recording, range estimate, or average across multiple distresses in a section); and (iv) 
objectivity of the data collection process. 
(c) Distress characteristics 0k  include the attributes of distresses appearing on a pavement 
surface, that affect the result of measurement. They can be characterized by the dimensions 
of a distress (linear, areal, volumetric) and distress connectivity (high or low connectivity 
between distress elements). 

The function f(.) in equation (2) can be expressed in a linear form with respect to the 
true distress, which is simple to use and has an intuitive interpretation. 

• dùk = a;k + R;kd k + Eijk 	 (3) 
where: 

Rjk = systematic additive and multiplicative error respectively, of technology 
j measuring distress type k; and 
k = additive random error of technology j while measuring distress of type k in 

section i. 
The linear form in (3) assumes that the effects of the section, technological, and 

distress characteristics can be included in the parameters ajk  and Rik  and the random error 
term F,ik as follows: 

ait = g1(01, 0k); 
Rik = ga(Oi, 0k); 
Fÿk = g3(01, 0), 0k); and 

E (e,jk i dot) = 0. 
The components of (0;, 0i, 0k) that enter into the functions g (.) are discussed next. 

3. CHARACTERIZATION OF THE COMPONENTS OF ERROR 
3.1 Basic Formulation 

Consider a single pavement section and define the following: 
• Each technology has the capability of viewing a fixed portion of a pavement section. 
The size of this area is denoted by A. 
• Without loss of generality, let a cell size be uniquely defined as the smallest area 
viewed by any of the technologies evaluated. This will be referred to as the "reference 
cell size" a. This can be expressed as follows: 
a=Mink 

Let a pavement section be divided into segments where each segment is being 
inspected by a technology. Dividing each segment into mutually exclusive and collectively 
exhaustive cells of size a, we obtain a collection of cells Z1  for every pavement segment. 
Consider the situation where a technology is measuring a single distress type on this section, 
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and assume the pavement segment contains a distress whose total extent d;;, (e.g., sqft of 
cracking) is unknown, and each cell contains distresses whose extent d;;, is also unknown. 
Let the total true extent of distress on the pavement section be di.. Thus, 

v, z, 
d;=E ~d~ 	 (4) 

,'=t:=i 
Define a fraction p l of the extent of distress that a technology can detect in a cell. Similarly, 
define fractions pp and p;;, for a segment and section respectively. 

Let us now introduce two terms that will be referred to frequently in the following 
text. The measured value of distress on a pavement is jointly affected by the capability 
of a technology to measure distress, and the detectability of the distress itself. These terms 
are discussed in detail below. 
(1) distress "detectability" is defined as the fraction of distresses falling in a particular cell 
z, which can be expressed as the fraction given below: 

d;n 	d;K 
w  — _ ~. 

E dM 
(5) 

which is the probability that a distress is present in cell z given that the section has a total 
extent of distress d;* . The relationship in equation (5) is a function of distress and section 
characteristics such as crack length, crack orientation, and location of the cell with respect 
to the segment such as shoulder, center-line, or wheel-track, and size of the cell. It is also 
dependent on the pattern of distress occurrence. If distresses are uniformly distributed 
across a section, then the probability of finding a distress in a cell z will be equal to that 
of finding a distress in cell z + 1. If distresses are sparse in some sections and dense in 
others, the probability of finding a distress in a cell z will be different from that of finding 
a distress in a cell z + 1. The variable w;,,=, therefore, captures the effects of the section 
characteristics such as density and pattern of distress occurrence. Since d; is latent, the 
distress detectability is also latent (unobserved). 
(2) technological "capability" is defined as the fraction of distresses on a pavement section 
detected by a technology, which can be expressed as follows: 

Let m;,,4 define the theoretically measurable extent of distress in any cell by a 
technology. Let this measure incorporate the ability of a technology to measure distress 
given that the distress is present. It is a function of technological characteristics such as 
detection limitations (e.g., resolution) and classification or interpretation limitations (e.g., 
confounding effects like oil spots). This was defined earlier asp; , the fraction of distresses 
that a technology is capable of detecting in a section. The following relationship 
demonstrates these concepts. 
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v; z, 
E 
v= 1 i= 1 _ m'v 

pç = v 	d • ~ 
F, E d11z 

Assuming that a technology is capable of viewing all segments and cells in a section, 
the following situations can occur: 

• m.  < d if a technology has detection limitations, such as resolution which result 
in a measured value less than the true value, and p;; < 1; and 
• m;,.z, > d;;,~ if a technology has classification or interpretation limitations,. such as 
confounding effects that cause error, and p;; > 1. 
If we assume that detection limitations, such as resolution, are the same across all 

pavement sections of the same type, and that all other effects such as classification and 
interpretation limitations (e.g., confounding effects) occur randomly in a section, and 
therefore, do not generate a systematic component into p, then the expected value of distress 
that is theoretically measurable by a technology is: 

= p jd,• 	 (6) 
This value can be defined from the measurement principle applied by a technology and 
the physical system representing the measurement situation. For example, for the case of 
measuring a crack on a pavement surface using optical measurement principles, it can be 
defined as the physical separation of the pavement surface (crack) which can be detected 
as a difference in intensity of light on a light-sensitive medium, such as film, and can be 
obtained in a laboratory environment. 
3.2 Formulation to Include Coverage Limitations 

So far the discussion has concentrated on the "technological capability" and "distress 
detectability". Typically, one can observe only a limited number of cells from a pavement 
segment say Z;; cells, where Z;; <_ Z;. Likewise, one can observe only a limited number of 
segments Vy S V;. 

Equation (6) represents the total true level of distress on a section when all cells are 
observed. When only a fraction of the cells are observed, the fractional true value of 
distress on the measured area can be expressed as : 

zf

• 

=Pd;+e;,„;=m+em; 	 (7) 
where e.  is a random error that affects the theoretically measurable extent of distress. 
Define the following: 

• = total number of cells observed by a technology in a section; and 
Z;V; = total number of cells in a section. 
Since each cell Z; is of size a, the total area of the section is aZ; V; and the total area 

observed by a technology is aZV; . The percentage area observed by a technology is: 

 

(8) 
Z; V; 

A natural estimator of the total distress on a section is obtained from equations (7) 
and (8) as follows: 

(5) 
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Z.V- 	K9 	Z•V• ~r ~~~ 	 Z V Z4 ~ü 

E E drvt = p. ; E E drv~ + 	
E E e~v • 

Z;iV;i:=1 v=1 	
pi 	r Z;i ;iz=1v=1 j 

Z;V;di = pi(Z;V d; )+Z;V;e;i 	 (9) 
Or: 

di =pid; +e ÿ 	 (10) 
This estimator is unbiased if the cells and segments were randomly selected, or if 

distress is uniformly distributed across a section, such that detectability is: 
d;z 1 

w; 	
Z, 

However, most automated technologies view a fixed portion of the pavement area, 
in which case the cells inspected are not randomly selected. This introduces a bias in the 
estimate of true distress expressed by equation (9). The nature of this bias can be expressed 
as: 

d; =ai +bi(Z;V;d;̀ ) 	 (11) 

where au captures the effect of the distribution of distress on a section on coverage error 
and bi captures the coverage limitation of a technology. These are the biases induced in 
the estimate of true distress due to the systematic sample inspected by a technology or the 
non-uniformity of distress distribution on a section. Substituting (11) in (10) gives: 

• 	

= pl au +bi(Z;V;d')]+eri 
du = (pia;i ) + (pibi )d' + eu 

Let 
piav = ati 

• 	

= Ri 
If we assume that for a particular group of sections, say flexible pavements, the 

pattern of distress dist ribution is the same, then au = c;•, for i 	and: 
du = ai + Pid:+ e;i 	 (12) 

where ai and (3i capture the effects of technological characteristics and coverage 
limitations. Spatial models are necessary to identify the nature of au for cases where the 
pattern of distress distribution is varying. 
3.3 Formulation to Include Measurement Principle 

The derivations presented so far in equations (4) through (12) represent the situation 
where a technology is performing direct measurement. When technologies are employing 
indirect measurement principles, and one wants to include the effect of measurement 
principle on the measurement errors, an alternate formulation which incorporates data 
processing limitations is required. Consider the following measurement situations: 

1. The technology is measuring distress directly but measures it with error. For example, 
a visual inspection of pavement cracking where the areas cracked are measured by a 
yardstick. 
2. The technology is measuring a substitute or proxy for the quantity of distress, and 
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an estimate of quantity of distress is made through various data processing stages. For 
example, a video technology is used to measure areas cracked, where it measures the 
intensity values of cracking on a piece of film and uses them to estimate the areas covered 
by cracking. Such proxies will be referred to as indicators of cracking. 

The situations mentioned above are referred to as direct and indirect measurement 
respectively, in the remainder of this paper. 
Direct Measurement: 

Recall the general model in equation (3). This model is for the case where a 
technology is performing direct measurement. Here d;; would be the output of the 
measurement process in sqft, d;' would be the `true' area of alligator cracking on the 
pavement surface. The parameters a; and (3; would be the additive and multiplicative 
systematic biases of inspector j respectively, and e;; would be the random error of the 
measurement process. If we know a; and 13; our best estimate of d; from a single 
measurement, assuming E(e,;) = 0 would be: 

	

d;.— a 	
( 

! 	I  d; = 	 13)  

Indirect Measurement: 
So far we have included the effect of influence errors into the formulation by 

introducing the multiplicative and additive error parameters a;, (3;, that depend on the 
technological characteristics and the inspection strategy (in terms of coverage) used. Now 
let us consider the situation where the measurement process is indirect. The error due to 
measurement principle has two components: the data acquisition error and the data 
processing error. These can be introduced as follows: 
S;; = ci + b;d; + ~ 	 (14) 
where: 

= measured level of an indicator of distress on an "inspected" pavement section 
by a technology; 
d; = 'true' level of distress on an "inspected" pavement section; and 
di , b; ,,, ;; = parameters and random error of indirect measurement describing data 
acquisition 
The parameters ci;,b; and e,; in equation (14) are not the same as those in equation 

(3). In (3) the parameters reflected only the mapping from d' to S. In (14) the parameters 
also incorporate the systematic measurement errors in the process of measuring S. 

The technological relationship between d; and S; is represented in the form of a 
processing algorithm that maps the indirect measure Si to the true level of distress d;̀ . This 
is derived below from a linear processing function, where y; and X; are scale parameters 
that are supposed to calibrate the proxy of distress S; to the true level of distress d;t , and 
is realized as the measured distress d;;. That is, the mapping S 	d; can be expressed as: 
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v; 	 (15) 
where v, is the random error of processing. Note that in the absence of systematic 

measurement errors X. = b' and y = b . 
i 	1 

A relationship between the measured distress level and the true distress level can be 
derived from: 

= Xi +yi(di + bid;̀ +~) +v; 

du = (A,+yidi)+(y jb j)d:+(y je-„+v,) 	 (16) 
which gives us the familiar equation: 
d, = as + (iid; + 
where a, and (3i now include the effects of the data acquisition (d ),6.,) and processing X;, y; 
errors. 

An example of such a situation would be measuring alligator cracking on a pavement 
surface using optical techniques. The cracking would be observed as an intensity level S; 
which will be recorded as a density on a piece of film, which would be processed to get 
an estimate of the sqft of alligator cracking d;; from equation (16). The next section 
describes a case study demonstrating the applicability of such a representation for testing 
the impacts of various factors on measurement accuracy. 
4. ACCURACY IN VARYING MEASUREMENT SCENES 

The parameters a, 13 and e in the past sections included the combined effect of 
technological and distress characteristics. To investigate the independent effects directly 
from the derivations so far (equations (4) through (16)) requires a large data set, with all 
effects of interest appearing in a great enough frequency to allow estimation of the 
parameters of error. Such a data set could not be obtained. Instead an existing data set 
(see Hudson et al, 1987) was used to demonstrate the difference in error parameters in the 
generalized measurement equation (3) for technologies with varying characteristics when 
measuring linear, areal, and volumetric distresses. The technologies which differed in 
their measurement principle, data reduction strategies, and measurement resolution are 
described in Table 1. 
Table 1: Technological Factors Affecting Measurement 
Technology Measurement Data Reduction Resolution 

Principle 
Logging Direct Yes High (Human eye) 
Photo 1 Indirect No High 
Video Indirect Yes Low 

The measured results from these technologies were used to estimate the errors in 
equation (3). The estimation was done using latent variable modeling techniques as 
described in Ben-Akiva and Humplick (1991). To demonstrate the effect of technological 
and distress factors, the multiplicative biases were compared as shown in Figure 1. This 
figure plots the squared multiplicative error (1 — (3;)2 for each technology when measuring 
linear (longitudinal and transverse cracks), areal (alligator and block cracks), and 
volumetric (potholes and rutting) distresses. 
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As indicated by Figure 1, the technology with the least multiplicative bias for linear 
cracking is Video, an indirect measurement, low resolution technology using data reduction 
techniques. Thus, the impact of these technological factors on the accuracy of linear 
measurements is minimal. The technology with the least multiplicative bias for areal 
cracking is Photol, a high resolution photographic technique which measures each 
individual distress. The impact of low resolution and data reduction, such as with the 
Video technology, showed up as a definite higher bias in Figure 1 for areal cracking. This 
result supports the added benefit of high resolution when measuring areal distresses. The 
superiority of direct measurement shows up when the measurement scene becomes more 
complex, such as when measuring volumetric distresses. This is demonstrated by the 
Logging technology employing human inspectors, which has the lowest multiplicative 
bias when measuring volumetric distresses. Such an effect was theoretically derived in 
equations (5) and (6) where a human inspector would be capable of noticing the density 
and pattern of volumetric distresses as opposed to the photographic techniques which 
would be confounded by such factors. For a full blown hypothesis testing of the impact 
of error-generating factors on the results of measurement see Humplick (1992). 
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Figure 1: Factors Affecting Measurement Error 
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