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Infrastructure management is the process by which agen-
cies monitor and maintain built systems of facilities, with 
the objective of providing the best possible service to the 
users, within the constraints of available resources. More 
specifically, the management process refers to the set of 
decisions made by an infrastructure agency concerning the 
allocation of funds among a network of facilities and over 
time. The basic maintenance and rehabilitation (M&R) deci-
sion that an agency has to make is: "in every time period, 
what M&R activity should be performed on each facility in 
the network ?" This decision is made more difficult due to 
the uncertainty in forecasting infrastructure condition. 

State-of-the-art infrastructure management systems uti-
lize Markov Decision Processes as a methodology for M&R 
decision-making (Golabi et al 1982, Carnahan et al 1987, 
Feighan et al 1988). In this methodology, the facility 
condition at any time is measured by a discrete state and 
the deterioration process is represented by discrete trans-
ition probabilities of the form: 
P(x,.,=jix,=i,a,); 1<i,j_n; t = 0,1,...T- 1 

where: 
x, = condition state of the facility at the beginning of 
year t, 
i, j = indices of elements in the set of discrete condi-
tions, 
a, = M&R activity performed during year t, 

n = number of possible states the facility can be in, 
T = number of years in the planning horizon. 

Because the probabilistic distributions of the future 
condition states can be obtained by using the transition 
probabilities, the decision-maker can, at the beginning of 
the planning horizon, evaluate alternative M&R policies for 
the entire horizon. The underlying assumption in this 
methodology is that an inspection is performed at the 
beginning of every year, and that inspections reveal the  
true condition state of the facility, with no error. As a 
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result, after an inspection, the decision maker can apply 
the activity prescribed by the optimal policy for that con-
dition state of the facility. 

There are two major limitations in this approach. 
First, it assumes that inspections are error-free. Second, 
it depends on a fixed, not necessarily optimal inspection 
schedule (an inspection has to be performed at the begin-
ning of every time period). 

The first assumption has been demonstrated to be incor-
rect in several empirical studies (for example, Humplick 
1991): there is substantial measurement uncertainty in 
infrastructure inspection. This uncertainty affects M&R 
decisions because a measurement error will lead to the 
selection of a "wrong" activity if the prescribed M&R 
activity for the true condition and that prescribed for the 
measured condition are different. This "wrong" selection 
can translate into an increase in the total lifecycle costs 
of an infrastructure facility, if the "correct" M&R activ-
ity is the one that achieves minimum cost. 

The second assumption reflects the absence of a system-
atic methodology for making inspection decisions in the 
field of infrastructure. Although it is possible to 
formulate a MDP where the times of inspections are not con-
strained (Klein 1962, Rosenfield 1976), such an approach 
has never been implemented in the field of infrastructure. 

In this paper, a methodology for M&R activity selec-
tion, which accounts for the presence of both forecasting 
and measurement uncertainty, is presented. This 
methodology is the Latent Markov Decision Process (Madanat 
1991, Ben-Akiva et al 1992). The Latent Markov Decision 
Process (LMDP) is an extension of the traditional MDP meth-
odology, but differs from it in one major aspect: it does 
not assume the measurement of facility condition to be 
necessarily error-free. Instead, it assumes that the 
decision-maker observes "outputs" from the measurement 
which are only probabilistically related to the true condi-
tion of the facility (Eckles 1968, Smallwood and Sondik 
1973). 

We then extend this methodology to handle inspection 
decision-making. This is done by recognizing the trade-
offs between inspection costs and M&R costs. To visualize 
this trade-off, note that increasing the frequency of 
inspections increases inspection costs but enhances the 
quality of information available to the decision-maker. 
This leads to more cost-effective M&R decisions, hence 
reducing lifecycle M&R costs. 
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2. THE LATENT MARKOV DECISION PROCESS WITH FIXED INSPECTION 
FREQUENCY 

The difficulty with introducing measurement uncertainty 
into the MDP problem is that it violates the central 
assumption of knowledge of the condition state after an 
inspection. What the decision maker observes at the begin-
ning of t is now a measured state, which is only probabi-
listically related to the true state of the system. This 
relation can be mathematically stated as: 
q(x1 =klxl =j); 1Sj,k_<a t=0,1 	T-1 	(1) 

where: 
x, = measured condition state of the facility at start of 
t 
x, = true condition state of the facility at start of t, 
j, k = indices of elements in the set of discrete condition 
states, 
q = a known probability mass function. 

To address the problem created by the violation of the 
assumption of perfect inspection, the method of state aug-
mentation (Bertsekas 1987) is utilized. State augmentation 
consists of redefining the state of the system at any point 
in time to represent all the information that is available 
to the decision-maker and that is relevant to future deci-
sions. 

When the condition state of the facility is measured 
with uncertainty, the information available to the decision 
maker at the beginning of t includes the entire history of 
measured states up to t and the decisions made up to t-1. 
Moreover, since the measured state at t is only probabilis-
tically related to the true state at t, knowledge of the 
measured state is not sufficient for decision making. As a 
result, all the previous measured states and decisions in 
the history can be relevant to future decisions, and have 
to be included in the augmented state. Denoting the new 
state by It, we have: 
11 ={10 ,ao ,Î 1 ,a 1 , 	 î t - l ,a,_„ ( ); 	t= 1,2, 	,T 
I o = {z_ T ,a_ T 	 x_ i ,a_ 1 ,X O } 	 (2) 
where: 
i = number of years between first inspection of facility 
and start of planning horizon. 

It follows that: 
1 1 =(1t _ 1 ,a 1 _ 1 ,î1) 	t= 1,...,T 	 (3) 
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From which we can write the following transition probabil-
ity: 
F(I, I /0,a0,X„I1 	 I t-2, a ,_2, x ,_„I,_l,a`-1)-P(/, I  I,-1 , a(-1) 	(4) 
This equality follows from (3). Assuming Ip to be known, 
the transition probabilities P(I, I I,- 1 ,a,_ 1 ) define the evo-
lution of the state of information, and this evolution is 
Markovian, by virtue of equation (4). 

We can thus write a Dynamic Programming formulation 
over the space of the information states (for notational 
simplicity, this will be done using the generic cost func-
tion g(x „ a,)). To do that, the cost function has to be 
rewritten in terms of the new variables. The cost per 
stage as a function of the new state, It  and of the activ-
ity at, is: 
g(I„ a,) = E {g(x,, a,) I I,} 	 (5) 

X, 

where: 
E{gll,} is the conditional expectation of g over xt condi-
X, 
tional on It. 

The Dynamic Programming formulation is given by: 
Jr(IT)= E  {g(xr)I'T) 

Xi 

and 
J,(I,) = min (E {g(x,, a,) 1 I,}+ 

Q 	X, 

a E P (I,., 1 = L,.1 I I, , a,)J,.,(L,.1)) 	t=0,...,T - 1 	 (6) 
vL,,, 

where: 
a = discount amount factor, 
P(I,.1  =L,., II„a,) = transition probabilities for the state 
of information, and 

= {I„a„x11}. 
In order to solve program (6), it is necessary to eval-

uate expression (5). For this, we need to know the distri-
bution of the true condition state at t conditional on It , 
that is: 

Vx„ VI,, Vt 	 (7) 

or, in vector form, 
P, I /,, VI,, Vt 	 (7a) 

where: 
P,II, = n-dimensional vector (the information vector) with 
elements p,(x, 11,). 
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If we assume P0I10  to be known, then P,lI, can be calcu-
lated recursively for all t, starting from t=1 to t=T, 
using Bayes' law, the known measurement probabilities of 
(1) and the known transition probabilities. Given 
I, _ (I,- 1  , a t -1  , z1 ), each element of P, l 1, can be calculated as 
follows: 

prob(x,= j,1,) 

= 	 j -  1,..,n 	(8) 

Using the elements p,(x, = i 111 ) 
be rewritten as: 

1,(IT)-  i z1 PT(xT - iIIT)g(xT) ,  VIT 

and 

Jt(It)= min ( 	ill t)9(xt , at)+ a, 	i-1 

calculated above, (6) can 

VI (  t=0,...,T-1 
k-1 
The expression P(z 11 = kllt,at) can be decomposed into 

known quantities: 

	

n 	 a 
P(z1.1 = kli t ,a1 )= 	q(X(.1=kIx1.1 =j) 	P(x(.1=j1x1=i , a1)Pt(x(=i1 1 t) 

	

/=1 	 t =1 

Substituting into (9), we obtain: 

JT(IT)= PT(xT=ilIT)9(xT) VIT 

and 

t(I1)° min (Z P1(xt=i I it)9(xt , a1) +  a, 	i-1 

a X Pt(xt=iiIt) F P(xt.1=J Ix1=i , a1) E q(xt , 	klx,,,=1)Jt.i( 11 a1,xt.  =k)) 
/=1 	 k=1 

VI,, t=0,...,T-1, 	 (10) 
which consists entirely of known quantities. 

The model defined by this formulation will be referred 
to as the Latent Markov Decision Process with annual 
inspections, because it assumes that the state of the 
facility is latent, and because it assumes that a measure- 
ment of facility condition z, is available at the start of 
every year, or every time period, t. 

P1(x1 = j I 11) - 	prob(l:) 

q(xl I xt=j)YP(xt=j I xl-1 =i , a1-1)Pt-1(xt-1 =i I It-1) 

Zq(xt I xt = j) E P(xt = j I xt-1 = i, al 1)Pt-1(xt 1= i I It-1 ) 

(9) 
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3. DYNAMIC PROGRAMMING SOLUTION 

Once the true condition state probabilities are calcu-
lated from t=1 to t=T, using (8), we could solve program 
(10) recursively from t=T to t=0, and for all states of the 
information It at each year t, to obtain the minimum 
expected costs J 0(10) and the optimum policy 

3'={µo(Io).µi(/1),.•.,µr_i  UT_ 1 ))• This, however, would be com-
putationally very expensive. The reason for this is that 
the number of states It for which equation (10) has to be 
solved at each year grows exponentially with t. The prob-
lem is that even when two states It have similar "informa-
tion contents" as far as future decisions are concerned 
(that is, they produce similar distributions of the true 
state p,(x, = i I I,), i = 1 , 	 n) , they still are considered as 
separate states by the Dynamic Programming algorithm. 

It is thus of interest to replace It with a quantity of 
smaller dimension, but which would have the same informa-
tion content. Such a quantity is referred to as a "suffi-
cient statistic" for It. Since, as observed earlier, It 
affects decisions only through p, (x, = i j 1,) , i = l , ... , n, an 
ideal sufficient statistic is the vector PtIIt  . 

The advantage of this statistic is that it allows for 
direct comparison among states at a given t. Two states of 
the information which consist of very different histories 
It may have similar PtIIt vectors. It is possible to com-
pare the information vectors PtIIt, by pairwise comparison 
of corresponding elements. When two states are found to 
have equal, or almost equal, values of PtIIt, they can be 
combined into a single state, which reduces the number of 
times equation (10) has to be applied. 

So far , the cost per stage of the problem has been 
assumed to be captured by the function g(x „ a,). It is 
necessary, in order to formulate the Dynamic Programming 
for the M&R decision problem, to specify the components of 
this cost function. These components are: 

• The expected cost of performing the M&R activity. 
The cost of an activity depends of the type of activity and 
on the extent of this activity. The extent of an activity 
is a function of the true state of the facility, xt. Since 
xt is not known, we use the expected cost of an activity, 
taken over the distribution of xt, denoted by: 
n 
EP,(x,= 1,)*ca(a( Ix,=i) 	 (11) 

i-1 
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where: 
ca(at I xt = i) = cost of performing activity at, when the 
true condition state of the facility is i. 

• The inspection cost, which is incurred at the begin-
ning of every time period t, and is constant: 
cm 	 (12) 

• Expected user costs. User costs are a function of 
the condition state of the facility; since the condition 
state is not known, its distribution is used. Because user 
costs models for infrastructure facilities are not easiliy 
defined, they can be approximated by using a minimum allow-
able condition state, which acts as a constraint in the 
cost-minimization algorithm. This constraint is introduced 
by specifying a penalty to take a value of zero if the 
condition state is above the minimum allowable state and a 
value of infinity if it falls below that minimum. The 
mathematical expression for the expected penalty is: 

aE p1 (x1 = 111 ) A(x1+1 =JI x,=1, a,)cu(x11 =J) 	 ( 13) 1-1 	 j- 1 
where: 
cu(xt+l = j) = penalty incurred for year t if the facility 
is in state j at the end of the year. 

We can now write the Dynamic Programming formulation of 
the M&R decision problem, over the state space of the 
information vectors PtIIt. It is presented below: 
Jr(PT IIT)-0,  VP T  IIT 
and 

1(P1II1)= min{ F P1(x1=ill1)Lca(a1lxl=i)+a  E  p(x1.1=i 	 = I)+ 

rt 

acm+a E P(x1*1=JIx 1= I,  a1) E 9( 5 1.1=k1x1.1 = J)11+1(P1.1I 11+D]) j-1 	 k-1 
VP,11,, t =0,1,...,T- 1 	 (14) 

where: 

We assume that PolIo is given, in order to be able to 
calculate PtlIt, for all t, using (8). This initial vec-
tor, the prior distribution of the true states, represents 
the prior belief of the decision-maker regarding the state 
of the facility. 

Solving program (14) for a specified planning horizon T 
will yield the minimum expected cost Jo(Po IO) and the 
optimal sequence of policies 

n`={110(P0 I0), 11-(P1 I 11),..., 11r-1(PT-1 IIT-1)), where  µ1(P11 1 1), 
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the optimal policy for period t, specifies the optimal M&R 
activity for each possible information vector at time t, 
PtIIt• 

4. THE LATENT MARKOV DECISION PROCESS WITH UNCONSTRAINED 
INSPECTION FREQUENCY 

So far, the assumption has been that at the beginning 
of each year t, the decision-maker performs an inspection 
which provides him with a measurement of the condition 
state of the facility x,. Hence, the approach so far does 
not address the decision of whether to inspect in a given 
year or not. However, including the inspection decision 
within the existing formulation is a straightforward exten-
sion of the ideas presented in the previous sections. 

In program (14), we can represent the precision of the 
measurement technology used, denoted by rt, by re-writing 
the measurement probabilities as q(x,= kJx,=j,r,). The bet- 
ter the precision of rt, the higher q(x,=jIx,=j,r,) and the 
lower q(, = k I x(  = j, r,), where k 0 j. For a perfectly precise 
technology rt' (one having no measurement errors), we have: 
q(x,=k 1x,= j,r',)= 1 if k= j, 0 otherwise; k, j= 1, 	 n. 	(15) 

At the other extreme, for a totally imprecise technol-
ogy P, we have: 

(16) 

Expression (16) represents an inspection technology which 
provides no new information to the decision-maker, or that 
does not change any previous information. 

Since the effect of not inspecting the facility at the 
beginning of period t is to leave the previous information 
unchanged, we can model the no-inspection case as an 
inspection with a totally imprecise technology, such as f 
of (16). The Dynamic Programming formulation of the joint 
inspection and M&R problem can hence be written, by extend-
ing (14) to include two inspection alternatives: inspect, 
using the available technology, or do not inspect (which is 
equivalent to inspecting with r,). 

q(x,=k I  x,= j,r',)=n; k,j= 1,...,a. 
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The Dynamic Programming formulation is: 

✓T("Tt  IT) =0, VPTIIT 
and 

	

n 	 n 

1(PiI I1)= min ( E P1(x1 =ill )Lca(a , lx, =i)+a £ P(x~.i=Jlx t = i , a,)cu.(x =J)+ 

	

co,. ,,. ■ > 1-1 	 j-, 

	

n 	 n 
acm(r ,.1 )+a E 1)(x1.1=11x1=i,a1) E 9(x,,1=klx,.,=J , r,.1)✓ ,, i(P1.1I 1 ,.i)]) 

	

j-I 	 k - I 

VP,11,, t=0,1, 	T-1 	 (17) 

where: 
1t1 ={l,,a„r„,,z,,, =k) 

Solving program (17) for a specified planning horizon T 
will yield the minimum expected cost J0(P0II0) and the 
optimal sequence of policies 

n ={µo(polio),µ1(P1111),...,µ1-1(PT-11IT-1)), where I11(PtIi,), 

the optimal policy for period t, specifies the optimal 
inspection and M&R activities for each possible information 
vector at time t, PtIIt• 

5. PARAMETRIC STUDY AND CONCLUSIONS 

In this section, a parametric study is performed to 
investigate the effect of measurement uncertainty on the 
minimum expected cost obtained by the two versions of the 
LMDP (LMDP with annual inspections and unconstrained LMDP). 
This study also demonstrates a useful capability of the 
Latent Markov Decision Process: the quantification of the 
benefits of using more precise measurement technologies. 

In this empirical study, the condition scale of the 
facility was described by the PCI (Pavement Condition 
Index, Shahin and Kohn 1981) which has values in the range 
0 to 100. This range was divided into 8 states, that is: 
i=0, 1,..., 7 (each state represents an average of 12.5 
units on the PCI scale), as in Carnahan et al (1987). The 
transition probabilities and associated unit costs were 
adapted, with few modifications, from Carnahan et al 
(1987), for the following three activities: routine mainte-
nance, two-inch overlay, and reconstruction. The minimum 
allowable state for the facility was set to i=3 (i.e., the 
penalty has a value of infinity for states 0, 1 and 2 and a 
value of 0 elsewhere). 

The planning horizon (T) for the study was set to 10 
years and the interest rate to 5 %, which corresponds to a 
discount factor (a) of 0.9524. The initial information 
vector, Po ll o, was set to: 

Po(x0=7 1 10)= 1.0, Po(x0=tI/0)=0.0, t=0,...,6. 
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Five hypothetical cases of measurement precision were 
analyzed in the parametric study. The measurement errors 
were assumed to be normally distributed, with zero mean and 
standard deviations of 0.0, 2.5, 5.0, 7.5, and 10.0 PCI 
units respectively. 	These distributions were then trans- 
formed into discrete measurement probabilities by using 
basic theorems of probability. 

The five hypothetical measurement technologies analyzed 
in the study were assumed to have equal unit costs. A 
comparison of existing technologies which was conducted for 
the FHWA (Hudson et al 1987) provided unit costs for dif-
ferent technologies. The average of these unit costs was 
used as the unit cost of measurement in this study. 

The results of the study are summarized in Figure 1. 
It shows the variation in minimum expected costs, 10(Folio) 
as a function of the standard deviation of measurement, for 
the two LMDP algorithms: annual inspections (upper curve) 
and unconstrained inspection frequency (lower curve). 

The main observation that can be made regarding both 
curves is that the minimum for 10(Po/to)  lies at the 
extreme left, that is, when the standard deviation of the 
measurement technology is the smallest. This trend shows 
that minimum expected lifecycle cost increase with an 
increase in measurement uncertainty, which is an intu-
itively appealing result. The difference in lifecycle 
costs between different levels of precision is the benefit 
of more precise measurements. 

The difference between the first and the second curves 
shows the effect of forcing inspections to take place at 
every year in the LMDP model with annual inspections. This 
difference is equal to the savings achieved by the uncon-
strained LMDP by selecting to inspect only when it is cost-
effective to do so. 
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Fig 1: Effect of Measurement Uncertainty 
on minimum expected cost 
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