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1. INTRODUCTION 

The society in which we live today is highly informational, and the car we drive is 
no exception. Accordingly the effects and advantages of providing motorists with 
information have been extensively discussed. In urban areas, there has been an increase 
in user demand brought on by concentrations of socioeconomic activity, and delays of 
improvement or new construction of roads caused by an increase in the value of real 
property and by land use limitations; thus, traffic conditions on road networks must be 
seriously considered. Providing information is apt to be regarded as a short-term 
scheme to relieve the conditions on urban road networks. In the long run, the level of 
service of road networks available is advanced by providing information. 

Delivering motorists information about alternative routes' traffic conditions in 
assisting their route choices and guiding them to utilize existing road networks effi-
ciently is regarded as one possible and effective strategy for traffic management. 
Further evaluation of the content of the delivered information is required, however, in 
catching up with the advancement in hardware. But some people have doubts about 
the effect of providing travelers information. Amott et al.(1), for example, examined 
the relation between the quality of information (information on road capacity) and 
travel cost, and pointed out that providing low quality information induces higher 
costs than providing no information. Therefore, we should clarify the relation be-
tween information delivered and travel behaviour in order to evaluate the effects of 
providing information. 

When we consider delivering information as a means of traffic control, the 
primary targets are commuters and motorists on business in congested urban areas. 
These motorists repeatedly take specific routes almost everyday and experience 
day-to-day varying traffic conditions on the routes. Under such circumstances, the 
questions become, according to accumulation of driving experience and information 
acquisition, how is a motorist's knowledge attained, and can the 'perfect information' 
hypothesis of user-equilibrium assignment be achieved. In addition, we need a model 
which dynamically expresses motorist route choice in order to estimate motorist 
response to certain given information, and evaluate the effects of information on traffic 
conditions. These objects require time-series observations of motorists behaviour. 

In this study we propose an experimental approach that repeatedly asks 
participants their responses for hypothetical route choice in a laboratory. Since we need 
panel data in order to collect time-series data in investigating the dynamics of travel 
behaviour. In this study, we aim to examine the relation between travel experiences and 
dynamic route choice, especially the mechanism of travel time prediction. In the future, 
in order to evaluate the effects of providing travelers with traffic information, we are 
going to build up the dynamic route choice models based on random utility theory 
using the knowledge obtained in this study. 

The rest of this paper is organized as follows. The basic concept of the dynamic 
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route choice model using through random utility theory is discussed in Section 2. The 
outlines of the laboratory-like experiments conducted are roughly explained in 
Section 3. Some features of experimental results are presented and we attempt to 
classify participants according to the index in clarifying the characteristics of route 
choice in Section 4. In Section 5, considering the results in the preceding section, 
Predicted Travel Time Models that correspond to the deterministic utility function in 
random utility model are estimated. The last section discusses future extensions. 

2. THE ROUTE CHOICE MODEL 

2.1. Concept of the Route Choice Model 
Construction of a route choice model which includes a travelers' behaviour rule is 

attempted. The model is based on the same concept as the random utility model. 
Horowitz mentions 
that random utility 
models provide the 
only currently avail- 
able methods for 	 start up 

developing empirical- 	 4 	  Initial Information 
ly 	implementable 	

Purpose of Trip testable travel demand 	  
Drivers' Attributes 

Travel Time Factor Cost 	Psychological Factor it theory of choice (2). Factor 

Random 	Utlllt 	• Travel Time 	 Beautiful Scenary y 	•
• Confidence of 	 -Safety 

models assume that 	
Travel Time 	 • Comfort to Drive 

• Easy to Understand the individual selects 	 ] 	 
the alternative with 
the greatest utility 
among the available 	 ÿ 	  Traffic Condition 
alternatives. In this 	 Route Choice 	

M 	 

study, according to 
this assumption, the 	 V  
route choice model 	 I  Traffic Volume I 	(Aggregate Yodel) 

assumes that the  
Traffic Floe Yodel traveler predicts each 	 

Experience 	• Travel Tine available route's utili- 	Accumulation C 	Congestion 

ty based on personal 	 • Travel Cost 
driving experiences 
and provided informa-
tion, and chooses the 
route which is likely 
to provide the greatest 	 Fig. 1 Basic Concept of Route Choice Mode] 
utility. 

The explanatory factors of route choice are assumed to be as follows. 
1. Travel time factors (e.g. travel time, confidence of travel time) 
2. Cost factors 
3. Psychological factors (e.g. beautiful scenery, safety, comfort to drive, easy to 

understand) 

models that are con-
sistent with an explic- 
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The outline of the comprehensive route choice model which includes these factors 
is shown in Figure 1. As travel time factors and cost factors are quantitative, the route 
choice model can easily take them as explanatory variables. But since psychological 
factors have not been analyzed enough to be understood, they are not adequate as 
explanatory variables for the route choice model at present. 

In this study we choose the travel time as the explanatory variables for the route 
choice model for two reasons. The first reason pertains to the objects of the route 
choice model. The route choice model is going to be used for examining the effects of 
delivering information as a means of traffic control. The primary targets of such traffic 
control are commuters and motorists on business in congested urban areas. They make 
much of travel time and hope to arrive at their destination without delay caused by 
traffic congestion. Second, the traffic assignment model, one of the existing static 
travel demand models, takes travel time as an explanatory variable. Therefore, a route 
choice model that includes travel time as its explanatory variable is constructed. 

2.2. The Application of Laboratory-like Experiments 
In this study we assume that every motorist makes a route choice decision in 

predicting his travel time based on previous driving experiences and provided 
information. We intend to grasp the relation between travel time prediction and driving 
experiences and provided information by estimating a travel time prediction model 
whose explanatory variables include experiences and information. Estimating this 
model corresponds to identifying the utility function of the random utility model. 

In this study we propose an experimental approach that repeatedly ask participants 
their responses for hypothetical route choices in a laboratory. Observations acquired by 
such experimental approach are regarded as stated preference data. Panel data is neces-
sary to investigate the dynamics of a motorist's route choice and to estimate the 
parameters of a Predicted Travel Time Model. It is difficult to acquire repeated travel 
behaviour's revealed preference data, because of the inaccuracy of the data, expense, and 
term of study, etc. Therefore, the parameters of the model are estimated using SP data. 

But there is still the question of whether the acquired SP data describe travelers' 
actual behaviours. We are going to examine whether the model constructed using SP 
data has external validity in the future. 

In discussing laboratory choice experiments and SP data, Horowitz states that it is 
unrealistic to expect that models based on laboratory choice experiments are directly 
transferable to the real world except for special cases. Rather, the main value of 
laboratory-based models is likely to be in providing information on functional 
specifications and coefficient ratios (2). Therefore, we would like to construct a 
prototype of route choice model based on laboratory route choice experiments, and 
improve the model through repeated simulations and experiments. 

3. AN EXPERIMENTAL APPROACH TO ANALYZING ROUTE CHOICE 

3.1. Premises of the Experiments 
In designing the experiments, the following premises are assumed: 

1. Dozens of participants are simultaneously and repeatedly asked for a hypothetical 
route choice. Each participant predicts the travel times for all of the alternative routes 
and then chooses a route for him/herself. 
2. Each iteration of the experiment corresponds to one day's morning peak period. 
3. Departure time is fixed and choice dimension involves only routes. There are two 
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Route 2 

Fig. 2 Hypothetical Routes in the Experiments 

Table 1. Designs of Experiments 

Designs of the Experiments 

Experiment A 	 Experiment B 

Number of Participants 
Number of Iterations 

56 	 82 
21 	 21 

Purpose of Trips 
Time Period 
No. 	of OD Pair 
No. 	of Routes 
OD Traffic Volume 

Characteristics of Routes 

Length 
Capacity 
Travel Time Function 

Factor of Route Choice 
Information Provided 

Questions 

commute to work 
1 hour in the morning peak(e.g.8:00-9:00) 
1 pair with 1 direction 
2 routes in parallel 
5600(veh/h) 

Route 1 	 Route 2 

20km 	 I5km 
C = 4000(ô /h) 	 C = 2800(/h) 
t = t o 	{1+a(V/C)'} 	 t = t o 	11+a (V/C)'} 
a =1. 00. 	t o=20(min) 	a =1.00. 	t o=15(min) 

each participant's predicted travel time 
1. characteristics of Routes, 	e.g. 	length, 	No. 	of lanes, 

free-flow travel time 
2. actual travel time on the route chosen for the last 

iteration 
I. predicted travel time on the both routes for the next 

iteration 
2. choice of the route for the next iteration 

alternative routes that connect one O—D pair (see Figure 2.). 
4. Participants predict the (n+1)—th iteration's travel time based on preceding iterations' 
travel experiences. Travel experience can be defined as the route chosen by each 
participant, actual travel time on the chosen route and the travel time prediction error 
(the difference between the predicted and actual travel time). 
5. The distribution of departure times is not considered. A conventional performance 
function (e.g. a BPR function) is used to represent the relationship between the route 
flow and travel time. 

3.2. Experiment Designs 
Laboratory route choice experiment designs are shown in Table 1. As there is no 

space for a full and detailed explanation about the experiments, see reference (4) for 
further necessary information about the route choice experiments. In conducting the 
experiments, for each iteration a questionnaire sheet is distributed to each participant 
and then recalled. Each iteration of the experiment consists of the following steps: 1) 
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Fig. 3 Route Choice Rate Versus 
Iteration (Experiment A) 
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the experimenter presents the last (n-th) iteration's results (the route chosen by each 
participant and the actual travel time on the chosen route), 2) each participant predicts 
and writes the travel time for each route for this ((n+1)-th) iteration, and 3) each 
participant chooses a route for this iteration. The experimenter informs participants of 
the characteristics of the routes at the beginning of the experiment. 

In this study two types of experiments, Experiment A and Experiment B, are 
conducted. These two experiments differ only in the way to the actual travel time is 
determined. In Experiment A, the actual travel times are calculated endogenously by 
aggregating the route choices of the participants, whereas, in Experiment B, the actual 
travel times are exogenously determined beforehand. In Experiment B, total traffic 
volume is fixed at Vo  and traffic volume on each route oscillates periodically around the 
equilibrium flow(V /2) relative to the sine-curve. Actual travel time on each route is 
calculated by substituting link travel time function with traffic volume as shown in 
Table 1. 

Experiment B was conducted three times at different places and times. 
Experiment B's data were acquired by combining these three independent samples into 
one sample. The validity of pooling data in Experiment B has been examined through 
variance analysis. The travel time prediction error TPE is adopted as a dependent 
variable that reflects the time-dependent participant's character. The experimental case 
and participant attributes (car license ownership and driving frequency) are adopted as 
explanatory variables. As a result of variance analysis, the validity of pooling data was 
proved. There is no space for an extended description of the variance analysis results. If 
further explanation is needed, see reference (4). 

Participants attributes (sex, age, car license ownership, driving experience / 
frequency / objectives, car ownership) were obtained through a questionnaire for further 
analysis. Another participant questionnaire for participants focusing on actual route 
choice and on outside factors which influenced their route choice was also conducted 
after the route choice experiment to roughly examine the relation between route choice 
in the laboratory and that in the real world. 

4. A PRELIMINARY EXAMINATION OF EXPERIMENTAL RESULTS 

4.1. An Analysis of the Route Choice Rate 
At the outset, let us analyze the 

experimental results from the point of 
view of the route choice rate. Figure 3 
plots Experiment A's route choice rate for 
route 1 and route 2 against experimental 
iteration. The route choice rate corre-
sponds to traffic conditions, namely, 
traffic volume on each route. From the 
9th to the 14th iteration, traffic conditions 
on each route vary infinitesimally around 
the equilibrium state and reach a relative-
ly stable state. From the 15th to the last 
iteration, traffic conditions on each route 
continue to oscillate. Traffic volume on 
route 1 is larger while traffic volume on 
route 2 is smaller than volume in the 
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lation of traffic conditions on each route 
will converge or not. 

Figure 4 plots two types of route 
choice rates for route 1, an actual and a 
given rate, against experimental iteration. 
The actual route choice rate is calculated 
by aggregating the participant's route 
choice. As we have mentioned before, a 
given route choice rate is determined in 
advance. In Experiment B, traffic volume 	°, ° 5 7 9 „ 19 15 17 19 21 
continues to oscillate from beginning 	 '°""'°^ 

to end unaffected by the participant's 	Fig. 4 Route Choice Rate Versus 
route choice. Travel times provided for 	Iteration (Experiment B) 
the participants are determined exogenously. Therefore, route choice rate continues to 
vary and appears not to reach a relatively stable state according to the oscillation of 
traffic condition on each route. 

4.2. Classification of Participants 
A number of route switches and rational route choices are used for the indexes 

that describe the characteristics of participant route choice in this study. The term 
"rational route choice" can be defined as choosing the route whose travel time predicted 
by each participant is smaller than (or equal to) that for another route. The results of 
both experiments are presented in Table 2 and Table 3. These tables indicate the 
relation between the route switching rate and number of rational choices. 
In both experiments, many participants chose their route rationally. About 39% of 
participants in Experiment A and 56% of participants in Experiment B chose their 

Table 2 Relation between the Number of Route Switches and Number of Rational Route Choices 
Number of Route Switches 

Total 
Experiment A 0- 3 4 -- 7 8  

Number of Rational --17 4 	(7. 1) 0 	(0.0) 0 	(0.0) 4 	(7.1) 
Route Choices 18 3 (5.4) 2 	(3.6) 2 	(3.6) 7 	(12.6) 

19 2(3.6) 4(7.1) 1( 	1.8) 7(12.6) 
20 6 	(10.7) 7 	(12.6) 3 	(5.4) 16 	(28.6) 
21 6 	(10.7) 8 	(14.2) 8 	(14.2) 22 	(39.1) 

Total 21 	(37.5) 21 	(37.5) 14 	(25.0) 56(100.0) 

Table 3 Relation between the Number of Route Switches and Number of Rational Route Choices 
Number of Route Switches 

Total 
Experiment B 0 --- 5 6 ^- 9 10-- 

Number of Rational ^-17 9 	(11.0) 5 	(6.1) 0 	( 	0.0) 14 	(17. 	1) 
Route Choices 18 0 	(0.0) 0 (0.0) 1 	( 	1.2) I 	( 	1.2) 

19 0(0.0) 4(4.9) 3(3.6) 7(8.5) 
20 2(2.4) 7(8.5) 5(6.2) 14(17.1) 
21 9 	(11.0) 24 	(29.3) 13 	(15.8) 46 	(56.1) 

Total 20 	(24.4) 40 	(48.8) 22 	(26.8) 82(100.0) 

equilibrium state. We cannot judge by 	;m 
this experimental result whether the oscil- 
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on Prediction Error 

Experiment B DF Sum of 
Squares 

F- 
Value PR > F 

Yodel 93 5605. 00 1.69 0. 0001 
Error 1238 44214.81 

Source  
Iteration 	O 17 2312.73 3.81 0.0001 
Router of  
Route Stitching ® 2 819.07 11.47 0.0001 
Frequency  
of Driving 	O 2 329.87 4.62 0.0100 

OO x ® 34 1059.36 0.87 0.6790 . 
O x O 34 1032.54 0.85 0.7137 
®x ® 4 86.66 0.61 0.6579 
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route rationally from the begin-
ning to the end of the experiments. 
In Experiment A, approximately 
93% of participants chose their 
route rationally more than 18 
times while 83% did in Experi-
ment B. It follows from what 
has been said that many partici-
pants considered the instruction 
given at the beginning of the 
experiments in which each 
participant was informed that 
choosing a route according to 
his or her predicted travel time 

Table 4 Effects of the NRS and the Participant Attributes 
on Prediction Error 

Experiment A DF Sum of 
Squares 

F- 
Value PR> F 

Model 93 8350.69 2.42 0.0001 
Error 860 31968.27 

Source  
Iteration 	® 17 3872.96 6.13 0.0001 
Router of  
Route Snitching ® 2 1170.79 15.75 0.0001 
Frequency 	

© of Driving 
2 29.74 0.40 0.6705 

OO x ® 34 1530.33 1.21 0.1917 
OO x © 34 1336.66 I.06 0.3805 
ex (3) 4 343.32 2.31 0. 0564 

means choosing route rationally. 	Table 5 Effects of the NRS and the Participant Attributes As there is little difference in the 
number of rational route 

choices of each participant, the 
number of route switches NRS 
is used for the index that de-
scribes participant route choice. 

Considering the mean value 
and standard deviation of the 
number of route switches NRS, 
we may classify the participants 
into three groups. 
Experiment A 
Group Si: participant whose NRS is _ 
Group S2: participant whose NRS is greater than or equal to 4 and less than 8 
Group S3: participant whose NRS is greater than or equal to 8 

Experiment B  
Group Si: participant whose NRS is greater than or equal to 0 and less than 6 
Group S2: participant whose NRS is greater than or equal to 6 and less than 10 Group S3: participant whose NRS is greater than or equal to 10 

The significant difference among these three groups in travel time prediction is 
examined using variance analysis. Table 4 and Table 5 indicate the variance analysis 
results. Travel time prediction error TPE is adopted as a dependent variable. 
Explanatory variables consist of experimental iteration, the participant group classified 
by the number of route switches and the group divided according to participant at-
tributes (driving frequency). In accordance with the data form the additional analysis of 
participant attributes, participants are classified into three groups: 
Group Fl: participant who drives everyday 
Group F2: participant who drives less than five days a week 
Group F3: participant who seldom drives or doesn't own car license 

In both experiments, we confirm that experimental iteration and the number of route 
switches affect travel time prediction significantly. Therefore, three Predicted Travel 
Time Models are estimated using the samples mentioned above segmented by the 
number of route switches. Also, a Predicted Travel Time Model where the dummy 
variable includes the participant group classified by the number of route switches is 
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Table 6 Relation between the NRS and the Feature of Everyday Roule Choices 

Experiment A Number of Route Switches Total 
Feature of Everyday Route Choice 0 -3 4 -7 8 -  

Knowing alternative routes 
an 	using alternative routes. 
Knowing alternative routes 
but not using alternative routes. 
Not knowing alternative routes 
and not using alternative routes. 
No Answer 

12 

8 

0 
1 

(21.4) 

(14.3) 

( 0.0) 
( 	1.8) 

10 

8 

2 
1 

(17.9) 

(14.3) 

(3.5) 
( 	1.8) 

8 

3 

1 
2 

(14.3) 

(5.4) 

( 	1.8) 
(3.5) 

30 

19 

3 
4 

(53.6) 

(34.0) 

(5.3) 
(7.1) 

Total 21 (37.5) 21 (37.5) 16 (25.0) 56(100.0) 

Table 7 Relation between the NRS and the Feature of Everyday Route Choices 

Experiment B Number of Route Switches Total 
Feature of Everyday Route Choice 0 - 5 6 - 9 10- 
Knowing alternative routes 
and using alternative routes. 
Knowing alternative routes but not using alternative routes. 
Not knowing  alt rnative routes 
I.:4. not using alternative routes. 

No Answer 

7 

11 
2  

0 

(8.5) 

(13.5) 
(2, 4)  

( 	0.0) 

18 

20 
2  

0 

(22.0) 

(24.4) 

(2.4) 
(0.0) 

8 

13 

1 
0 

(9.7) 

(15.9) 

(1.2) 
( 	0.0) 

33 

44 

5 
0 

(40.2) 

(53.8) 

(6.0) 
( 	0.0 ) 

Total 20 (24.4) 40 (48.8) 22 (26.8) 82(100.0) 

estimated. In Experiment B, driving frequency affects travel time prediction signifi-
cantly at a confidence level of 99%. This is not true for in Experiment A. In this 
study, considering the number of route switches, we are going to estimate Predicted 
Travel Time Models in analyzing the interrelation between participant route choice 
and travel time prediction mechanisms. 

4.3. The Relation between Respondents in Experiments and Actual Route Choice 
As mentioned previously, a questionnaire for participants on route choice in the 

real world was conducted and used in roughly analyzing the relation between 
participant responses during experiments and actual route choice. Table 6 and 7 indicate 
the findings of the investigation. Excluding those who did not respond, about 94% of 
participants knew alternative routes available for commuting in Experiment A, while 
94% of participants knew of alternative routes in Experiment B. 

There are many participants who belong to Group S3 in Experiment A who 
switch their route according to day-to-day traffic condition. We guess that the route 
choices of participants who belong to groups other than Group S3 in Experiment A are 
uncharacteristic. From a microscopic point of view, we cannot say for certain whether 
each participant's route choices in the experiments correspond to actual route choices 
on one-to-one basis. We regard a one-to-one correspondence as the observation of a 
participant who switches his/her route frequently in experiment and in the real world. 
But considering the NRS possibilities, we believe that the findings acquired through 
these experiments can explain the diversity of actual route choice behaviour in part. 

5. PREDICTED TRAVEL TIME MODELS 

5.1. Travel Time Prediction Mechanisms 
In this study, the assumption that a participant chooses a route according to his 
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Table 8 Definition of Variables 

No. of 	 at n-th iteration 
Iteration 
	 Chosen Route 

n Predicted Travel Time 
n Prediction Error 
n Actual Travel Time 

n+l 	Corrective Value 
n+l 	Predicted Travel Time 

. . — t . (=x,°) t , n 
t, ° ( = y.° +1 ) 

n+I 

travel time prediction is made. It is assumed that each participant predicts travel time 
for both routes based on previous travel experiences. Since each traveler repeatedly 
chooses his/her route, it seems reasonable to suppose that the travel time prediction 
mechanism is affected by previous travel experiences. Therefore we may say that this 
travel time prediction assumption is valid. 

Conforming to these assumptions mentioned above, Predicted Travel Time 
Models are estimated. It is possible to treat the previous predicted travel time PT and 
travel time prediction error TPE, as well as the actual travel time for the chosen route, 
as explanatory variables representing travel experience. There is a possibility that both 
the predicted travel time TP and travel time correction value TC will be selected as 
dependent variables. In order to select the variables for Predicted Travel Time Models, 
the correlations between variables representing travel experiences and dependent varia-
bles have been examined. Here, there is space only for explaining the results. If further 
explanation is desired, see the reference (4). In both experiments, for the chosen route 
(regardless of route number), correlations between the TC and the previous iteration's 
TPE are evident. For the route not chosen, there seems to be no relation between the PT 
and previous travel experiences, in spite of the fact that the PT seems to correlate with 
the previous iteration's PT. Also, the correlation coefficient between the unchosen 
route's PT and chosen route's PT is low. Therefore, this study focuses on the chosen 
route and the Predicted Travel Time Models in which the previous iteration's TPE is 
used as the explanatory variable and the TC is selected as the dependent variable for 
estimations. 

Though the experiments conducted in this study are very simplistic, the diversity 
of the participants' route choice is observed and the variety of each participant's stand-
ard of route choice is taken into account. This study selects the number of route switch-
es as the factor for explaining the characteristics of route choice. Thus, the models are 
estimated considering the NRS. The Predicted Travel Time Models estimated are as 
follows: 

Model 1 : model estimated using all data 
Model 2 : model where dummy variable includes the participant group classified by the 

number of route switches 
Model 3 : model estimated using the sample segmented by the number of route switches 

Explanatory and dependent variables of the Predicted Travel Time Models are 
shown in Table 8. The model equations are 

Model 1 : yn+1=a1+ 3  xonYlx1n+51x2 +s1 	(n=3,4,....20) 	(1) 

Model 2: yn+1=a2+132xonY2x1n+82x2n+i-12d1+02d2+s2 	(n=3,4,....20) (2) 
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Model 3 : the same as that of Model 1 
Model 3-1 : model estimated using the Group S1 sample 
Model 3-2 : model estimated using the Group S2 sample 
Model 3-3 : model estimated using the Group S3 sample 

where yn+1 = isn+1 - tan, 
xkn = 155-k - tsn-k (k-0,1,2) 
d1  = 1, if participant belongs to Group Si 

0, otherwise 
d2  = 1, if participant belongs to Group S2 

0, otherwise 
e : random error term. 

Each model includes the latest three travel experiences on a chosen route as the 
explanatory variables. It assumes that travel time prediction errors TPE are 
accumulated as travel experiences and affect the travel time correction value TC. The 
predicted travel time PT is obtained by adding the TC to the preceding iteration's AT. 

Parameters of the models mentioned above are estimated by using the least 
squares method. When the model is estimated using panel data, because of each 
participant's time-series responses, an autocorrelation between the random error terms 
exists. Therefore the Parks method, which assumes a first-order autoregressive model 
in the random error, is used to estimate parameters. As there is no space for further 
explanation, see references 4, and 5. 

5.2. Estimating Models Considering the Number of Route Switches 
Table 9 indicates the parameters of each model estimated by using the Parks 

method. Absolute value 3 is the largest of the parameters which correspond to the 
travel experiences of each model, while absolute value of y is larger than that of 8 in 

Table 9 Parameters Estimates of Predicted Travel Time 
No. 	of 
Samples 

Parameter estimates (t-statistics) M S E 
a R 7 	6 n: 6': 

Experiment A 
Model 1 954 0.453 0.511 0.073 	0.034 - - 0.3402 

(24.7) (161)  (24.5) 	(11.1) 
Model 2 954 1.939 0.534 0.087 	0.047 -2.132 -1.508 0.3390 

(41.2) (232) (37.6) 	(20.4) (-17.7) (-59.7) 
Model 3-1 612 -0.044 0.371 0.087 	0.116 - - 1.0101 

(-6. 13) (162)  (46.3) 	(70.9) 
Model 3-2 162 0.825 0.784 0.135 	0.013 - - 0.8611 

(24.9) (205) (30.4) 	(5.51) 
Model 3-3 180 1.364 0.374 0.016* 	0.041 - - 1.0034 

(15.6) (26.2) (1. 13) 	(3. 16) 
Experiment 0 

Model I 1332 0.984 0.455 0.101 	-0.022 - - 1.5781 
(l. 9E7) 	(1.4E8) (2. 9E7)(-9. 9E6) 

Model 2 1332 1.486 0.465 0.110 	-0.015 -0.852 -0.529 3.0573 
(158) (1.8E8) (3.5E7)(-5.5E6) (-27.2) (-24.2) 

Model 3-1 252 0.538 0.513 0.086 	-0. 018* - - 1.0030 
(7. 42) (29.6) (4. 90) (-1. 04) 

Model 3-2 684 0.780 0.388 0.113 	-0.026 - - 0.4707 
(38.0) (145) (45.0) 	(-10.6) 

Model 3-3 396 1.879 0.558 0.111 	-0. 003* - - 0.8196 
(33.5) (127) (26.1) 	(-0.83) 

* : insiginificant at 99% confidence level 
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Table 10 Correlation Coefficients between Actual and Estimated Value of Dependent Variable 
Case Experiment A 

N Mean SD Min Max COR•' Variables y°" 
Actual 954 0. Ill 6.294 -36.0 92.0 

Model 1 Estimated 954 -0.063 3.386 -13.8 30.3 0.555 
Model 2 Estimated 954 0.061 3.499 -14.9 32.2 0.563 
Model 3 Estimated 954 0.115 3.748 -20.6 47.7 0.604 

Variables e." 	' 
Actual 954 30.77 5.946 1. 0 120.0 

Model 	I Estimated 954 30.60 3.359 12.0 58.5 0.481 
Model 2 Estimated 954 30.72 3.439 11.2 60.2 0.492 
Model 3 Estimated 954 30.78 3.728 6.58 75.7 0.543 

Case Experiment B 
Variables y" 	' N Mean SD Min Max COR•' 

Actual 1332 0.056 4.472 -20.0 20.0 
Model 	l Estimated 1332 0.069 2.820 - 9.6 8.2 0.607 
Model 2 Estimated 1332 0.092 2.860 - 	9.5 8. 1 0.612 
Model 3 Estimated 1332 0.077 2.887 -11.2 8.1 0.622 

Variables i." 	' 
Actual 1332 29.91 4.502 10.0 45. 0 

Model 	1 Estimated 1332 29.93 3.593 19.3 39.2 0.635 
Model 2 Estimated 1332 29.95 3.539 19.0 39.2 0.636 
Model 3 Estimated 1332 29.93 3.561 18.2 39.4 0.645 
*1: Pearson Correlation Coefficients 

the majority of the models. In other words, the most recent travel experience affects 
travel time prediction on the chosen route more strongly than earlier experience. The 
effect of travel experiences on travel time prediction is exponentially reduced as time 
passes. 

The constant term a can be regarded as the safety margin for the driver consider-
ing the safety risks (4). We compare the a of model 3 for three participant groups. 
According to the comparison, we obtain the results that the safety margin estimated by 
participants in Group S1 is the smallest and the largest value of safety margin belongs 
to Group S3. Namely, the greater the number of route switches is, the larger the safety 
margin is. Therefore we presume that there is an interrelation between the NRS and 
travel time prediction, and that the driver who switches his route frequently can be 
regarded as a driver concerned with travel time risk avoidance. 

Next we analyze the parameters in Model 3 that explain the degree of the effect of 
travel experience. The absolute values of these parameters of Group S2 in Experiment 
A and of Group S3 in Experiment B are larger than those of the other groups. 
Therefore, most participants who are highly affected by travel experience in predicting 
travel time belong to Group S2 in Experiment A. In Experiment B, Group S3 has the 
most participants whose travel time prediction is affected most strongly by personal 
travel experience. Judging from the above, we believe that the participant who does not 
frequently switch his/her route tends to predict travel time without much concern for 
personal travel experiences. 

In order to test the internal validity of each model, correlations between actual and 
estimated TCs and PTs, respectively, are examined. These correlation coefficients are 
shown in Table 10. Comparing maximum values, minimum values and standard 
deviations in each case, ranges of actual TC and PT are wider than that of the predicted 
TC and PT. Thus, the models estimated in this study appears unable to account for a 
value largely different from the mean value. 
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In both experiments, the correlation coefficients of Model 3 between estimated 
and actual dependent variables are the highest. The correlation coefficients of Model 1 
are the lowest. In other words, the models where the explanatory variable includes 
participant groups classified by the number of route switches as the dummy variable 
appear to be more valid internally. Therefore, there exists an interrelation between the 
mechanism of travel time prediction and participant route choice behaviour represented 
by the number of route switches. 

6. CONCLUSIONS 

The problems brought to view here are limited but we think that the initial steps 
for resolving these problems through an experimental approach have been successfully 
taken. Moreover, while the model's estimated results cannot be generalized, we are able 
to obtain useful information. For example, 
1. From a microscopic point of view, we cannot say for certain whether each 
participant's route choice behaviour corresponds to their behaviour in the real world. 
But considering the variety of number of route switches of each participant, the results 
of the experiments may represent the diversity of actual route choice behaviours. 
2. The most recent ravel experiences affect travel time predictions more strongly than 
earlier ones, and, the effect of travel experiences on travel prediction decreases as time 
passes. 
3. There exists an interrelation between the mechanism of travel time prediction and 
participant route choice behaviour depicted in the number of route switches. 

In future studies, the following issues are treated: 
1. We are going to estimate the Predicted Travel Time Model in which explanatory 
variables include participant attributes in order to improve internal validity. 
2. The possibility of transferring the Predicted Travel Time Model must be examined. 
For this, we will carry out the experiments in which the participants' characteristics will 
be further generalized and compared with this study's results. 
3. We will select the outside factors that enable us to explain the characteristics of 
traveler route choice behaviours. 
4. In the future, we will simulate the travel behaviour of motorists based on the 
knowledge acquired through this study and future studies in order to examine the 
validity of delivering information to motorists as a means of traffic management. 
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