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INTRODUCTION 

Urban travel raises remarkably similar policy issues from one large city to the 
next. These include excessive congestion, especially in the central areas, overuse 
of the automobile, land-use sprawl related to under-priced transportation facilities, 
disproportionate commuter travel at peak times, public-transit deficits, and concerns 
about the effect of transportation prices on low-income residents. Because every 
one of these issues is related to the price of travel, there is widespread interest in 
using price policies to address them. Perhaps the most studied of these is the 
potential use of pricing to optimise travel congestion, especially automobile 
congestion in peak times. Recent work, such as that reported on by David Newbery 
in Britain (Newbery 1990), have helped confirm the general view that congestion 
costs are high and that the private costs of automobile commuting are well below 
the public costs. 

- Underpricing of urban road use is often used as a reason for keeping public-
transit prices low, the argument being that aggregate welfare will be reduced if 
higher transit prices cause more travellers to switch to automobile travel which is 
priced inefficiently low. This in turn leads to transit deficits which financially 
straitened cities have difficulty supporting. Attempts to raise transit prices to cope 
with the financial problem frequently result in protests by and on behalf of the 
urban poor who claim a disproportionately high use of public facilities. Meanwhile, 
both low fares for public transit and the absence of efficient congestion charges for 
automobiles have been among the factors that have encouraged more travel, more 
commuting travel in particular, and that correspondingly have reduced the 
compactness of our cities and metropolitan areas, resulting in district-by-district 
imbalances between jobs and residences, especially in cities with strong central 
business districts. 

Although the issues I have described are all issues of urban travel, policy 
towards them is typically undertaken piecemeal. Policies for improved automobile 
pricing focus on the costs of automobile congestion, including automobile pollution. 
Public-transit policy is dominated by the financial concerns of transit authorities; 
and the political reaction to price proposals is often conditioned by considerations 
of distributional equity among the population. 

This piecemeal approach ignores, however, the interdependencies among the 
three sorts of issue, the issues of efficiency, of finance and of distributional 
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concerns. Policies that appear optimal from the perspective of any one of these 
issues may be distinctly inferior when viewed from the perspective of another. This 
paper proposes an analytical framework that may be used to understand better the 
nature of the interdependencies among the different issues. Given these 
interdependencies, a pricing structure that addresses optimally all three types of 
issue is derived. In this framework, the public authorities that provide urban 
infrastructure and operating services for both private-vehicle and public-vehicle 
travel are modelled as a single public sector, the transportation sector. 

This whole sector provides a variety of services to urban travellers over the 
course of a daily cycle of travel. Some of these services are for automobiles, some 
for public transit; some are congested and some not. Efficient pricing requires, as 
in standard models of urban transportation, that travellers face the appropriate 
marginal cost, including congestion cost, of their use of a service. But, over the 
whole sector, a budget constraint must also be met. There is an upper limit placed 
on the amount of general government revenue available to meet a deficit in the 
transportation sector; that upper limit may be zero, which means that the sector as 
a whole is required to break even. In addition, the sector may be required to take 
into account the effect of its pricing policies on the well-being of residents at 
different income levels; it may, for example, be told that its pricing policies should 
not worsen the existing distribution. Given these restrictions, the objective of the 
public transportation sector is to set prices on its different services in such a way 
that the aggregate well-being among the citizens it serves is maximized. 

My approach to modelling this set of issues is to draw on and merge two 
streams of literature on optimal pricing. One of these literatures, well known to 
transportation planners and economists, analyzes optimal transportation pricing in 
the face of congestion; the other, better known to those specializing in industrial 
and regulatory policy, involves the optimal pricing of the output of regulated private 
industries which necessarily are constrained to have aggregate revenues at least 
equal to aggregate costs. The transportation-pricing model was early explored by 
economists such as Herbert Mohring (Mohring 1976) and it continues to form the 
basis for much of the current discussion of optimal pricing. The principle of 
optimal, regulated prices was set out in such well known papers as Boiteux 1956 
and Baumol and Bradford 1970; this literature is closely related to that on optimal 
taxation associated with early work by F. Ramsey (Ramsey 1927). 

A pricing model that draws on both these approaches is described in the next 
section and the first-order optimality conditions are set out in section 2. Section 3 
analyzes the role played by the transportation sector's budget constraint, section 4 
discusses the use of transportation prices to address distributional issues, and the 
final section discusses some of the implications of this whole-sector approach to 
optimal pricing. 
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1. THE BASIC MODEL 

The transportation sector provides an assortment of travel services to the 
urban public, services that may be differentiated by mode, time of travel and 
location of travel. Modes may include private automobile, buses, commuter rail, 
and subway. The time of travel may be divided coarsely into peak and off-peak 
travel, but these travel times may be divided much more finely into smaller time 
intervals. Travel locations would ideally be defined in such a way that adequately 
differential pricing of differential congestion could occur, but location might most 
simply be thought of as road segments lying between cordon lines surrounding a 
principal commuting destination, the central business district perhaps. Whatever 
service distinctions are introduced, the agency is able by assumption to set separate 
prices for each. 

An individual's use of one of these services once is a "trip." Although trips 
may be differentiated in several dimensions and indexed by subscripts, perhaps "i" 
for mode, "j" for time of day and "k" for location, for simplicity of notation, with no 
loss in generality, I will use just the subscript "i" to index these services, where i 
ranges over all modes, all time periods and all locations. Individual consumers are 
differentiated by a superscript "h". Thus, an individual's (annual) consumption of 
type-i trips is given by x" and the vector of all types of trip by the individual is XI 
; the sum of all type-i trips is x, , and the vector of all trip types by all people is X,. 

Each individual has a utility function defined over his or her consumption of 
trips and an index of other goods, z"; the vector of z" over all individuals is given 
by Zh. z will be our numeraire good with a price of 1. The individual's utility 
function also includes a congestion function, y", which is a function of all trips X, 
, and of the fixed-cost resources that have been devoted to the provision of travel 
services by the agency. By using in the congestion functions X, , which is a vector 
of trip types undifferentiated by consumer, I have adopted the usual "anonymity" 
assumption that congestion is affected by total trips of a given type but not by who 
the trip-takers are. The fixed costs of transportation infrastructure in the congestion 
functions include an amount J that represents joint resources that cannot be 
assigned to any particular service, and amounts c, specific to each service i. The 
vector of all fixed costs identifiable with particular services is given by C, . Thus Id' 
= y h(X;  , J, CJ, and the utility of individual h, u", is given by u" = uh(zh Xh  , y h(X, 
, J, C,)). A social welfare function, W, determined outside the transportation sector, 
provides the necessary relationship among the utilities of all individuals in the area. 
I assume that this can be written in the separable form: W = W(u', u2, ... u", ...). 

The total cost of providing transportation services is given by a cost function, 
F, that shows in numeraire terms the cost of infrastructure, J and C, , and the 
operating cost of services X,. Thus, r = r(X;  , J, C,). (Again I have incorporated 
the anonymity assumption that costs are affected by total trips of type i but not by 
who makes the trips.) There is an overall resource constraint in this urban area 
which restricts to a given amount R the total use of resources for transportation 
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services plus all other goods z, where z is the sum of all z". 
The components of the model so far are similar to those of many optimal 

congestion-pricing models. Now what I want to add is the revenue constraint for 
the transportation sector. Total revenue is the sum of the revenue from the priced 
transportation services plus whatever transfer exists from general public funds. The 
price of each service, a policy variable under the control of the sector, is given by 
p„ and the vector of all prices by P,. Thus total service revenue is the inner product 

With the transfer denoted by T, the revenue constraint may be written as 
P,.X, + T = r(X, , J, C.). The transfer amount T is not under the control of the 
transportation sector, and could be zero. 

The services consumed by each traveller, xh, are assumed to be a utility-
maximizing amounts for the individual, given the prices set by the transportation 
sector and the amount of congestion. From this we can define an inverse demand 
function for each service as p, = p,(X, , J, C,). This formulation precludes the 
transportation sector's setting differentiated prices for each traveller, a limitation 
that has a welfare cost. 

In summary, the basic model consists of a social welfare function, W, to be 
maximized subject to two constraints, an overall resource constraint for the 
community and a revenue constraint for the transportation sector: 
MAXIMIZE W = W(u',..., u",...) with respect to zh  e Zh  and E X; , eh; J and c, 
E C, 

S. t. 	R- E  z h  r(X;  , J, C;) z 0 
h 

and 	P,•X; + T-r(X; ,J,CJ z0, 

uh=uh(zh, X;, y h(X, , J, C)) with
h 
 z0; aYh  s0; ay

h 
s0; and 

au  hh 
s0. Each price 

3Xl 	d1 	ac, 	ayh 
in the vector P, is a function of X;  , J, and C;  . 

2. FIRST-ORDER CONDITIONS FOR OPTIMAL PRICES 

Shadow prices or opportunity costs for each of the constraints are introduced, 
A l  and ,l2  . These multiply the constraints in the Lagrangian expression which is to 
be maximized. 

g = W(u', u2, ... uh, ...) + ,11[R - 	z h  - r(X;  , J, Ci)] + ,l2[P;•X, + T - r(X;  , J, CiA 
h 

First-order necessary conditions for a level value of this function may be 
written for four sets of variables: 1) the z" for all h; 2) the x; for all h and all i; 3) 
the infrastructure-cost variables c;  for all i, and J; and 4) the shadow prices A, and 

A2. In writing these I have made use of the fact that 
axh 

= 1 (recall that 
ax;  
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xt = E xth ) to show the partial derivatives of y", P and P, with respect to x°; as 
h 

h 
, - , and axt respectively. 

axi 

ag _ aw au h 

	

1, 	0; b'h azh 	au h âz h 	
1 (1) 

ag  aw au h E aw au h ayh ~
1 ar +~2[pt +xt ~t +E x ap~ - ar] 

axth au  au" ~ h h au h ayh ôxt 	âxt 	axt ~.t axt axt 

~_~ â~ arh a~, - A~ ~ F AaE xf ~~ - AZ ~, = o , Vi 

ag 	aw au h ayh - A 
~ 
ar + A

2L 	2-57[~ x ~~ - A dr = 0 ~ - td au h ayh ~l 	1 	 J ~ 

aeP = R - Ezh - r = 0 
ax, 	h 

a<1 = PtX t + T - r = 0 ax, 
These first-order conditions are sufficient to represent a welfare optimum 

provided the global conditions for a maximum and the local second order 
conditions are satisfied. For decreasing-cost services, these second-order conditions 
require that the relevant demand curves have a sufficiently large absolute slope 
relative to the cost curves, and I assume that these conditions are met. 

Equations (1) describe the way in which distributional issues are taken care 
of independently of transportation pricing policies. These first-order equalities 
essentially mean that lump-sum transfers of the numeraire good, "income," are 
being made so as to equalize the social welfare value of a unit of numeraire to 
every member of the community. That this can be done is an important assumption 
made, implicitly if not explicitly, in most optimal-pricing models. Its relaxation is 
dealt with in section 4. 

The W value of a unit of numeraire is seen in equations (1) to be A, , the 
shadow price on the first constraint. Dividing equations (2) and (3) by A, allow us 
to clear these equation sets of the partial derivatives of W and also to express the 
partial utilities of the consumers in terms of the numeraire good z. Individual 

	

h 	h 	h 
utilities in numeraire units I write as v°, so that av 	au 	Dividing 

	

axth 	axh T azh 
equations (2) through by A, in this way gives us: 

(3)  

(4)  
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h 	 h h 	 a av = —E-- aY + ar — ? +x ~d +~ 1 _ ar ,Vh, Vi (5) 

	

ax hh 
	

h &yh aXa 	axd 	11 
~P d d 

~t 1°1 '̀aX 
The left-hand side of equation (5) is the marginal utility to person h of the use 

of service i, in numeraire terms. It is this marginal utility that the utility-maximizing 
individual adjusts to the price p, set by the transportation sector. All other private 
costs, such as the length of time to take trip i, are already accounted for; the only 
remaining private adjustment is to adjust to the price of the trip. Thus, p; may be 
substituted for the marginal utility on the left-hand side of the equation.' 

It is also helpful for subsequent interpretation if the partial derivatives of price 
on the right-hand side of (5) are converted to inverse elasticities and cross 

elasticities. x1
-t 

and x1 -1 may be written as p,E t; and rI1 It respectively, where 
a 	t 	 a 

E, is the own-service inverse elasticity of x, and 	the cross-service inverse 
elasticity? As long as x; and x, are not complementary services, Ei, 0; the greater 
the substitutability between services i and j, the larger the absolute value of 
Making these changes to (5) and rearranging, we get 

h 	h pt (1 + ~2 + —2 da+ Az ~ I It = 	
âv ay + ar 	z ~  di 	(6) 

l Pfd 	- h ayh ax, 	axd 	X, axd 

The right-hand side of (6) shows the cost of a trip x, in terms that are familiar 
from standard congestion models of transportation pricing. These are the 
congestion cost itself' plus the marginal cost, if any, of servicing an extra trip. In 
addition, there is a third term representing the worsening of the budget problem 
when operating costs rise. If there were no budget constraint assigned to this 
sector, or if the budget constraint was not binding, then X2 would be zero. The left-
hand side of (6) would collapse simply to p, , and the right-hand side would contain 
the usual two marginal cost terms. This is the normal transportation pricing result. 
However, with a binding budget constraint, X2 > 0 and the term in brackets will 
lead to optimal departures from normal marginal-cost prices. As long as I e;; I <1, 
then E„<-1 and the bracketed term is necessarily less than 1. Thus, the budget 
constraint drives all optimal prices above the sum of marginal congestion plus 
service costs by proportions that depend differentially on the different elasticities 
and cross elasticities of each type of trip. Other things equal, the larger the 
absolute value of t;, (i.e., the lower is e;; I ), the lower the value of the bracketed 
term and the higher the optimal price for that service. Within the context of this 
model, that result is the equivalent of the well known Ramsey inverse-elasticity 
pricing rule for optimal prices of a revenue-constrained regulated monopoly. 

Clearly the magnitude of the shadow price or opportunity cost of the sector's 
budget constraint, X2 is an important determinant of optimal prices. In the next 
section I establish the conditions under which this shadow price will be positive. 
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3. THE BUDGET CONSTRAINT 

If transportation prices are set optimally, the significance of a budget 
constraint imposed on the whole sector depends on the nature of the congestion 
terms, yh, in each person's utility function. These are homogeneous functions: yh(0) 
= O. If, for everyone, their homogeneity is of degree zero or more in their 
arguments X, , C; , and J, then standard marginal cost prices will provide sufficient 
revenue to cover the costs of the sector, and these prices will be optimal. XZ will 
be zero in this case. Surpluses generated from some services must be used to cover 
deficits that may exist in other services, or to cover deficits attributable to 
unassigned costs, J. If the yh functions have less than zero homogenity then X2 > 
0 and the set of optimal prices will depart from marginal costs in ways described 
by equation (6). 

These propositions may be demonstrated by noting that the degree of 
homogeneity of any y" depends on the sign of the following expression: 

h 	h 
X• 

 

ay + J aY 	+ Ca 	If this is zero or positive then congestion costs over the aX1 	aJ 	 •
aci 

whole transportation sector are constant or increasing; if it's negative, then 
h 

congestion costs are decreasing. From this expression, we can substitute for 

p; (A) _ xi4
42 ar = 	avh f Ci ayh + J c?yh + 	xi 

aY1 J x1 	ax, 	h 	a 	x; 	C, 	x; a1 	,,, x. ax 

1621 1621 

n equation (6). Using A; to represent the terms within the brackets on the left-
hand side of (6), and assuming that the y" functions have zero' degree 
homogeneity, this yields 

which in turn may be written as 

	

X +02 ar 	av h a.~,h 	av h ayh 	.,,h ayh 
xi p; (A)-xi 	— _ Ec;E — + ✓E— + Exx- 

A1 	; 	I 	h ayh Ci 	h ayh d1 	1%i 1 h ayh 	1 
Substituting again from (6) gives us 

>xp, (A,) - 
x i +) 2 

xi ar = 	cc~ à ' h ayh + ✓r av h a
y 
	(7) 

r 	~1 i 	; 	i 	h ayh c; 	h ayh a/ 

Equation (7) may be interpreted using equation set (3), which defines the optimal 
amounts of resources to use in various forms of infrastructure. I define the c, and 
the J to be resources in numeraire units, so the marginal cost of altering the size 
of the various infrastructure dimensions is for all of them identically 1. Using this, 
and dividing (3) by X, and rearranging gives the optimal investment rules shown in 
equation (8) on the next page. Substituting from (8) into (7) gives equation (9). 

The left- and the right-hand sides of equation (9) are joined with an "equals" 
sign because of the initial assumption that the y" congestion terms had zero 
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E ~ 
h ayh 

+ 2 E X ~ = 1 + =
2 

, `di 
h i?Y h ~i 	X 1 1 ~ aci 	X1 (8) 

~,h ayh +-
2rx ~ = 1 + 

X2 

	

h aYh f 	 L~  
E xipr(Aj) ,11+Â2^x

' =Ec 1+~2_- EExi )+ 1+ ,12 _ 2 xt (9) 

	

X L♦~~' axt 	X ~1 	act / 	X1 A ~ GÙ 

homogeneity. If, under these circumstances, the shadow price of the budget 
constraint, A2 , is set to zero, each A; becomes 1, so the left-hand side is just the 
total revenue from all services less an amount to pay for operating costs'. The 
right-band side, with X2 = 0, becomes simply the sum of the infrastructure costs. 
So, net revenue has exactly matched fixed costs with all prices set to marginal 
service costs. The budget constraint is not binding. 

If the Y" functions have a degree of homogeneity greater than zero, then the 
left-hand side of equation (9) will be greater than the right-hand side, and marginal 
cost pricing, which will still be optimal, will yield a surplus of revenue over costs for 
the whole sector. However, if the y" functions have a degree of homogeneity less 
than zero, then the left-hand side of (9) will be less than the right-hand side, and 
pricing at marginal cost with a X2 = 0 would not yield enough revenue to cover 
costs. Since this violates the budget constraint, X2 must be positive and prices must 
be above marginal costs in the manner shown by equation (6). 

In summary, if congestion costs remain constant or rise in the face of equi-
proportionate increases in trips and in infrastructure costs, then unadjusted marginal 
cost pricing is optimal, but revenue shortfalls in any service must be met by 
surpluses generated in other services. (With constant or increasing-cost congestion 
functions, all services cannot be in deficit.) If congestion costs fall in the face of 
equi-proportionate increases in services and cost outlays, then marginal cost pricing 
is not optimal; X2 will be positive and optimal prices are all above marginal costs 
in inverse proportion to the value of the bracketed terms in equation (6). Let me 
turn now to consider the possibility that transportation prices will be required to 
satisfy distributive goals. 

4. DISTRIBUTIVE CONSIDERATIONS IN PRICING 

As long as equation (1) is satisfied, then transportation pricing should not 
have to respond to distributional concerns, at least not to concerns that are based 
on an acceptance of the social welfare function W. However, if z" is not distributed 
in such a way that (1) is satisfied, then we cannot use the results from (1) in 
generating equation (5), from which the basic pricing equation is derived. Instead, 
we might proceed in the following way. 

Take the first and second terms on the right-hand side of equation (2), 
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multiply and divide each by 	
"h 

and define (3h = 	ti 	ti , so that 

	

au" 
	

au " 

	

aw au" az" 	aw au"  h   h  	h  	h   h 
+~    	~ ~  "~ +   "~   ~   bh,di ---  -p   —  ~   p   -, 

	

au" axlh au" h au" aY" ax1 auh 	axlh h 	aYh ax1 

The 13" are sometimes called "welfare weights;" they measure the relative 
social value, according to W, of a unit of income going to different people.' Most 
social welfare functions would likely assign higher weights to lower income people. 
Using the above expression, we may now re-write equation (5) to get 

ph av" _ _E ph âv " "Y " +A1 ar _â2[p1+x, apt +E x, __L - ar ],dh,Vi 	(10) 
ax;' 	h 	ay" ax, 	ax1 	ax1 Pi ax1 ax; 

For any trip type i, the right-hand side of (10) is the same for all h, just as it 
was in equation (5). But the left-hand side has a significant difference. It has a 
marginal utility in numeraire units, which the maximizing consumer equates to 
price, but this is multiplied by a welfare weight which in general will be different 
for each person. Since the product of the two terms on the left-hand side is the 
same for everyone, the implication of (10) is that optimal prices should be 
differentiated by person, with people having a higher ph paying a lower price, and 
vice versa. Our assumption so far, however, has been that the transportation sector 
cannot price differentially to different people (if it could, it would also be efficient 
to differentiate according to the different price elasticities of different people — see 
note 2). Retaining this assumption, the constant price of type-i trips is p1 , and we 

al, "' 	av"' can re-write the left-hand side of (10) as p" p1- p1- ti , where 	is the 
ax; 	 ax;-  

optimal price of i-type trips for person h. Using f2, to represent the right-hand side 
of equation (10), this gives us the uniform price of i-type trips: 

h 
p1 = h + 	p 1-avh = ti + 1;h 	, Vh,Vi 	 (11) 

p 	ax; 	p 

The 1" term represents the loss at the margin for person h that results from the 
difference between the optimal, differentiated price and the uniform price p1 . If 
the term is negative, then this is a gain for that person. 

Write the mean p for the whole population as p h and suppose that 13 types 
using any given service i are distributed normally about a mean p;'. If optimal 
redistribution had occurred outside the transportation sector, then all ph would be 
equal, and equal to a.l; if this is substituted for the ph in equation (11), then all 
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losses are zero. For all i, the equation collapses to equation (5). However, with 
nonoptimal initial distribution, the best the transport sector can do is to adjust each 
service's price so as to reduce 11h to zero for the mean user (assuming symmetrically 

distributed user types around each service mean, r3 i ). This entails, as equation (11) 

indicates, lowering p, below the base-model optimum if Pi > TO and raising it if 

j 
h < 

p 
h If p+ represents the optimal price with optimal redistribution, then the 

optimal prices without such redistribution will be given by 

P; = 
(
12

) FP; 

With this pricing rule, the conditions that lead to a binding or a slack revenue 
constraint for the whole sector will still be those discussed in section 3, provided 
only that the distribution of service use, x; , over types of service is independent of 
the distribution of the mean welfare weights, "13,h , over types of service. 

5. IMPLICATIONS OF WHOLE-SECTOR OPTIMAL PRICING 

The distinguishing feature of whole-sector pricing is the interrelated effect of 
the several goals — efficiency, budget balance, and distributional equity — on the 
prices of all services. This interrelationship can be most conveniently summarized 
in the following equation, which combines equations (6) and (12). The optimal, 
whole-sector prices for all services i is given by 

h _ R ~ 
R ; `~ 

hh 
where (I) = -E av —+ aP +_ dP the right-hand side of (6), and, as in 

h 87 h ax d; A l dx 

equation (9), Ai = 1+ L2 +L2 ü+ L2E p!C11:r , the bracketed term on the left-hand 
X1 Al 	X114 PA 

side of (6). If optimal redistribution takes place outside the transportation sector, 
then all the welfare weights, (3h, are identically equal to Al and (13) is simply the 
pricing rule given by (6). If the budget constraint is not binding, then A; =1 for all 
i, and the pricing rule becomes the usual congestion-model, marginal cost pricing 
rule, modified by the distribution effect, if any. 

This model provides a formalization of what has recently been called an 
"integrated approach" (May and Gardner 1990) and a "package approach" (Jones 
1991). A few simple examples may help draw out its implications. Suppose that 
congestion is subject to constant or increasing costs across the whole sector, so that 
the budget constraint is not binding. Optimal prices should then be set at marginal 

(13)  
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congestion plus service costs for each service, modified up or down in inverse 
proportion to the average welfare weights of the service users. Suppose welfare 
weights are inversely related to income, and suppose that the average income of 
automobile commuters was just the population average, the average income of 
commuter rail commuters was higher than the population average, and that of 
public transit commuters was less than the community average. Then optimal 
prices for private-vehicle road use in commuting periods would equal marginal 
costs, prices for commuter rail travel would be above marginal cost and prices for 
public transit would be below marginal cost. The full costs of an individual service 
is not well defined if joint costs, J, exist across the whole sector. If there are no 
joint costs, then whether service revenues cover, exceed or fall short of service costs 
depends on the effect on the congestion terms of each service separately. Surpluses 
in one sector offset deficits in another, at optimal prices. 

Suppose that service and infrastructure expansion lowers congestion costs, 
which is the condition under which the budget constraint is binding. A, < 1 for all 
services and, neglecting distributional effects, optimal prices will be above marginal 
costs by a proportion that depends mainly on the price elasticity of demand for the 
service. If, for example, the price elasticity of off-peak public transit use was less 
than that of peak use, then, other things equal, the A, of off-peak use would be 
smaller and the price of off-peak use would be proportionately higher. Or suppose 
that service i was commuter parking in the central area. A very inelastic response 
to higher parking prices is sometimes taken to be an indication that such a policy 
is neither optimal nor effective. But, within the context of the whole-sector model, 
a low price elasticity (a high I t il l ) is a signal for a higher optimal price, relative to 
marginal cost. 

NOTES 
1. Equation (5) raises an interesting issue that has been more of an annoyance than a 
stumbling block for the theory of optimal congestion prices. The first term on the 
right-hand side is a sum of congestion effects across all consumers, including person h 
whose trip consumption is being varied. If person h takes into account some sort of 
"self-congestion" represented by the h"-component of this sum, then the utility 
adjustment to the price of the service must be not simply the marginal utility on the 
left-hand side, but this marginal utility minus the h1h  term of the congestion sum. This 
in turn means that there would have to be a different optimum price for every 
individual, because with this change the right-hand side would not be the same for 
everybody. This problem has typically been handled 1) by accepting the mathematical 
problem as theoretically insurmountable unless everyone has identical congestion terms; 
2) by acknowledging the problem but ignoring it by assuming that there are so many 
consumers that the congestion effect will be approximately the same no matter whose 
self-congestion is removed from the sum; and 3) by adopting a measure-theoretic 
formulation that assumes a dense continuum of consumers with a congestion integral 
that remains constant no matter how many individual consumers are removed from 
under the integration sign. Since I want to retain heterogeneity among the consumers, 
I have accepted implicitly either the second or the third alternative. 
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2.The inverse elasticity fu  is the proportionate change in price that accompanies a unit 
proportionate change in consumption. The cross-service inverse elasticity, £i;  , is the 
proportionate change in the price pi  that is necessary to keep demand for xi  constant in 
the face of a unit proportionate increase in the consumption of xi  (which entails a fall 
in p, ). Inverse elasticities and normal elasticities are related this way: eii =eii/(eÿe5), 
j#i; and Eu=1/en  . If we allowed the transportation sector to charge differentiated 
prices to different consumers, then the price effects in equation (5) would be specific to 
each consumer h. Optimal prices would then involve, with A, # 0, charging higher 
prices to those consumers with high own-service inverse elasticities (low normal price 
elasticities). 

3. Notice that the congestion-cost term is a sum of costs to all persons whose welfare is 
being taken into account. There is no reason why this set of people would include only 
those who travel. In other words, "congestion" includes the costs of externalities, 
including pollution costs, over the whole jurisidiction and not just the cost of time 
delays experienced by travellers. 

4. It is usually assumed that marginal operating costs are constant, so that the second 
term on the left-hand side of equation (9) exactly covers total operating costs. If, 
however, marginal operating costs are rising or falling, then there may be some 
inframarginal surpluses or losses associated with this term. 

5. David Starrett discusses this procedure in Starrett 1988, pp.11-15. 
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