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INTRODUCTION 
Demand models play a central role in the process of 

designing and simulating transport system. 
Calibration and specification of demand models are 

usually based on expansive, time consuming ad hoc surveys. 
Calibrated models may also not satisfactorily reproduce 
observed flows. 

On the other hand traffic counts on network links are 
an easily collectable and cheap information source on 
travel demand. In past years considerable attention has 
been paid to the use of traffic counts to estimate or 
update O/D matrices. Statistical framework and a review of 
different estimators can be found in Cascetta and Nguyen 
(1988). Numerical analysis of relative statistical perfor-
mances in Di Gangi (1989). 

The problem of integrating traffic counts in the pro-
cess of calibration/specification of demand model, received 
comparatively less attention. (Cascetta 1986, Willumsen 
1981, Hogberg 1976) Willumsen and Tamir, 1990). In this 
paper some GLS or Bayes estimators proposed by Cascetta 
(1986) are analysed. Their statistical formulations are 
briefly stated, computational aspects are described and 
statistical performances are analysed using numerical tests 
on a small network and real data on a medium size Italian 
town. 

1. NOTATION AND STATEMENT OF THE PROBLEM 

Consider a trasport network, abstracted into a graph 
model, consisting of a set N of Nodes and a set R of direc-
ted links (arcs). A node at which trips originate and/or 
terminate is called a centroid. Let trs  denote the average 
number of trips going from centroid r rto centroid s, within 
a given time period. Let t be a vector with conponents trs, 
t is usually referred to as an origin-destination trip 
matrix. 

Each origin-destination flow trs  subdivides on the 
network into path flows Frsk,  k e Irs  where Irs  is a subset 
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of all paths connecting the pair of centroids r and s. 
For a given link 1 e R, the sum of all path flows 

traversing this link is denoted by the link flow fl: 

fl = E 	E 	alk Frsk 
rs keIrs 

where alk  equals 1 if path k traverses link 1 and 0 other-
wise. In a more compact notation, eqn (1.1) may be rewrit-
ten as 

f = A F 	 (1.2) 

where A is the usual link-path incidence matrix, and f and 
F are, respectively, vectors of link and path flows. 

To every arc leR is associated an average unit travel 
cost c1(f), which may be a fixed constant or a function of 
link flows f. 

Define p rs  as the proportion of trip demand t trave- 
ling on path k connecting centroids r and s. 	e trip 
proportions Pkrs are generally implicit functions of the 
travel cost vector C, and satisfy 

E 
keIrs 

Pkrs =1  Vrs 
(1.3) 

Pkrs20 	VkeIrs 	Vrs 

The aim of an assignment model is to produce an approxima-
tion of the trip proportions Pkrs  based on assumption 
concerning the trip makers'route choice behaviour. From now 
on, Pkrs  will denote the assignment model's predicted 
proportions. The flow on a path k can be expressed as: 

Fk = trs Pk rs 

In a more compact notation eqn. (1.4) may be rewritten as 

F = P t 	 (1.5) 

P denotes the matrix of predicted path-choice proportions, 
where each row corresponds to a specific path and each 
column to a pair of centroids. The equations 1.2 wand 1.5 
can be combined obtaining the predicted link flow f : 

f*  = A P t 	 (1.6) 

The product of the first and second term on the right- 

(1.4) 
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hand side of this equation is referred to as the assignment 
matrix and denoted by: 

H = A P 	 (1.7) 

The above equations apply separately to networks of 
different modes (e.g cars, transit, pedestrians) as it has 
been shown by Cascetta and Nguyen (1988). 

In the following it will be assumed that the vector f 
may include flows on links belonging to different modal 
networks and that the incidence matrix, path choice frac-
tions and modal 0/D flows are consistently defined. 

Furthermore, let us assume that a demand function 
relating the multimodal O-D matrix to exogenous variables 
via a K-dimensional parameters vector 03 is correctly speci-
fied. 
The assumed demand model can be seen as a vgctorial func-
tion t (fi) transforming the parameter space S into the 0-D 
pairs space Sn. 

In general the actual 0-D matrix do not conform with 
that predicted by the model, even if we use the "true" 
vector R. This is because the model is only an approxima-
tion to real phenomena underlying mobility; furthermore 
mobility, strictly speaking, should be seen as a stochastic 
process over homogeneous time periods with a mean that is 
usually assumed to be given by the model. 

The above discussion can be summarized in the follo-
wing: 

t = t(a) + T 	E(T) = 0 	 (1.8) 

Assume also that traffic flows on a subset M of R have 
been observed. Let f denote the vector of these counts. 
Due to measurement errors, random variation in trip demand 
and trip maker route selections over time, and inherent 
errors in the network and assignment models, it is natural 
to assume that the traffic counts fl  , 1 e M, are observa-
tions of random variables. It is further assumed that the 
model's predicted value fl  represents fl  's mean value. 
This can be expressed as: 

f = Ht + E, 	E(E) = 0 	E(E,E')  = W (1.9) 

Finally, assume that additional information on parame-
ters of demand models Li -such as sample survey estimates, 
outdated estimates or values calibrated in similar areas-is 
also available. The general problem addressed here can be 
stated broadly as: 
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Determine an estimate of the parameters of demand 
models Ai by efficiently combining traffic counts based data 
and all other available information. 

Depending on the nature of the available information, 
the above problem may be formulated differently. For in-
stance, if sample based estimates are given, the estimation 
problem can be seen as that of attempting to combine two 
distinct sets of experimental data (survey estimates and 
traffic counts), related to the unknown parameters demand 
models Di. 

On the other hand, if an a priori probability distribu-
tion of a-formalizing analyst's subjective knowledge about 
the parameters (3• -is given, then the estimation problem 
will reduce to lhat of attempting to combine a priori 
information and experimental data. 

2. FORMULATIONS OF THE ESTIMATION PROBLEM 

This section formulates the parameters estimation or 
updating as optimization problems. 
The objective function of the latter depends on the stati-
stical inference techniques adopted. 
Within the classical inference approach, the generalized 
least-squares (GLS) methods for deriving objective func-
tions will be examined and contrasted to the Baye-
sianmethod. 

2.1. GLS estimator 

In this approach no distributional assumptions on the 
sets of data are needed. Let a3 denote the survey estimates 
of A3 obtained through traditional estimators, typically 
Maximum Likelihood ones. Considered the following stocha-
stic system of equations in A: 

R = L + 

f = Ht (a) + E (2.1) 

in which b is the sampling error with a variance-covariance 
matrix D, and E is the traffic count error with dispersion 
matrix W introduced earlier. The nonlinear Generalized 
Least Square (GLS) estimator ~3GLS of A3 may then be obtained 
by solving: 

DGLS= arg min(a -L)D-1 (~3^-Li)+(f^-Ht(ai))W-1(f-Ht(.i)) (2.2) 
D3ES 

S is the feasibility set of A3 values e.g. non positive 
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value for "cost" parameters in distribution or modal choice 
models. 

Statistical properties of nonlinear GLS estimators are 
only asymptotic, it can be shown that they are consistent 
and asymptotically normally distributed. Furthermor an 
aEEEoximate expression for the dispersion matrix BGL°  of 
L3 	(GLS estimator) can be obtained, (Cascetta, 1986), and 
show that the use of informations contained in traffic 
flows reduces the variances of model parameter estimates. 

It_is well, known that under a normality assumption for 
both L3 and f , nonlinear GLS and Maximum Likelihood esti-
mators coincide so that in this case also GLp ML estimators 
asymptotic efficiency can be credited to L3 

2.2. The Bayesian approach 

In the Bayesian inference framework, a priori informa-
tion on the parameters of demand models L3 is expressed as 
an a priori probability function g(Li), the parameters of 
which are a function of the a priori estimates (3 	of the 
unknown P i . The R i  are either rough or obsolete estimates, 
or estimates from other areas. 

On the other hand, the traffic counts represent an 
additional source of information about L3 with given proba-
bility L(f/Li); Bayes theorem allows these two source of 
information to be combined to provided the posterior proba-
bility function m(Li/f) (i.e., the probability of observing 
B conditional to the traffic count f ): 

m(L3/f ^ ) a L(f -/Li) g(L3) 	 (2.3) 

In principle, the above posterior probability function 
allows a confidence region to be generated for L3. In prac-
tice, due to computational complications, only point esti-
mators can be obtained as the maximum value of (the loga-
rithm of) the posterior distribution (the mode of the 
posterior distribution): 

BB = arg max In m(Li/f). 	 (2.4) 
.LIES 

The maximum posterior distribution estimator is a 
substitution for the expected value, when this latter 
requires complex numerical integration. 

If multivariate normal distibutions are assumed for the 
traffic counts, then the likelihood function L(f/(3) is 
given by (Cascetta 1984, 1980 
In L(f /L3)= -1(f /Ht(L3)) 147a 	(f - Ht(L3)) + constants (2.5) 
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On the other hand if is used a multivariate normal 
prior distribution, with mean L3 and dispersion matrix DE 
(Cascetta, 1986): 

9(L) a exp (-15 (Di-Di )' DB
-1 (a-Di^) 

yielding: 

Ln g(Li) = -1 (D-D )' DB-1 (Di-D3^) + constant 
	

(2.6) 

This formulation can be seen as a particular case of 
problem (2.4), when the objective is the sum of (2.5) and 
(2.6). 

Note that the nonlinear GLS and Bayes problems under 
the assumption made are formally similar even though their 
statistical interpretation are quite different. 

3. A SOLUTION ALGORITHM 

3.1. The projected gradient algorithm 

If in the objective function (2.2) or (2.4) we ignore 
the covariance terms in the matrix D and W, the optimiza-
tion problem can be reformulated as follows: 

* 	(Ri-ai
")2 	

(fl-Ers hlrs trs(D)12 ai = argmin Z(Di)= Ei 	+ 1 
aies 	Var (6i) 	Var (el) 

(3.1) 
Different computation methods exist that allow solving 

the optimization problem (3.1); all different techniques 
provide, for every k-iteration, three principal steps: 
a) research of feasible discent direction hk 
b) performe a line search to obtain the value µ, minimizing 

the objective function along this direction; 
c) compute a new point (if a stop test is not met) 

Dk+l = ~k + µkhk 

The gradient projection algorithm of Rosen with linear 
constraints was adopted (Shetty and Bazaraa, 1980). This 
method projects the gradient of the binding constraints in 
such a way that improves the objective function maintaining 
feasibility. 
In this application a modified version of the algorithm 
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resulted more efficient. After a number of "classical" 
iterations, these were alternated with iterations maximi-
zing the objective function with respect to a sub-set of 
parameters (mode choice parameters) influencing the objec-
tive function less markedly than the others. 

3.2. Gradient of the objective function 

The calculation of partial derivatives of the objective 
function Z(.) in eqn. (3.1), is developed analytically, 
except for the part inherent the demand vector t(k3), whose 
gradient is calculated numerically by finite differences 
method. To reduce computational times numerical derivatives 
were calculated using the forward difference with increment 
0.01. Finally the gradient components nz is obtained with 
the expression: 

@z 	((3i - Ri) 	(Ers hlrs trs (L) - fl  ) 	@trs(13) 
=2 	+2E1 	 Ershlrs  

@pi 	Var(Si) 	Var(e1) 	@Ri 

4. STATISTICAL PERFORMANCES OF THE ESTIMATOR 

Statistical performances of the estimators (3.1) were 
evaluated numerically applying it to the estimation of the 
parameters for a classic "four stages" demand model on a 
test network. 
The estimator was also applied to a real urban network. 

4.1. Demand model and test network 

In this application a classic "four stages" generation/ 
distribution/mode choice/assignment demand model was used 
with elastic demand on mode choice. 
To simulate demand in the a.m. peak period two trip purpose 
were considered: home-to-work and home-to-school. The 
specification and the parameters of different sub-models 
resulted from a multi year research project carried out in 
the context of PFT-CNR (Cascetta and Nuzzolo, 1992). 

The matematical formulation of the home -to-work model 
is the following: 

Empsa2 Drsj33 

trsm = 
 

pl  Actr  
Es,Emps,a2  Drs'a3 	Em,(exp Vm i) 

where: 
Act

r 
 is the number of employed people living in zone r; 

Emps 	 working in zone s; 

exp (Vm) 
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Dr  is the network distance between zones r and s(in meters 
*-1()0). 
The systematic utilities Vm  used for the three modes mode 
choice model are the following: 

VWALK-a4Tw'VCAR- 05 TC + 06CC + 07' VBUS = 05TB + 06CB + 08 

Where TW/T /CC/TB/CB  are respectively the walking time, the 
car time, the car cost, the bus time and the bus cost rela-
tive to travel between zones r and s. 

The home-to-school model keeps the some structure with 
nr. of students living in zone r, nr. of school places 
offerend in zone s and a two mode (walk/bus) modal choice 
model. 

The assignment models for the calculation of the H 
matrix, have been obtained with an All or Nothing (A o N) 
models for pedestrian and transit networks, assuming both 
networks non congested, and with a Stochastic User Equili-
brium that (SUE) model for the road network. 

The values of parameters resulting from the quoted 
research are assumed as the "true" ones and reported in 
table 1. 
The performances of the estimators were evaluated on a test 
network with 5 zones, 11 nodes road and pedestrian network, 
18 nodes transit network (see fig. 1). 
In the evaluation it was assumed that counts were available 
for all "indipendent" links. 

4.2. The evaluation method 
The evaluation of the statistical performances was 

carried out using the test network. Flows, calculated 
assigning the demand obtained from the described system 
system of models with "true" parameters, are considered as 
true ones in the procedure implicitly assuming no demand 
model and assignment errors. 

Initial estimates ja i  of the parameters were generated 
through a MonteCarlo procedure sampling from a normal 
variate with mean equal to the "true" value k3 	and with 
variance (CVB 1true),  where CVB is the variation coeffi-
cient assumed for initial estimates errors. 

Althoug the convexity of objective function has not 
been prooved analitically, a numerical analysis showed that 
for the model structure assumed the convexity assumption is 
fully accetable, (Russo and Ianr, 1991). 

The "corrected" estimates j3 op were obtained by impo-
sing only sign constraints on the parameter (e.g. negative 
costs). 

The statistic used as an indicator for the extimator's 
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efficiency is the Mean Square Error (MSE), given by (Judge 

et alii, 1988): 

MSE (R i) = E [ var (G3 i) + [bias (13 	)]2 ) 

Two types of statistics are reported. The first is relative 

to a single trial while the second refers to the average 

over 20 trials. 

The following values were computed: 

Nt 	= number total trials 

= R 	= vector of true parameters (tab. 1) 

~3^op = optimal vector of parameters at trial n 
A3 inn = initial vector of parameters at trial n A n 	

1 	N 

a op  : Ropm k = 	 E R °pn k mean vector of the op- 
N n=1 

	

	timal parameters after 

N trials 

	

1 	N 

a opm : R^1nm,k = 	E R °̂pn,k mean vector of initi- 
N n=1 

	

	al parameters after N 

trials 

bs( ^°)=^ f p ((3 m-Rt)estimates of the bias of the vector (A °p) 

1 N 

MSE (13 °pk)= 	 E 
(a^°pn,k - Rt

k)2 
final 	mean square 

N n=1 	 error of the parame- 

ter 0k (tab 1) 

1 N 

MSE 0^ink)= 	 E (p inn k - pt k)2 initial mean square 
N n=1 

	

	 error of the para- 

meter 0k (tab. 1) 

MSE% (0k) = [MSE ([3
in
k) - MSE ((3^°pk)]/MSE 0 ink) propor- 

tional reduction of 

the error in the 

parameter k( tab. 1) 

In addition to the measure of the deviation of the parame-

ters from the true ones,., deviations of the demand vector 
estimated with L °p, t(~3 °p) and of the resulting flows 
vector f=Ht(L3 °p) from true values were computed by using, 

efficiency indicators similar to those adopted for the 

parameters. 

4.3. Analysis of results. 
In numerical tests it was assumed that the variance of 

flow measurement errors (el) is proportional to the flows 

fl: Var(el) = (CVF fl) 4. 
Measured flows were virtually assumed as the true ones 

putting CVF = 0,01. 
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On the other hand the coefficient of variation of 
initial estimates errors, CVB, was assumed equal to 0.40. 
Results for two single trials and average values over 20 
trials are reported in table 1. 
On the basis of the obtained results and of the calculated 
indicators various considerations can be made. 

The "corrected" estimates of parameters are generally 
very satisfactory. Looking at numerical detail it is possi-
ble to observe that parameters of generation and distribu-
tion models are always unbiased, in fact table 1 shows as 
these parameters have a zero MSE between the true values 
and those obtained after the correction. 

Modal choice parameters perform less satisfactorily. 
In particular some parameters for home-to-school trips 
remain with significant MSE values, although reduced with 
respect to initial estimates. Such a result may be explai-
ned considering that the choice represented by this model 
is almost constrained because the students have only the 
alternative walk-bus and given the average distance of 
trips even values of the parameters slightly different from 
the trues ones produce the true values of the flows. 

A similar differences, in terms of the MSE occur in 
the parameters of the generation and distribution, finding 
a better correction for the home-work with respect to home-
school. 

Finally two trials, starting from completely unreali-
stic initial vectors in  were performed. The results are 
yet congruent with what seen so far. In the first trial we 
have considered a initial vector with all the entries 
equal to 1 while in the second all entries are equal to 
0.5. Again values pratically equal to the true ones for the 
parameters of generation and distribution models, but less 
similar values were obtained for modal choice. 

In addition to the indicator regarding the parameter 
vector, some indicators for the demand vector obtained with 
the optimal parameters relative to each trial were compu-
ted. 
Such indicators give a more direct measure of the demand 
reproduction capability whic is one the mair targets of any 
demand modelling exercise. The results are very good, in 
view of the fact that in all trials at least 99% error 
reduction has been reached. 

The indicators concerning the flows, confirm the 
goodness of the estimators, as we except the flows being 
directly derived from the demand vector by mean of an 
assignment matrix. For all links in all trials a reduction 
of the initial error larger than 99% were obtained. Finally 
a number of trials, modifying the CVF and maintaining 
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unchanged the CVB, were performed keeping the same initial 
vector. 
It resulted that by increasing the CVF to 0,1 the average 
error reduction on the parameters is slightly inferior 
(95%) but the computation time is reduced of the 80%. 

4.4. Application to a real medium-size town 

The estimator defined in section 2 with the procedure 
described in section 3 was applied to multimodal network of 
the city of Reggio Calabria (about 180000 inhabitans). It 
was used a zoning with 20 internal zones, and with 6 exter-
nal centroids. The tree modes present in the city have been 
considered: walk, car and bus; the same models used in the 
test network, refering to the period 7,30 a.m. - 8,30 a.m. 
were applied. The links flows were actually measured on 62 
links: 30 road, 26 pedestrian, 6 public. 

Two calibrations have been performed, the first with 
the initial vector calculated in the city of Parma, and the 
second with a random vector generated as in the test net-
work. 

The initial values and the obtained results are repor-
ted in table 2. The optimal parameters of both trials are 
very similar, as are the values of objective function. 

A specific analysis of the corrected values shows some 
differences from those calculated for other towns. Such 
differences can be explained by the use of a single 
home-to-work purpose with parameters obtained specifically 
for commuters mobility. This would lead to an underesti-
mations of trips for business and other purposes. Since the 
generation parameter for school trips is quite similar to 
that of Parma, extra mobility is explained by expanding the 
home-to-work generation coefficient. Such an interpretation 
is strengthened by the values of the distribution parame-
ters. 
In fact while the parameter of the attraction variable is 
slightly reduced the distance parameter is reduced to 1/3. 

The parameters of the home-to-school models turn out 
to be basically confirmed both for generation and distribu-
tion models. 

The parameters of modal choice are yet quite near to 
those of Parma, with a larger influence of the walking 
time. 

5. CONCLUSION 
Estimators of demand model parameters were proposed 

and their statistical performances were evaluated both on a 
test network and on a real urban network. 
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The.results are in general satisfactory showing the 
capability of the proposed estimator to reduce significan-
tly the errors in initial estimates. This is particularly 
true for generation and distribution models, while the 
objective function is more stable with respect to changes 
in mode choice parameters. In any case modal demand and 
link flows obtained using corrected parameters are virtual-
ly coincident with the "true" ones. The application of the 
estimator to a real network showed its capability to 
"adapt" to a model mis-specification correcting generation 
and distribution parameters to take into account business 
and other purposes trips initially non included in the 
model but significant in the real case. 
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Results obtained and statistical performances in the test network tab. 1 

Model Purpose Attribute ptrue pin 
Trial 5 

pop 
Trial 
pin 

10 
pop MSEpin  MSEpop MSE$p 

Gener. 	H-W 	Actives 0,46 0,585 0,459 0,057 0,455 0,0406 1*10-5  100,0 

Gener. 	H-SC 	Students 0,86 0,275 0,870 0,626 0,864 0,0793 4*10-5  99,9 

Distr. 	H-W 	Distances 0,70 1.084 0,648 0,801 0,707 0,0885 8*10-4  99,1 

Distr. 	H-W 	Employees 1,02 1,338 1,033 0,571 1,032 0,2417 1*10-4  99,9 

Distr. 	H-SC 	Distances 0,93 0,774 1,088 0,640 0,849 0,1519 4*10-3  97,1 

Distr. 	H-SC 	School pl. 0,35 0,722 0,354 0,421 0,358 0,0249 3*10-4  99,9 

Mod.ch. H-W 	Walking T. 1,19 1,194 2,069 1,103 1,263 0,1493 0,0186 87,5 

Mod.ch. 	H-W 	Car/Bus T. 0,54 0,894 1,074 0,283 0,411 0,0512 0,0448 12,4 

Mod.ch. H-W 	Car/Bus C. 1,80 0,763 0,958 1,703 1,891 0,4396 0,3168 27,9 

Mod.ch. 	H-W 	Car 	m.s. 2,56 1,504 1,274 4,765 3,064 1,0377 0,3439 66,9 

Mod.ch. 	H-W 	Bus 	m.s. 2,29 0,284 0,735 1,736 2,935 0,6203 0,4465 28,0 

Mod.ch. H-SC 	Walking T. 2,18 1,561 1,167 3,763 2,546 0,6057 0,0610 89,9 

Mod.ch. H-SC 	Bus Time 0,39 0,641 0,415 0,252 0,018 0,0300 0,0388 29,6 

Mod.ch. H-SC 	Bus Cost 1,58 1,562 0,431 2,340 2,344 0,3570 0,1442 59,6 

Mod.ch. 	H-SC 	Bus m.s. 1,53 1,613 1,586 0,955 0,958 0,4253 0,3939 7,4 
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The results obtained in the city of Reggio C. tab 2 

Model 	Purpose Attribute 13 	in 
Trial_l 

R  op  
Trial 

R  in 
2_ 
R  op 

Gener. 	H-W 	Actives 0,46 0,604 0,230 0,602 

Gener. 	H-SC 	Students 0,86 0,902 1,015 0,900 

Distr. 	H-W 	Distances 1.02 0,346 1,103 0,347 

Distr. 	H-W 	Employees 0,70 0,570 1,008 0,550 

Distr. 	H-SC 	Distances 0,93 0,900 0,335 0,908 

Distr. 	H-SC 	School pl. 0,35 0,272 0,346 0,269 

Mod.ch. 	H-W 	Walking T. 1,19 1,424 1,848 1,649 

Mod.ch. 	H-W 	Car/Bus T. 0,54 0,628 0,466 0,559 

Mod.ch. 	H-W 	Car/Bus C. 1,80 0,100 1,541 0,100 

Mod.ch. 	H-W 	Car m.s. 2,54 2,543 3,536 3,352 

Mod.ch. 	H-W 	Bus m.s. 2,29 2,330 2.116 3,179 

Mod.ch. 	H-SC 	Walking T. 2,18 2,207 3,436 2,737 

Mod.ch. 	H-SC 	Bus Time 0,39 0,506 0,349 0,642 

Mod.ch. 	H-SC 	Bus Cost 1,58 1,713 1,315 1,980 

Mod.ch. 	H-SC 	Bus m.s. 1,53 1,544 0,796 2,632 


