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INTRODUCTION 

This paper deals with two types of equilibrium 
allocation models: equilibrium versions for 	production- 
constrained spatial interaction models (Harris and Wilson, 
1978; Rijk and Vorst, 1983 ; Roy and Johansson, 1984; 
Crouchley, 1987) and Lowry—type subsystem interaction 
models (Wilson, 1974; Batty, 1976; Maceill and Wilson, 
1979; Shmulyian, 1979; Kantorovich, 1985, 1986; 
Kantorovich and Shmulyian, 1986). 

In the first type models an equilibrium allocation of 
subsystem resource over city zones is balanced with flows 
of subsystem consumers. In particular, there is a balanced 
allocation of shopping centers, with flows of consumers 
,roportional to chopping capacities. Roy and Johansson 
1984) determined and explored the model of this type as a 

Nash equilibrium model. 
Models of the second type are designed for simulation 

of equilibrium allocations of several interacting urban 
subsystems. In these models the urban interaction behavior 
of citizens is described by preference for trips to 
different subsystems. In (Kantorovich, 1986, 1988), an 
entropy version of the Lowry model and its generalization 
are formulated as systems of equations, similar to 
description of the Nash equilibrium (on dependent sets), 
which is a solution of the system 

fk (71 , 	
= 	max 	fk (71 

	

x 1  , x 	x 

	

k 	+1 

Xk E Dk (7) 

in variables Îék E Rnk , k = 1 ...m 	[here 	z = (71  ,...,im )]. 

The variable îik  is usually 	called a strategy of the k—th 

player, and the function fk  is called a payoff function. 
The problems of searching subsystem equilibria in the 

above—mentioned models can be reduced to the problems of 
searching fixed points of the correspondent maps. ln this 
paper the main attention is paid to problems of 
description, searching and studying equilibria in the 
equilibrium 	allocation 	models 	with 	zonal—capacity 
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constraints. For this purpose we use the map 

t. 
e(t) = argmax H(x,t) = argmax E x, ln x:  

X E V 	 X E V 	i 
t E Rn+  , 

onto a set 

V = {x qmi n :s x 	rls qim a x 	i = 1...n, E 	= Q} c 

[in (Kantorovich, 1988) this map is called an entropy 
projection onto 'V ]. We also use Brouwer fixed point 
theorem and the principle of compressing map for finding 
and studying equilibria. The structure of the paper is as 
follows. 

In Section 1, a formai description of equilibria of 
interacting subsystems is presented, and the main results 

of studying map e are given. 
i Section 2 is devoted to equilibria in models of urban 

subsystem allocation. An entropy version of Lowry, service 
allocation submodel is studied from this viewpoint. The 
model proposed by Harris and Wilson (1978) is enriched with 
zonal—capacity constraints for allocation. For this 
modification, uniqueness of an equilibrium, and convergence 
of the computational algorithm are studied. 

Section 3 presents an entropy version of the Lowry 
model formulated as an equilibrium of interacting 
subsystems. 

1. DESCRIPTION OF EQUILIBRIA 

In (Rosen, 1965), the Nash equilibrium with 
dependent sets of strategies is determined using a convex, 

closed and bounded set D, containing feasible states 7c, and 
using sets 

Dk (7)  = 	x k 	( xl 	5-ék - 1 , xk 	+ 1 , 	 ) E D } 

which are projections of 'sections' of set D to R k . 
In (Makarov and Rubinov, 1973), a more general 

definition of Nash equilibrium state is suggested. 

Namely, 	the set D is described implicitly by maps 	Dk  and 
can be non—convex. 

Let Xk  be the set of strategies of 	the k—th player, 

X = X1  x 	x ...x e and let Dk  : x 	(x) c Xk  be map 

taking points of X to subsets of Xk , k = 1...m. 

A point z E X is called a feasible state of the game, 

if îik E Dk (7) for any k. 	So, the set of 	feasible states 
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D is determined by maps Dk , but not vice versa. This 
description of an equilibrium state supposes payoff 

functions to be maximized over sets Dk (i). In general, such 
a set 	does not coincide with a projection of 	the 

corresponding section (through i) of the set of feasible 

states D onto Rnk . Existence 	of 	the 	Nash 	equilibrium 
was 	proved by Makarov and Rubinov (1973) 	with 	the 

following assumptions: 	i) for any k = 1...m, Xk  is convex 

and compact in the finite—dimensional space R
n  k 

, 	and Dk  

is continuous in Hausdorff metrics; 	ii) fk  is continuous 

in X and concave with respect to xk  ; iii) for any x E X , 

the set Dk (x) is convex. Similar assumptions (the last one 
holds by the definition) are used by Rosen (1965) for 
proving the existence theorem. 

n  Let xk  = (Xi 	) 
• • •xn 	E R k  , 	X = 	X1  , . . . Xm  ). 

1
k  

We define a generalization of Nash equilibrium 

formally as a solution of the system (in 71  , 

fk ( 7k 	--x)  = 	
max 	

fk (xk 	7), 	k  = 1...  m 	( 1 ) 
Xk  E Dk  (X) 

in which the sets Dk (x) are defined in one of the ways we 
have considered. Applying this to interaction of urban 
subsystems, we will assume that 

n 	 ( 
fk ( xk 	5E') 	ii( xk 	tk (3

)
) 	Ek  e  in 	

t) 	
( 2 ) 

	

1 =1 	X, 

t
k
: X 	R

+
k  being a map, tk (x) being coordinates of tk 

 (x). 

The system (1), (2) includes some entropy modifications 
of the Lowry model and is regarded with respect to flows of 
population or with respect to capacities of subsystems in 
city zones (Kantorovich, 1986, 1988). 

In models of the second type, the map t k  reflects 
behavior of population in trips and determines preferences 
or probabilities of allocation for k—th subsystem in city 
zones. The difference between the system (1) and the 
definition of Nash equilibrium consists 	in dependence 

of the function fk  on equilibrium value îk . 
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It should be noted, that with values of all the 
'strategies' fixed except 	the k-th one, solving of the 
k-th equation of the system (1), consists not 	in 
maximization of the payoff function, but in finding the 
fixed point of map 

—I< X 	 argmax 	fkk  , x 	—I< ,...,r) 
x k  E D k  ( ) 

By doubling the dimension of the model (1), we can 
'reduce' it to Nash equilibrium, i.e. the set of solutions 
of (1) coincides with the set of 	solutions of some 
system describing.  Nash equilibrium. 

It is essential that the model (l), (2) formalizes 
interaction of urban subsystems by using not only mutual 
dependence of constraints but also dependence of entropy 
functions to be maximized. 

Taking into account further use of capacity constraints 
in the urban models of equilibrium, the system (1) will be 
studied with maximizing problems of the following type: 

t. 
maximize H(x,t) = E xi  ln ,1 	 (3) 

subject to 

min 	

xi 	
MaX 

= 1...n, -  

E x = Q. 

In (Kantorovich, 1985, 1986) the map 

e(t) = argmax H(x, t) = argmax E x ln 	x. 	 ( 5 ) 
x E V 	 x E V 	i 

(here V is determined by constraints (4); ti  > 0, i = 1...n) 

and more general map 

h(x) = argmax H(y,t(x)) =
D(x)

[t(x)] 
y E D( x) 

are studied. 
It should be noted that the map e is not 	always 

differentiable 
The method and the main results of studying maps e and 

h are given in (Kantorovich, 	1988), while the detailed 
proofs are in (Kantorovich 1986). In these papers the idea 
of Bregman's balancing method [or consecutive D-projections 
(Bregman, 1967)] known from convex programming is employed. 
Let us present some of these results used further for 

(4) 
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equilibrium models. 
Consider an n—dimensional real space Rni  with 	the 

following norm, metrics and partial order: 

Il x 	 1 ,t „ i 	p( x1 , x2 ) _ nE 	 x; , 

1=1 	 1=1 

x2  ,if and only if 	for i = 1...n. 

The map ev(t), with 

V = { xl qm i  n 	X :5. gmax 
, Il  x  II = Q }, 

will be considered in the simplex 

S = { tlt> 0,fltH=Q} 

Let (F, (t) be the i—th coordinate of ev(t). 

Theorem 1. The map ev(t) is continuous in S and there 
exists a real continuous function ev(t) , such that 

ev(t) = max { en, 
min  { cl118X, ev(t  )t, }} 

Theorem 2. If t°E S, then 
P[ (Pv( t ), (Pv( t ) 	ev( t ° )P( t 	t) 

for any t E S. 
Theorem 3. Let e be the restriction of the map ev  to 

the set 	c { tl t 	r > 0, t E S }, then ev(r) is a 

Lipschitz constant of the map 

Theorem 4. If climax= 	i=1...n, then ev(t) 	1 	for 

any t E S, and ev  is a non—stretching map. 
We underline that Theorem 2 yielding a Lipschitz 

constant in the point t°  is of aglobal nature, because the 
'free point' t is arbitrary in S. It is worth be notice 

that the Lipschitz constant ev(t°) is non—decreasing, in 
any metrics generated by a norm in a real n—dimensional 

linear space, Theorem 4 cannot be 'improved', since ev  is 
identical on V. Thus, the selected metrics is 'suitable' 

for applying compressing properties of the map ev. 

2. EQUILIBRIUM ALLOCATION OF AN URBAN SUBSYSTEM 

In this section, an equilibrium allocation of objects 
is understood as an allocation balanced with flows of 
clients to there objects. 
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Let 	us consider two models of this type. 	Let q = 
(q1

, • • , qn ) 
is a distribution of service among n city 

zones, p and b are constant vectors corresponding to 
distribution of population and of basic employment, 
respectively, Ai  are matrices (with positive elements) of 

preference for trips to service places in various zones of 
the city. 

Let us consider a natural entropy version of the Lowry 
submodel of service allocation 

q = (pn 	 (6) 

where the vector of allocation 'potentials' 

A(q) = a
l
A
l 
q + a2A2p  + a3

A
3
b 

is obtained by summing flows of clients of various 

categories to city zones. The map e with 

V = 	qi 	qmi 	 (ira X , 	 = Q 

the norm 11.0, the partial order 	and the metrics p of the 

space lq henceforth are the same as in Section 1. 

The equation (6) 	concerning q can be regarded as a 
model for service allocation (with fixed distribution 	of 

population (pi  }). A solution qs= (q:, 	q:) of the 

equation (6) will be called an equilibrium allocation, or 
an equilibrium. 

Existence of an equilibrium allocation q*  follows from 
Theorem 1 and from Brouwer fixed point theorem. The linear 
operators given by the 	stochastic 	matrices A are non- 

stretching in the metrics p. From Theorem 2, we obtain 

sufficient conditions for uniqueness of equilibrium q*  : 

L(q* ) = al ipv[A(q* )] < 1 . 	 (7) 

The map 
f(q)  = vv[A(q)]  

takes the compact V into itself, and its Lipschitz constant 

L(q* ) in the point q*  is of a 'global nature'. Thus the 
condition (7) guarantees convergence of 	the 	iterative 
process 

+ 
qm 

1 	f 

(starting to g*  from any initial state q°E V). 

(8) 
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Let r = cci Al ein  + a2 A2 p + a3 A3 b. From Theorem 3 we 

obtain a Lipschitz constant and a sufficient condition for 
compressibility of the map f: 

K = al e(r) < 1. 

In this case, an equilibrium allocation 	is 	unique 
and 	the process (8) converges to it from any initial 

state. We note that if ceax= + œ (i.e. if zonal-capacity 

constraints are of 	the form qi 	en, i = 1...n), 	then 

it is easy to prove compressibility of the map f . 	In a 
general case, the above mentioned sufficient conditions are 
convenient to apply, and verifying them does not require 
long computations. 

Let us consider the equilibrium model 	(Harris and 
Wilson, 1978), 	In an equivalent form, an equilibrium 

allocation q*  can be defined as one satisfying the equation 

q = kA(q)b 

in which the column-vector b consists of volumes of sources 
in the zones, and elements of the matrix A(q) are: 

aji (q) = g(qj  )v(cij  ) / E g(qk )v(ci k ) . 

Here the coefficient k = Dq11/ilb ll is for converting flows of 
consumers into capacities (in this case, k is constant for 
all zones), g is an attractiveness function, cij  is the 

travel cost from i to j, v converts travel cost into a 
representation of impedance. E a. 1 (q) = 1 holds for any q, 

I 
andelementsa

J
..(q), 	are relative amounts of 

clients, moving from the zone i to various zones of 	the 
city. Multiplication 	of 	matrix A(q) by column-vector b 
is standard, and the flow of clients to the j-th zone is 

Dj (q) = 	E a, i (q)bi  
' 

Let us formulate the following development of the 
given model: 

q = ,v[kA(q)b] 	 ( 9 ) 

with V = 	0 < 	g"' , Il Il = Q) 
If cri " 	0 , it is possible to prolong the map f(q) = 

ilkA(q)b] continuously to the frontier of the set V. 
Introduction of capacity constraints into 	the model 
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allows 	to use additional criteria of allocation besides 
balancing condition of flows and to avoid balanced 
but undesirable allocations (such as an allocation of 
the total resource in a single zone). 

Let 

15(q) = (131(q), 	15n (q)) = kD(q) = kA(q)b , 

OvIl(q)11 = max E I 	
aDi(q) 
	I , 

agi  

i.e. the norm of 	Jacobi 	matrix vD(q) corresponds to the 

norm of the space K. 

The map f(q) taking the compact V into itself is not 
differentiable everywhere in V. However, from Theorem 2, it 

follows that if q*  is a solution of the equation (9), 	then 
the condition 

L(q* ) = Ov[15(q* ))IlvD(q* )11 < 1 	 (10) 

guarantees local convergence of the iterative process 

 there exists a neighborhood U D q
* 
 such that the 

sequence {qm } starting from q°  E U n V , converges to q*. 
Moreover, if L(q) 15 A < 1 holds for any q E V , then 

the map f(q) is compressing.  
Using the resuIts of Harris and Wilson, (1978) it is 

not difficult to obtain that 

DvD(q)11 = 2 max 	
aD 

a
i
qi 	max 	

11b11 g '( qi  ) 
, 	(11) 

( q ) 

J 	 j 	2 g(qj  ) 

As an example, we consider the attractiveness function 

g(r) = re, r E R. For the case 

V = {q1 qi 	qTin , 110 = Q} 

using (10), (11) and Theorem 4 we can show that for any 

equilibrium q*, the inequality a < 0.5 guarantees local 

convergence of {qm } , 	and 	the 	inequality 

K = 0.5e max {1/qT"} < 1 guarantees compressibility of 

map f in V 	, i.e. the uniqueness of an equilibrium and 

convergence of iterations (1'1 = f(qm ). 

i.e.

'M+1 = f( 
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3. EQUILIBRIA OF INTERACTING SUBSYSTEMS 

In this Section, using the entropy projection 
operator, we will construct the versions of equilibrium 
model of interacting subsystems, which is 'very close' to 
the classical Lowry model. Difterent types of constraints 
are used here to describe different priorities for 
allocation of interacting subsystems. 

Let p = (p1  , 	) and q = (q1  , 	) be 

distribution of employed population and of people 
employed in service among n zones. For the sake of 
simplicity consider the service as aggregated in one 
type. The distribution of basic employment b = (b1 	bfl  ) 

is 	supposed 	to be 	fixed. 	We determine 	the 

equilibrium allocation of subsystems p*, q' as the solution 
of the non—linear system (in p, q): 

p  =
I
[B( q)ii 	

(12) 

q = Or2[A(p, q)] 

i n which B( q )=BI  q + B2  b and A( p ,q ) = al  Al  q + a2  A2  p + a3  A3  b 
are maps yielding 'potentials' of subsystems allocation. 
The input for the model is represented by stochastic 
matrices B. , Ai , of preferences for trips to residence and 

to service respectively, by coefficients ai  expressing 

relative amounts of clients of different categories, by the 
vector b, by resources of subsystems P = IIPII , Q = DO and 

by vectors 
qmi n 	qmax , pmin , pmax  

We consider three types of zonal—capacity.constraints. 
In the first type, priorities for allocation suppose to 

be define (for example by planning authority) using minimum 
and maximum zonal—capacity constraints: 

VI =  {pl pmin 	p 	 pMaX 	Ilpll = 

V2 = { ci l qmin 5  q  5  qmax , 	= Q) 

Competition for land use can be introduced to the model 
by the constraint pi p+ 13z q 15 d, i.e. by the following 
feasible sets: 

Vl(q)  = {PI Pmin 
	p 
	( d 	e2 C )/el 	P il = P} 

V2  ( p ) = {ql groinq  s. (d — pi  p)/e2 , Il Il =Q) 
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Competition of subsystems for territory accepted in the 
Lowry model may be represented by dependent constraints 

V1 ( q ) 	{ p l pmt n 	p 	prna X 	gq, 	= P} 

V2 = { q
i 

qmt n 	q 	 qilla X 	110 = Q) 

This dependence of constraints formalizes classical 
priority of service allocation, since in the equilibrium 

distribution p*, q', the point p*  maximizes entropy of 	the 
population subsystem over the 'set of states depending 
on the territory free from service. 

Note, finally 	that the system (12), does flot coincide 
with the description of the Nash equilibrium, but this 
system is a particular case of the system (1), (2). The 
first couple of constraints describe the independent sets 
for allocation as in the classical Nash equilibrium, the 
second one describe the dependent sets as in (Rosen,1964), 
and the third one describe the dependent sets as in 
(Makarov and Rubinov, 1973). Using the theorems from 
Section 1 it is possible to obtain conditions for the 
uniqueness of an equilibrium of interacting subsystems and 
for the convergence of the computational algorithm. 

4. CONCLUSION 

Let 	consider some aspects of equilibrium models we 
have discussed. 

Model (6) is an entropy analog of the Lowry service 
allocation submodel. Service allocation influences to flows 
of clients so far as people employed in the service are 
also clients of service, and so this model is 'close' to 
the equilibrium version of production—constrained spatial—
interaction model (Harris and Wilson, 1978). Involving this 
category of clients in the model leads to the probfem of 
searching a fixed point of the correspondent map. It should 
be noted that sufficient conditions of compressibility of 
this map are usually satisfied in applications, and this 
is mainly explained by the fortunate choice of space 
metrization. 

The equilibrium allocation model from (Harris and 
Wilson, 1978) reflects attractiveness of zonal capac-ities 
and is much more adequate to interaction of citizens and 
the functional subsystem. Fixed point theorems can also be 
used to study this model [e.g. (Rijk and Vorst, 1983)]. 
However involving attractiveness functions [especially, 
those dealing with spatial competition and agglomeration 
(Fotheringham, 1985)] leads to additional non—linearities 
in equilibrium models of spatial interaction and makes 
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their study more complicated. In fact, a version of this 
model (9) has been considered in our paper for rather 
particular case. 

Limits for applying the correspondent compressibility 
condition are narrower then for a similar condition in the 
model (6). In practice, this condition can be satisfied for 
rather small ci in problems of equilibrium allocation of 
several large centers. 

The concept of equilibrium of the interacting urban 
subsystems can be formalized by a rather general model (1), 
(2); each equation of the system (1) describes an 
equilibrium allocation of a particular subsystem. Models 
from Section 2 can be described by one equation of this 
type, and the Lowry-type model (Section 3) we describe by 
two equations. Note that models of the type (1), (2) are 
simulational, and thus the problem of description of their 
sets of equilibria is rather Important. Theorems 1 - 4 from 
Section 1 allow to study equilibrium Lowry-type models with 
locational-capacity constraints. Investigation of similar 
models with attractiveness functions seems to be 
interesting but rather difficult. 
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