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Societal concern with national energy policy, water and air pollution, global 
warming, the transportation of hazardous materials, and urban congestion is bring-
ing the study of negative externalities to the fore. The development of method-
ologies for the analysis of negative economic externalities is, hence, a topic which 
merits increasing attention. 

Policy interventions such as taxes in the case of economic systems and tolls 
in transportation networks have been utilized for many years in order to ensure 
that user - optimizing behavior approaches what is, in some sense, optimal for 
the system. In this paper we focus on the problem of modelling transportation 
goal targets in perfectly competitive markets. The framework which we develop 
is a general one in that no optimization formulation of the resulting equilibrium 
conditions needs to exist. The concepts introduced here can, hence, be applied in 
different economic settings. 

For example, the motivation for such a problem is illustrated via the follow-
ing sample scenario. Consider a number of spatially separated regions involved in 
the production/consumption of a commodity. Suppose that a decision-maker is 
concerned with possible overshipment between regions, resulting in environmental 
damage, depletion of natural resources, or other negative economic externalities. 
He then formulates target transportation goals with assessed penalties for failure 
to comply. The assessed penalties may be different for overshipment and under-
shipment. The resulting equilibrium production, consumption, shipment, and over 
or undershipments are then to be determined. 

In this paper we utilize the theory of variational inequalities to formulate, 
analyze, and solve such a market model. We also interpret the penalties asso-
ciated with over/undershipments in terms of taxes/subsidies. In the absence of 
targets and associated penalties, the model reduces to the spatial market model 
studied in Nagurney (1987). Variational inequality theory has been applied to 
model policy interventions in the form of price supports on the production and 
consumption sides; in this case the markets need no longer clear and the state is 
one of disequilibrium (Nagurney and Zhao (1991)). In this paper, in contrast, we 
introduce policy interventions on the transportation (or trade) links in the form 
of goal targets. 

1073 



SS12 

1. THE MODEL 

In this Section we introduce the perfectly competitive model with target trans-
portation goals. That is, we consider goals imposed on the levels of commodity 
shipments between regions which are to be met. Deviations from transportation 
targets in the case of overshipment or undershipment are subjected to unit penal-
ties. 

We first define some notation. Let i = 1, ... , m denote the supply regions and 
let j = 1, ... , n denote the demand regions. Let s = [si] denote the column vector 
of supplies, d = [di] the column vector of demands, and Q = [Qii] the matrix of 
nonnegative commodity shipments from the supply regions to the demand regions. 
The matrix of commodity transportation targets is denoted by Q# _ {Q }, with 
the column vectors of nonnegative overshipments and undershipments denoted, 
respectively, by 0+ = [O ti] , and O = [Ai:j . 

The conservation of flow equations are: 

Si = 

J=1 

m 

di = 

	

	 j= 1,...,n 
i=1 

Qii — 0 i ~ 0; = Qti , i = 1, . . . , m; j = 1, . . . , n. 

Equations (1) and (2) state, respectively, that the supply of a commodity at a 
region must be equal to the commodity shipments out of the region, and the de-
mand for a commodity at a region must be equal to the commodity shipments 
into the region. Equation (3) reflects that the transportation goal between the 
supply region i and demand region j is equal to the commodity shipment between 
the pair of regions minus the possible overshipment above the goal plus the pos-
sible undershipment below the goal. We then denote the closed convex subset of 
Rm+smn+n consisting of (s, Q, d, 0+, 0— ) such that (1), (2), and (3) hold by K. 

Let iri denote the supply price of the commodity at region i and let pi denote 
the demand price of the commodity at region j. We group the supply prices into 
a row vector 7r E Rm and the demand prices into a row vector p E R". The unit 
transportation cost associated with shipping the commodity between regions i and 
j is denoted by cif and the row vector of transportation costs by c E R' ' 

Let Mi.; denote the unit penalty to be assessed for an overshipment of the com-
modity between regions i and j and let Nib denote the unit penalty to be assessed 
for an undershipment of the commodity between the pair of regions. We group 
the overshipment penalties into a row vector M E Rm" and the undershipment 
penalties into a row vector N E R .  
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We assume, as in general spatial market models, that the supply price at a 
region may depend upon the entire vector of supplies and, similarly, the demand 
price at a region may depend upon the entire vector of demands, that is, 

ir _ ir(s) 	 (4) 

P = P(d) 	 (5) 

where it and p are known smooth functions. 
The transportation cost associated with shipping the commodity between 

a pair of regions may, in general, depend upon the entire commodity shipment 
pattern, that is, 

c = c(Q) 	 (6) 

where c is a known smooth function. 
In the absence of target transportation goals and associated penalties of over-

shipment and undershipment, the well-known spatial price equilibrium conditions, 
following Samuelson (1952), and Takayama and Judge (1971), are given by: For 
each pair of regions (i, j), with the equilibrium pattern (s, Q, d) satisfying con-
straints (1) and (2), we must have that 

(~i(s) + cij(Q) — Pi(d)) x Qij = 0 

7ri(s) + cii(Q) — Pi(d) ? 0, Qii > O. 

(7)  

(8)  

The well-known conditions (7) and (8) simply state that a commodity will be 
shipped between a pair of regions, provided that the supply price at the producing 
region plus the cost of transportation is equal to the demand price at the consuming 
region. There will be no shipment if the supply price plus the transportation cost 
exceeds the demand price. As has been shown in Florian and Los (1982) (see, also, 
Friesz, et al.), the variational inequality formulation is then given by: 

Determine (s, Q, d) satisfying (1) and (2) such that: 

it(s)•(s'—s)-i-c(Q)•(Q'—Q)—p(d)• (d'—d) > 0, V(s', Q' , d') satisfying (1) and (2). 
(9)  

In the presence of target goals, the governing equilibrium conditions now take 
on the following expanded form: For all pairs of regions (i, j), with the equilibrium 
pattern (s, Q, d, A+, A — ) satisfying constraints (1), (2), and (3), we must have that 

(7ri(s) + cii(Q) — Pi(d) + tij) x Qij = 0 	 (10) 

ri(s) + cii(Q) — Pi(d) + tij > 0, Qij > 0 	 (11) 
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and 

t ii 

= Mii, 
E ~-Nii , Miil , 
_ -Nii, 

if 

if 

if 

Qii > Q# 

Qii = Q# 
Qii < Q# 

(12) 

or, equivalently, 
(tii - 	= (tii + Nti)~~ = 0 

-Nii < tii < Mii. 

We now interpret the above equilibrium conditions. The value of tii is interpreted 
as an excise tax levied on the commodity shipments between regions when it is 
positive or -tii is interpreted as unit subsidy paid to shippers between regions i 
and j when tii is negative. 

In the case of overshipment above the goal, the excise tax levied on the ship-
ments will be equal to the unit penalty for overshipment. On the other hand, if 
there results an undershipment below the target goal, then a unit subsidy of the 
same amount as the unit penalty for undershipment should be paid. Finally, if 
the transportation target goals can be attained precisely, then there may be a tax 
or a subsidy. The excise tax cannot exceed the unit penalty of overshipment; the 
subsidy cannot exceed the penalty for undershipment. 

Note that condition (13a) implies that for a given pair of regions (i, j) there 
can only be either an overshipment or an undershipment. 

We now derive the variational inequality formulation of the equilibrium con-
ditions governing the above model, that is, we establish the following: 

Theorem 1: A pattern of supplies, commodity shipments, demands, and over-
shipment and undershipment levels (s, Q, d, A+, A- ) in K satisfies the economic 
equilibrium conditions (10), (11), (12), (13a), and (13b) in the presence of trans-
portation target goals and associated penalties if and only if it satisfies the varia-
tional inequality: 

(s)•(s'-s)+c(Q).(Q' -Q)-P(d).(d'-d)+M •(A+'-A+)+N •(A-'-A-) > 0 (14) 

d(s',Q',d',A+',A ') E K. 

Proof: We first establish necessity. From (10), we obtain that for each (i, j) pair 

(ii(s) + cii(Q) - Pi(d)) x Qii =  

whereas from (13a), we conclude that t iiA =MiiA, -t;iA~=N;iAi. There-
fore, 

(7i(s) + cii(Q) - Pi(d))Qii + 	Mii A + 

(13a)  

(13b)  
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_ E—t,,Qij +>t;j0 +E—tij0~j = 
ij 

On the other hand, by applying 

~ 

(13b),, we have that 

E(r-i(s) + ci1(Q) — p (d))Qij + MiiAt; + NijLTj' 
ij 

r 	_~ E—t;jQi+tij0~ — 	=— EtijQ i . 	(16) 
ij  

Hence, (14) must hold. 
We now turn to sufficiency. Clearly Q, A+, 0— is a solution to the following 

linear programming problem: 

Minimize E(ii(s) + cij(Q) — Pj(d))Q;j + E MijL ' + > Ni,L 	(17) 
ij 	 ij  

subject to Q', A+/, 0_~ > 0, and satisfying (3). 
From the Kuhn-Tucker conditions to the above problem we recover the equilib-

rium conditions (10), (11), (12), and (13), where t;j is the dual variable associated 
with constraint (3). 

We emphasize that in the case where the Jacobian matrices of the supply 
price, demand price, and transportation cost functions are symmetric, the above 
equilibrium conditions can be reformulated as an optimization problem, as was 
observed by Beckmann, McGuire, and Winsten (1956) in the framework of the 
Wardropian traffic equilibrium conditions, and by Samuelson (1952) and Takaya.ma 
and Judge (1971) in the case of spatial price equilibrium conditions. Indeed, in 
this special case, the above equilibrium conditions are the Kuhn-Tucker conditions 
of the following problem: 

Minimize 
m 

J

r~ 1Q;~ 	m n / Q;~ 	n ~m 1 Q
U 	 i ( æ )dx+~J cij(y)dy—~f 	P(z)dz 

i-1 	i_1j=1 0 	j=1 0 
m n 	m n 

ijQ#. 	(15) 

(18) 
i=1 j=1 	i=1 j=1 

subject to the nonnegativity assumption on Q, A+, A— and constraint (3). 
The above model, hence, in the symmetric case is an optimization problem 

with goaling structure. For a review of goal programming, we refer the reader to 
Charnes and Cooper (1977). For applications of goal programming and nonlinear 
complementarity theory to energy markets, see Thore and Isser (1987). 
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2. QUALITATIVE RESULTS 

In this Section we present the qualitative results for the competitive market 
model in the presence of transportation target goals developed in the preceding 
section. We first provide our existence result and then the uniqueness result. 
We establish that, under certain monotonicity conditions and nontrivial penalties, 
existence and uniqueness of the equilibrium pattern are guaranteed. 

Theorem 2: Assume that the supply price and the demand price functions 7r(s) 
and —p(d) are monotone and that the transportation cost function c(Q) is strongly 
monotone. Assume also that M +N # 0 for all i , j. Then there exists a solution 
to (14). 

Proof: Let Z,ti = O; = 0 and Chi = Q. Then 

E(7rt(s) + cii(Q) — Pi(d)) . (Qii — Qii) + E(Mii(A — 0 ) + Nii(Dïi — AT;)) 
ii 	 ii 

_ 	 i(s) + cii(Q) — Pi(d)) . (Chi — Q#) + E mot,+ Noii. 	(19) 
ij 	 ü 

Since II(A+, 0 > Q) 11
2 = Eii 0 72 + Eii Ai-j2 -I- Eii W. ) if Eii Q4i is bounded, 

while Eii(Ati +A~i2 ) is sufficiently large, by the assumption that Mii > O,Nii > 
0 and MÎ+N 00, for all i, j, we have that 

(lri(s) + cii(Q) — Pi(d)) ' (chi - Q#) 
	

,i0 ti -I- NiiOj) > 0. 	(20) 
ii 

On the other hand, if Eii Qii is not bounded, and is taken to be sufficiently large, 
then by the monotonicity assumption, and an application of Schwarz's inequality 
we conclude that 

(~i(s) + cii(Q) — Pi(d)) ' (Q — Q#) 

((xi(s) + cii(Q) — Pi(d)) — (7 i(s# ) + cii(Q# ) — Pi(d# )) . (Qii — Qui) 

(Tri(s# ) + Cii(Q# ) — Pi(d# )) ' (Qii — (4) > CY 	((hi — 
,) 

—(T(ri(s#) + cii(Q# ) — MOW) (E(Qii — Q#)2 )1 > 0, (21) 
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where sr = E.7=1 4, d# _ ~i ` Q#, and a is a positive parameter used in the 
definition of strong monotonicity. 

Therefore, the variational inequality satisfies the coercivity condition of a 
theorem of More' (1974), from which existence of a solution to the variational 
inequality then follows. 

Theorem 3: Under the same conditions as imposed in Theorem 3, uniqueness of 
the solution pattern is also guaranteed. 

Proof: Suppose that (A+, O-, Q) and (A+, 0-, Q) are two distinct solutions of 
the variational inequality (14). Then 

(iri(s)+cii(Q) -Pi(d))'(Qij-Qij)+~M;i(0 ~-0 ~) I 	 N;J(;J -ti) ? 0 

(22)  
A ti )+E N;i (D;i -0;i ) > 0. 

ii 

(23)  
Adding then (22) and (23), we obtain 

(7ri(S) + cii(Q) - Pi(d) - (ffi(s) + cti(Q) - Pi(d))) ' (Qij - Q;i) > 0. 	(24) 

But, under the strong monotonicity assumption on c(Q) and monotonicity 
7r(s), -p(d), we conclude from (24) that Q;i = Q;i, for all i and j. 

Therefore, from (22) and (23) we have that 

of 

O~i) > 0 	 (25) 
ii 

Mii(6,11-0~)+~Nii(~t -0~i ) > 0. 	 (26) 
ii 	ii 

Also, we have that 

A ;F.7 - Dii = Qii - Q~ = Qt) 
- /l# 

= 6‘-) 

From (25) and (22), specifying to (i, j) in variational inequality (14) by setting 

Qkl = Qki,L /=AAI , t ' = 4, for all kl ij and setting Qii = Q;i , 	= 
Pi, O~ = O;i , we obtain: (Mii +N;i) (D - 0) > 0. Similarly, from (26) and 

(23), specifying to (i, j) in variational inequality (14) by setting Qki = Qki3O _ 
Oki, ~kl, = /3,kf, for all kl # ij, and Q=i = Q;i , AP; = A , and D; = DTi, we 

(27) 
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obtain: (Mii + NO • (iv — O ) > O. Hence, A = A , V i , j and it thus follows 
that ATi =A i,V i,j. 

3. THE ALGORITHM 

In this Section we propose an algorithm for the computation of the equilib-
rium production, consumption, trade, and overshipment/undershipment pattern 
for the market model developed in Section 1. The algorithm converges under the 
assumption that the supply price ir and demand price p functions are monotone 
and that the transaction cost function c is strongly monotone. As established in 
Section 2, under such conditions the equilibrium pattern exists, and is unique. 

The algorithm is a new version of the method of multipliers (cf. Pan (1992)). 
We view its advantage as lying in its splitting feature. In particular, it resolves the 
variational inequality problem (14) into a series of two simpler variational inequal-
ity subproblems, with only nonnegativity constraints. The first subproblem takes 
the form of the variational inequality governing the well-known spatial price equi-
librium problem, for which numerous efficient algorithms exist (see, e.g., Nagurney 
(1987), Nagumey and Zhao (1991), and the references therein). The second vari-
ational inequality subproblem is a very simple linear problem in the (A+, A — ) 
variables only. It, in turn, can be solved via a Gauss-Seidel decomposition method 
described in Nagurney (1987). We now state the algorithm as follows: 

Given a sequence of parameters 0 < r° < r1 < r2 < 

Step 0: Set the iteration count r = O. Initialize (4°, 	and a°i, for i = 
1,...,m, j = 1,...,n. 
Step 1: Compute (sr+1, Qr+l,dr+1), satisfying (1) and (2), such that: 

m 
ir;(Sr+1) , (gi — si+1) — 	pi( dr+1 ) ' ( di — di+1 ) 

1=1 	 5=1 

m n 

i7(Qr+l ) + 1'r(Qr+1 —(AV + (Qfi)r— Qt) - Aii)• (Q.; - Q QV) > 0 
5=1 

>0,s;=~Q~i , d'= 
5=1 i=1 

Q;i, di>j• (28) 

Step 2: Compute ((A+)r+1, (O_)T+1) > 0 such that: 

m 

M?i — rr(Q j 1 — (AV-El 
+ (Q,')r+1 — 

Q#) + AT;) (AP; - (A tir') 
i=1 5=1 
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/~r+l ( + r+1 	_ r+l 	# 	r 	~ 
Nij+rr(Qij — (~ij) 	+(Di;) 	—Qt) — ~ij)•(~;j — 

d0tii >0,Ai;>0,i=1, ... ,m; j =1,...,n. 

(A 
)r+1)

Let ATJi
1=AT) +rr(Q — Qi± +(AiJ)

r+1 

Step 3: 	
j 

 

If convergence has been reached within a prespecified tolerance e, then stop; 
otherwise, set r = r + 1, and go to Step 1. 

Notice that in Steps 1 and 2, the respective subproblems are strongly mono-
tone, and, hence, the sequence of iterates sr+1, Qr+1 dr+1,(0+)r+1 (0_)r+1 is 
well-defined. 

4. NUMERICAL RESULTS 

In this Section we describe the results of our numerical experimentation for 
the algorithm presented in Section 3. The problems we considered ranged in size 
from ten supply markets and ten demand markets through fifty supply markets and 
fifty demand markets. The results of the numerical experimentation are reported 
in Table 1. 

The market equilibrium problems were generated in the following manner. 
We considered three sets of problems - in the first set, the transportation goal 
targets Q#, i = 1,... ,m; j = 1, ... ,n were generated randomly and uniformly in 
the range [10, 50]; in the second set, the transportation targets were set equal to 10 
for all transportation links, and in the third set, the transportation targets were 
set equal to 50 for all links. The corresponding results are reported, respectively, 
in sets one to three of Table 1. The penalty terms Mij and Nij were also generated 
randomly and uniformly in the ranges [1,10]. In the first set of examples, however, 
we set all of the Nij = 0 to model negative economic externalities resulting from 
overshipment along the transportation links. 

The supply price functions, ir(s), demand price functions p(d) and transporta-
tion cost functions c(Q) were all linear, repspectively, of the form: 

m 	 m n 

it (s) = 	rilsl+ ti, pj(d) = — l~mjkdk+qj, cij(Q) _ 	 gijklQkl+hij. 

(30) 
The Jacobians of the supply price, demand price, and transportation cost functions 
were asymmetric. 

The above functions were generated randomly and uniformly in the ranges 
as follows: rii E [3,10], t i E [10,25]; mjj E [1, 5], q j E [150, 650]; gijij E [1, 15], 

hij E [10,25]; with the cross-terms rii, mjk, and gijki, generated so that the 

l= 	 k=1 	 k=1 1=1 
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Jacobians were strictly diagonal dominant, thereby, guaranteeing existence and 
uniqueness of the equilibrium pattern. 

The same function ranges had been used in the market examples solved in 
Nagurney and Zhao (1991). The number of cross-terms in each of the examples 
was,'furthermore, set equal to five. 

The termination criterion used was that the equilibrium conditions for each 
variational inequality subproblem (cf. (28) and (29)) held within a tolerance of .5, 
and that 1Q:t 1 — (41< .005, for all i,j, (A~ )t+i — (At )ii < .005, for all i, and 
j(AT)t+1 — (Di )t l < .005, for all i. The parameters rt were set as follows: ro = 1, 
r t = ro x 2t . 

We used a Gauss-Seidel algorithm described in Nagurney (1987) for the com-
putation of the solution to subproblem (28) in which we, however, embedded the 
exact demand market equilibration algorithm developed in Dafermos and Nagur-
ney (1989), to fully exploit the underlying network structure of the spatial price 
equilibrium problem. To solve the subproblem (29) we also applied a Gauss-Seidel 
algorithm, solving the subproblem term by term. 

The algorithm was coded in FORTRAN and the system used for all of the 
numerical work was the IBM 3090-600J at the Cornell National Supercomputer 
Facility. 

In Table 1 we report for each set of examples the following data: the CPU 
time (without input/output times), the number of iterations t, the number of 
transportation links with 6,7i > 0, the number of transportation links with 0 > 
0, the minimum absolute deviation lQij — Q#l, the maximum absolute deviation 

# and the average absolute deviation m' ~'-' IQ~' 
_Q# 

— QiJ Qj 	 mn 
As can be seen from Table 1, the algorithm converged for all of the examples, 

requiring, at most, only several seconds of CPU time. In the first set of examples, 
with Qij E [10, 50], in any given example and with all Nij = 0, the number of 
transportation links with O? > 0 was negligible. This is to be contrasted with 
the second set, in which Cei = 10, and the Nij's were generated to lie in the 
range [1,10]; that is, the fixed target was set rather low, in which case there 
were many more markets with Ati > 0. On the other hand, in the third set 
of examples, since the Q#'s were set at 50, the majority of the transportation 
links had undershipments as reflected in the fact that many more links had the 
respective A > 0. 

5. SUMMARY AND CONCLUSIONS 

In this paper we have described how some of the ideas set forth in classical 
goal programming can be synthesized with variational inequality problems. In 
particular, we introduced a new competitive spatial market equilibrium model 
which permits regulators to assign transportation goal targets. Overshipment 
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undershipment is then penalized according to preassigned penalties. The model 
captures mathematically certain negative economic externalities and opens the 
door for the development of other models, as well. 

We first established that the governing equilibrium conditions can be for-
mulated as a variational inequality problem. We then proved that under certain 
monotonicity conditions the equilibrium problem is guaranteed to have a solution 
and the solution is unique. 

We then proposed an algorithm, developed for a class of variational inequal-
ities with linear constraints, of which our model is a member of. The algorithm 
decomposes the variational inequality into two simpler variational inequality sub-
problems, the first of which has the notable feature that it is identical to the 
variational inequality governing the well-known spatial price equilibrium problem. 
The algorithm under the same conditions that guarantee existence and uniqueness 
of the equilibrium pattern is guaranteed to converge. Numerical results were then 
presented for fifteen examples, which highlighted different modelling features. 

This research may be viewed as a contribution to the growing literature on 
mathematical programming approaches to policy interventions in spatial market 
models. 
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Table 1: Numerical Results for the Variational Inequality Algorithm 
for Spatial Markets with Transportation Targets 

m n M E[1,10] , N = 0, Q# E[10, 50] 

10 10 .048(8) 	100; 0; 1.5; 45.81; 26.73 
20 20 .302(8) 	400; 0; 1.29; 48.38; 31.67 
30 30 .824(10 	897; 3; 7.13; 48.92; 27.50 
40 40 2.60(10) 1599; 1; 1.09; 48.29; 28.23 
50 50 6.15(10) 2499; 1; 3.91; 47.44; 30.08 

m n M E[1,10], N E[1,10],Q# =10 
10 10 .05(9) 	87; 9;  0.; 16.19; 7.79 
20 20 .38(10) 	383; 6; 0.; 10.00; 8.61 
30 30 .93(10) 	884; 10;  0.; 18.71; 9.04 
40 40 3.28(10) 1592; 3; 0.; 17.83; 9.39 
50 50 7.10(10) 2495; 2; 0.; 10.00; 9.58 

m n M E[1,10] , N E[1,10] , Q# = 50 
10 10 .048(8) 	100; 0; 21.70; 50.00; 47.08 
20 20 .344(8) 	400; 0; 26.47; 50.00; 48.43 
30 30 .854(10) 900; 0; 18.18; 50.00; 48.95 
40 40 2.89(10) 1000; 0; 20.25; 50.00 49.36 
50 50 6.56(9) 	2500; 0; 33.05; 50.00; 49.53 

* CPU time in sec. (r), # of Di's > 0; # of A 's > 0; min. abs. dev.; max. abs. 
dev.; ave. abs. dev. 
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