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INTRODUCTION 

A serious problem in analyzing traffic count data is what to do when missing or 
extreme values occur. Missing data occurs for a variety of reasons, for example the 
breakdown of automatic counters, and current methods for dealing with this problem 
can be crude. Existing techniques for dealing with missing values and outliers in 
transport range from fitting best estimates by eye to a few computerised algorithms 
which are known to exist. As this paper shows, however, little work has been 
undertaken to assess the relative merits of alternative methods. The necessity for such 
statistical techniques to be developed and applied in the transport field is highlighted 
in the paper, in particular the need to be able to determine what are the true outliers in 
a time series. 

1. METHODS FOR DETECTING OUTLIERS AND MISSING VALUES 

1.1. By eye 

A simple method still used surprisingly often when cleaning traffic count data is 
to identify any outliers by eye and estimate a replacement value using an estimate from 
the values the same time of the same day of the weeks either side of the problem value. 
Clearly if any of these values is a problem then they should not be included in the 
estimation. It is prone to subjectivity on the part of the person doing the work. 

1.2. Averaging techniques 

An automatic procedure used by the British Department of Transport (DTp) is to 
validate each observed data value against corresponding data from the same site 1, 2, 
or more weeks previously. A mean and standard deviation for each site*day of 
week*period of day*combined vehicle category is updated using an exponentially 
weighted moving average (EWMA), where the lagged values, x(t-k), are the previous 
estimates from the corresponding time of day and week for the same site and vehicle 
category: 
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Typical values used for the smoothing parameter are about 0 = 0.3. Any observation 
more than 4 standard deviations away from the current mean is rejected and replaced. 
Missing or rejected data, x(t), is estimated by the exponentially weighted average: 

x(t) = 6 x(t-l) + 0(1-8) x(t-2) + 0(1-0)2  x(t-3) + ... 

1.3. The Box-Jenkins approach 

Box-Jenkins is the most widely applied approach and has been used with some 
success in modelling transport data. The principal method has been that based on the 
auto-regressive integrated moving average (ARIMA) model using the Box-Jenkins 
(1976) model building methodology. Routines for fitting and validating the models are 
readily available in the major statistical packages such as SAS, BMDP and SPSS. 

McLeod et al (1980) report on the analysis of rail and air passenger flows 
between London and Glasgow using the Box-Jenkins approach. The level of 
aggregation in the data was found to have a marked effect on the modelling results and 
further model development involved the inclusion of causal variables such as journey 
time. Known outliers in the data were modelled using intervention analysis. 

A combination of linear regression and Box-Jenkins techniques were applied by 
Gaudry (1975) in order to model demand for public transport. The initial linear 
regression model included explanatory variables such as price and service levels and the 
error term was then specified in terms of an ARIMA model. Although an excellent fit 
to the data was achieved, no mention is made of the treatment of missing or outlying 
observations. 

Successful applications of the Box-Jenkins method are also described in work by 
Ahmed and Cook (1979) and Nihan and Homesland (1980), although both pieces of 
research use United States traffic volume data. Models were found to perform well in 
short term forecasting and in the case of the work by Nihan and Homesland (1980), 
were able to deal with several problems such as missing information and interventions. 

ARIMA models have also been used to analyze accident statistics (see for 
example a recent review by Hakim et al, (1991)). These models were compared to the 
structural model approach, based on slopes and levels, by Harvey and Durbin (1986) 
in a study of the safety effects of changes in the seat belt law. 

Outlier detection methods based on the ARIMA model utilise the whole of the 
data to judge whether a particular point is influential. Early work by Fox (1972), Box 
and Tiao (1983) and Pena (1984) to develop test statistics for outliers in general time 
series all use the Box-Jenkins ARIMA modelling structure. Each construct likelihood 
ratio statistics, and in the case of Fox (1972), the estimated error for an observation is 
compared with the estimated standard error of that discrepancy. Box and Tiao (1983) 
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and Pena (1984) concentrate on influential observations, developing test statistics which 
reflect the influence of an observation on the model parameters. 

Box and Tiao (1975) describe a technique called intervention analysis in which 
the ARIMA model is extended to allow for known interventions such as the effect of 
petrol legislation on levels of atmospheric oxidant. They achieve this by including 
exogenous time series made of zeros and ones which allow for the absence or presence 
of an event. Such a technique is similar to including dummy variables in ordinary 
regression. This was the approach used by McLeod et al (1980) to model known 
outliers though no detection method was considered. 

Missing values can be estimated using an intervention series consisting of a pulse 
at the time of the missing values. An extension of the ARIMA (p,d,q)(P,D,Q) model 
is used, given by: 

(1)(B)11:1(B)Y, = 9(B)9(B)et + E 6)01?) where Y = (1-B)d(1 -13 r)D = 0°A,°X, 
hit 

is the appropriately differenced time series. 
Here 4(B) and 0(B) are polynomials in B of orders p and q, (KB) and ©(B) are 

polynomials in B' of orders P and Q where s is the period of the season and B is the 
backward shift operator. ei is a white noise sequence and l is a pulse series with a 
1 at time k and 0 elsewhere. M is the set of time points corresponding to the missing 
values and outliers. 

The initial identification of the model can be done using either the autocorrelation 
function, partial autocorrelation function or inverse autocorrelation function estimated 
from the longest part of the series with no missing values, or the estimated correlation 
functions using the whole data calculated from Marshall's (1980) method. Large 
residuals are indicative of additive outliers in the data set and such values beyond 3 
standard deviations are used to determine possible interventions for inclusion in the 
model. Once identified, replacement values can be estimated by including a pulse 
intervention at the appropriate point and re-fitting the time series model. Proceeding 
iteratively we can identify groups of points that may be influential. 

Tsay (1988) described an enhancement of this process for identifying `faults' in 
the model that occur as outliers, jumps and variance changes which are based on scaled 
values of the residuals resulting from the current fitted model. The model can be 
written in the form: 

cl)(B)4) (B) Ad gXr = 0(B)9(B)e t + E fk(t) where fk(r) _ ~ b(B) !̀a) 

Two types of outlier considered were the innovative and additive. Innovative outliers 
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(w(B)  - e(B)8(B) '  are those that affect the series in the future, while additive 
8(B) 4(BA(B)) outliers 

w(B) 	1 	are those that only have an impact at the specific time point. 
8(B) 

The simpler model based on the large residuals is equivalent to restricting 
attention to modelling additive outliers. Structural changes such as level shifts 

w (B)  _  1  
6(B) 	(1-B) 	and seasonal shifts 

w(B) _  (1-B)  l 
a(B) 	(1-B1)1 can be handled. 

A variance shift can be included by replacing the pulse I,(k)  by C,(1̀ )  where V)  = 
e, for t>k and zero for t<k. Using these models Tsay (1988) described a series of tests 
that can be performed to evaluate the significance and type of any `fault' in the data. 

Algorithms based on the Kalman filter to obtain maximum likelihood estimates 
of the ARIMA model parameters in the presence of missing values have been developed 
by Jones (1980), Harvey and Pierse (1984) and Kohn and Ansley (1986). These allow 
the estimation procedure to skip missing or deliberately omitted values when obtaining 
the estimated values, and have permitted an alternative approach to outlier detection, 
namely the leave-k-out diagnostics introduced by Bruce and Martin (1989). They 
considered criteria based on the change in the estimated parameter values and the 
estimated'innovation variance which measure the effect of the omitted points. Such 
methods allow the evaluation of the influence of a point or group of points on a model 
and its fit. The calculation process is lengthy even for short time series, hence such 
techniques are not yet widely available. 

Overall, where Box-Jenkins models have been applied with transport time series, 
a good deal of success has been achieved both in modelling existing series and in short 
term forecasting. Some researchers (such as Nihan and Homesland (1980)) extended 
the basic univariate model to include behavioural variables, which not only improved 
model performance, but also assisted the intuitive interpretation. 

1.4. The Influence Function Method 

A different approach to outlier detection is based on the influence of an 
observation on the autocorrelation estimate. The sample autocorrelation function rk, 
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k=1, ... L is used extensively in time series modelling, particularly in the widely used 
Box-Jenkins methodology. It can be argued that observations which have an undue 
influence on rr should be identified as these may affect the success of the modelling 
process. Using the influence function matrix of Chernick et al (1982), Watson (1987) 
proposes a quantitative outlier detection statistic, ISt, based on the influence of the t'th 
observation on rr. 

Firstly a matrix of influence values (la) is computed: 
2 

(Yr -Yr

2

.0 ia=17t.k - rk 	2 

the influence statistic for the t'th observation is then defined by 

is, = P 
	 L ~ i2 + ~ I2J , 	D,_, 

where ZuI2 indicates summation of Li over the L elements in the t'th row and 
indicates 

[
summation of I,j over all available elements in the (t-1)'th diagonal of the 

influence function matrix (p = Lt + D,,,). In the derivation of theoretical moments and 
critical values for ISt, pr is assumed to be constant. In practice a global "summary 
sample estimate" is needed. The algorithm allows several different estimates to be 
used, although the following measure, r*, was found through empirical results to be 
appropriate: 

IMai rk + I min rk I  

2 

Where I max rr I and I min rt, I are the absolute values of the maximum and 
minimum sample autocorrelation values respectively. Further manipulation of IS, 
suggests a possible replacement or estimation procedure for use with outlying or 
missing observations. The replacement value is given by: 

(z,' s)+y where z,t = zr.k (1 - Jl-d) 
rk 

y and s being the mean and standard deviation of the original series, z, representing the 
transformed data. 

2. APPLICATION OF TECHNIQUES TO TRANSPORT TIME SERIES 

To obtain an indication of the usefulness of these methods, four of the above are 
applied to two traffic flow time series from an automatic counter maintained by the 
DTp. The counter is located on a main trunk road which provides access to the 

r* 
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Pembrokeshire Coast. The two series considered here are hourly traffic flows at the 
same time each day for a period of five months in mid 1990. Figure 1 shows the traffic 
flow at 20:00 hours travelling in a westerly direction and Figure 2 shows the same 
hours flow in the opposite direction. Both series have obvious missing values at 
observations 27, 72 and 122. There is evidence of a seven day seasonal pattern in both 
series. For the westerly flow it is strong, the peak coming on a Friday, while for the 
easterly flow it is much weaker, the peak being on a Sunday. 

Figure 1 All vehicles travelling west at 20:00 
Source: DTp 

Figure 2 All vehicles travelling east at 20:00 
Source: DTp 

Tables 1 and 2 show the results of analyses of the time series using the four 
different methods described above. The Box-Jenkins approach suggests an initial 
ARIMA (1,0,0) (0,1,1), model for the westerly series with three pulse intervention 
variables for the missing values at time 27, 72 and 122. The estimated parameters are 

= 0.57 and © = 0.62. This model has a large standardised residual (+ 4.8) at 
observation 85. The ARIMA model is refitted with four intervention variables, the three 
associated with the missing values and a fourth at time 85. This process of fitting a 
model and examining the residuals is carried out a further two times to give an ARIMA 
model, outliers being successively identified at times 22 and 86. The parameter 
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estimates of the intervention variables associated with the missing values provide 
replacement values. The three outlying observations are 22, 85 and 86. The final 
parameter values were 4) = 0.43 and ® = 0.36 which gives an indication of the 
influence of these observations. The day corresponding to observation 88 was an 
August bank holiday Monday. Large outliers are detected at observations 85 and 86 
(Friday and Saturday) in the westerly series, caused by traffic heading towards the coast 
at the start of the holiday weekend. In the easterly series there is a large outlier at 
observation 88, caused by the returning traffic. 

Table 1 Westerly traffic flow summary 

Missing value 
repi.:cements 

Eye Average value Influence ARIMA 

27 100 69 119 108 
72 170 192 174 208 

122 110 124 121 107 

Outliers 
detected 

Eye Average value 
_ 

Influence ARIMA 

Observation 85 44 64 22 
53 71 85 
55 77 86 
86 85 

Table 2 Easterly traffic flow summary 

Missing value 
replacement 

Eye Average value Influence ARIMA 

27 110 41 115 66 
72 150 78 184 217 

122 140 205 106 128 

Outliers 
detected 

Eye Average value Influence ARIMA 

Observations 52 41 	62 10 	66 52 
66 44 	65 17 	73 66 
88 48 	66 31 	87 88 

51 	69 44 	88 (64) 
52 	76 45 	94 (66) 
53 	83 52 	95 (73) 
55 	88 64 	101 (80) 
58 	90 65 	108 (87) 

For the easterly series the parameters changed from 4) = 0.56 and O = 0.80 to 
= 0.77 and O = 0.61 if the outliers at 52, 66 and 88 (detected by the large residuals) 

are included. There was some evidence to support a non-seasonal differencing, but the 
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resulting model was a much poorer fit. For both series the average and influence 
techniques have produced a large number of outliers, which may indicate a lack of 
homogeneity in the structure of the series. 

If the two series are modelled using the methods developed by Tsay (1988), then 
in addition to the outliers described above there is a gradual change to a new level in 
both series at about time 32 and a drop to a new level at time 95, the changes being 
larger in the case of the easterly flow. In the case of the westerly flow no additional 
outliers are found. The rise over the summer months is an average of 10, with a drop 
of about 40 at the end of the summer. For the easterly flow there are additional 
significant outliers at. 64, 66, 73, 80 and 87. The observations at 52, 66, 73, and 87 are 
the summer Sundays, 64 is a Friday. The Sunday of 59 is not significantly higher than 
expected while the 80 value is depressed, not increased (did it rain?). There is a jump 
in levtii over the summer months rising gradually through July to an increase in the 
base flow of 23. At the end of the summer there is a drop of 100, the base flow now 
being below that before the holiday period. There is also a change in the seasonal 
pattern at the end of September (about time 127) with the Sunday peak, the main 
feature of the seasonal pattern almost disappearing. 

In general this approach gives an interesting series of insights into the likely 
outliers and missing values in the datasets. It is not possible, however, to determine 
from this information alone which of the techniques give the best indication of the 
actual outliers and missing values in the series. The next step, therefore, was to 
undertake a series of simulation studies. 

3. SIMULATION STUDIES 

To evaluate the effectiveness of the various methods in detecting additive outliers 
a time series of vehicle flows were taken in which none of the methods detected any 
departures from the model. Certain observations were then replaced with known 
outliers of varying significance in a variety of patterns, including those typical of the 
ones observed in studying other traffic count series. Hence, the simulations include one 
or more outliers at randomly selected points in the series, typical bank-holiday patterns 
such as high flow on the Friday, and finally a depressed flow throughout a week which 
may be typical of a local event such as road works. 

The methods considered in this study are applied to series containing the above 
patterns. Series 1-10 have a single outlier, 11-15 have a bank holiday pattern, 16-19 
have a random pattern of 3 outliers while 20-24 have a depressed or raised series of 
values over a block of working days. Table 3 shows the preliminary results of our 
study but already a pattern is beginning to emerge. The standard deviation (Cr) of the 
underlying error in the series was 50. The table indicates where outliers were detected 
and the difference between the estimated and the original value. It is clear from this 
that the ARIMA model is the best, and only fails to detect outliers in the case of a 
group of observations departing from the general pattern. The EWMA estimate is 
virtually always an underestimate of the true value. 
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Table 3 Comparison of the error in replacement estimates of detected outliers 

Series Single outlier EWMA Influence ARIMA 

1-2 4a -10* -212* 215 

3-6 6a **-113* -67-102-48* -231926 

7 - 10. >6a -139 -43 -142 * -123 8 * * 1 34 -56 -23 

Series Bank Holiday EWMA Influence ARIMA 

11 >6a * * * * 60 -22 

12 >6a * -139 * * 52 1 
13 >6a -94 -113 -3 * 13 -8 

14 4a ** ** 511 

15 4a * * * -215 39 -18 

Series Random EWMA Influence ARIMA 

16 8a * *129 * * 129 128 -20 -24 

17 6a * 5 -121 * * * -72 53 -2 

18 4a -54 * * * -100 * -6 -20 -54 

19 4a * * * -56 * * -50 -25 27 

Series Blocks EWMA Influence ARIMA 

20 4a * * * * * * * * * * -158**** 

21 4a ***** ***** * * * * * 

22 8a ***** ***** 5-417-229 

23 12a -208 * * -140 -164 * * * * * -58 -100 -74 -7 -29 

24 6a * * * * -216 * * -140 -56 -98 -70 -10 

Note : * denotes an undetected outlier 

Finally it is instructive to look at the results obtained using the ARIMA models 
in more detail. The base series was adequately modelled using the model of order 
(1,0,0)(0,1,1), described by the equation: 

xt  - xt _ t  = et  - 8 et4  where xt  = yt  - yr-z 
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The estimated values of the parameters were 4) = 0.56 and O = 0.72. Table 4 
summarizes the results that were obtained by fitting models which made no allowance 
for outliers and then iteratively identifying additive outliers until no more were detected. 

Table 4 Comparison of the outliers detected using the ARIMA procedure 

Initial model Final model 
Outliers 
found 

Outliers 
missed 4) 0 4) 8 

1 0.53 0.69 0.56 0.72 44 
2 0.52 0.79 0.55 0.72 45 
3 0.42 0.80 0.56 0.73 24 
4 0.49 0.79 0.56 0.73 59 
5 0.47 0.74 0.56 0.73 80 

6 0.39 0.82 0.57 0.73 38 
7 0.12 0.99 0.56 0.72 59 
8 0.22 0.99 0.56 0.72 66 
9 0.23 0.99 0.57 0.73 73 
10 0.23 0.99 0.56 0.73 24 

11 0.31 0.91 0.57 0.73 21 24 
12 0.13 0.98 0.55 0.73 56 59 
13 0.20 0.89 0.56 0.73 77 80 
14 0.25 0.89 0.55 0.73 56 59 
15 0.38 0.82 0.57 0.73 42 45 

16 0.31 0.84 0.60 0.65 27 41 71 
17 0.42 0.95 0.57 0.72 34 56 82 
18 0.38 0.86 0.56 0.74 30 45 87 
19 0.38 0.73 0.56 0.73 31 47 54 

20 0.69 0.66 0.70 0.67 45 46 47 48 49 
21 0.63 0.85 - - - 80 81 82 83 84 
22 0.71 0.96 0.58 0.76 59 60 61 62 63 
23 0.76 0.98 0.57 0.70 45 46 47 48 49 
24 0.53 0.89 0.57 0.70 45 46 47 49 

The Box-Jenkins modelling process appears to be adequate for identifying rogue 
outliers in the various series but does less well when there is a block. The effect of the 
outliers in the data is to reduce the value of the fitted auto-regressive parameter and 
increase the value of the seasonal moving average parameter. 

4. SUMMARY AND CONCLUSIONS 

Experience with many series of traffic counts and other transport time series 
suggests that difficulties discussed in the above examples are not untypical. The 
EWMA method tends to be too inflexible picking up either a larger number of outliers 
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when there is greater probability of a structural change, and missing other extreme 
values that are having an influential effect on the model. In particular it seems that 
they are particularly poor at locating groups of values when the flow is depressed or 
enhanced over several days. 

The influence function approach seems to have similar problems although the 
identification of groups of outliers not detected by the ARIMA model may indicate 
areas where the correlation structure is variable and the global ARIMA may break 
down. 

Work with the ARIMA family suggests that traffic count series can be typically 
modelled by the (1,0,0)(0,1,1)7  model. The number of outliers selected is usually more 
conservative than the other methods considered here, yet it is more successful than the 
others at identifying single additive outliers. The process used here performs 
indifferently when searching for a group of outliers. The ARIMA approach is more 
flexible, however, and can be used to explore the possibility of structural changes (Tsay, 
1988) and multiple outliers (Bruce and Martin, 1989), although these lead to more 
complicated modelling processes which are more computationally expensive. 
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