
SHORT TERM FORECASTING OF URBAN TRAFFIC CONGESTION 

Nick HOUNSELL, Saeed ISHTIAQ and Mike MCDONALD 
Transportation Research Group 

University of Southampton 
SOUTHAMPTON - U.R. 

1. INTRODUCTION 

Traffic congestion is becoming increasingly common in 
many cities of the world as the demand for road travel 
continues to grow. This has led to the development of a 
number of traffic management and control systems aimed at 
making best use of existing roadspace. Traffic responsive 
Urban Traffic Control Systems, such as SCOOT (Hunt et al, 
1981) are one such example. 

Traffic congestion is a dynamic phenomenon which varies 
both within and between days according to regular and random 
variability in link/network demand and capacity. Dynamic 
methods are therefore required for the effective management 
and control of congestion. 	While many of the existing 
dynamic methods are responsive to congestion, new techniques 
involving signal control and/or vehicle routing require a 
predictive element involving short term forecasting of 
traffic conditions. 

This paper describes research which is underway at 
Southampton University concerning short term forecasting 
methods for traffic applications. The fundamental research 
is sponsored by the Science and Engineering Research 
Council, while the applications are related to projects 
within the European Commission's DRIVE programme in which 
the University of Southampton is involved, particularly 
SCOPE and LLAMD (see section 7). 

2. REQUIREMENTS 

Requirements for short term forecasting can be identified 
in many new dynamic traffic management and control systems, 
such as: 

* Traffic control systems, in which a forecast of 
congestion could trigger a 'remedial' control 
strategy, such as 'gating' where the rate of traffic 
inflow to a region is metered using appropriate 
signal timings. 

* Dynamic route guidance systems, where the calculation 
of optimum routes requires a forecast of traffic 
conditions on links for the time at which vehicles 
will arrive on those links. 
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* Parking guidance systems, where a forecast of car 
park occupancy is required for efficient guidance. 

In its 'simplest' form, requirements are for a forecast 
of traffic conditions on a link-by-link basis for periods of 
up to about 1 hour ahead depending on the application. For 
traffic control, a much shorter range forecast will 
typically be most appropriate, while for routeing systems, 
the required forecast horizon depends on the journey time 
from the point of routeing advice to the destination. 

The parameter to be forecast also depends on the 
application. Again taking the above two examples, traffic 
control systems may require forecast of traffic demand and 
queue length, while route guidance systems require link 
journey time/cost forecasts. It is also likely that key 
descriptors of congestion will vary depending on the 'user'. 
For example, in network traffic control, the existence of 
queues blocking upstream junctions may be a key factor, 
whereas for a driver, congestion may be perceived as low 
averge speed, high delay, etc. 

In the following sections, discussion is centred on the 
forecasting of average delay per vehicle. This parameter is 
of relevance for traffic control (e.g. being directly 
related to queue length) and is the key component of link 
journey times (for route guidance systems) which describes 
the level of congestion. 	Delay per vehicle is also 
relatively easily interpreted. 

3. TIME-DEPENDENT VARIABILITY 

The development of appropriate short-term forecasting 
techniques requires an initial analysis of the underlying 
time dependent variability in the parameter to be forecast: 
This is important in forecasting since the forecast model 
selected to generate the forecasts should be compatible with 
the demand pattern of the data. Clearly, if the parameter 
values are relatively stable within and between days, the 
forecasting process is greatly simplified. 

Considering the average delay per vehicle on a link as 
a parameter reflecting the level of congestion, a number of 
sources of time dependent variability can be identified: 

(i) Cyclic variability: where a link is under signal 
control, queues and delays will vary in a cyclic 
manner according to the cycle time of the signals. 
This very short term variability is usually not of 
interest in forecasting, except for particular 
signal control applications, and a time 
aggregation for data of one signal cycle or more 
is therefore usually necessary. 

(ii) Variability by time of day Most urban networks 
show pronounced and regular variations in 
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congestion by time of day, such as peak (morning 
and evening) and off peak hours. 

(iii) Variability by day of week Variability here is 
largely due to the variations in activities which 
occur on different days, such as working and non-
working days. 

(iv) Variability by month This 'seasonal' variability 
may be related to environmental changes, changes 
in 'work' practices (e.g. vacation periods) and so 
on. 

(v) Long term variability This describes the 
underlying trend in the parameter, such as an 
underlying increase in congestion due to a growth 
in traffic demand which is outpacing the provision 
of additional capacity. 

The sources of variability described above are 
'predictable' and can be quantified to a reasonable extent 
by analysis of historic data patterns, and incorporated into 
the forecasting process. 	In addition, there are 
unpredictable short-term effects such as congestion caused 
by traffic incidents (accidents, breakdowns, roadworks etc) 
which are much more difficult to forecast but which are 
particularly important in the context of congestion and its 
control. 

4. FORECASTING METHODS 

A number of 'time-series' forecasting models are 
available which could be applied to the traffic situation. 
After taking consideration of different sources of 
variability, as described earlier, two methods have been 
selected for detailed evaluation, as described here. 
1: Box-Jenkin ARIMA modelling. (Pankratz, 1983) 
2: Horizontal-seasonal model. (Thomopoulos, 1980) 

These are univariate forecasting methods; forecasts are 
based only on past patterns in the series being forecast, 
although updating is possible as new data is received. 

4.1 Box-Jenkin ARIMA modelling 

In term series analysis, the principal data that is used 
in generating forecasts is the history of the past demand 
entries (Z1  , Z2  , Z2  , - - - , Zt  ). The forecasting 
process begins by developing a statistical type of fit 
through the demands of the past. The fit that is sought may 
vary, depending on the flow pattern of the history of 
demands. The fit is then projected forward to estimate the 
demands for the time periods of the future. These estimates 
are essentially the forecasts of future demands. 
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Box and Jenkins propose a family of Algebraic models 
called ARIMA models (Auto Regressive Integrated Moving 
Average) from which we select one that seems appropriate for 
forecasting a given data series. 

The term AutoRegressive means that Zt, the current value 
of the time series, is "regressed" or expressed as a 
function of Zt_1, Zt_, - - -, Zt_p  , which are the previous 
values of the same time series, and to an unknown noise at, 
in a linear manner by the relation 

Zt = P1Zt-1 + 02Zt-2 + - - - + çbpZt-p  + at  
The parameters of Autoregressive Integrated Moving 

Average models are: 
ARIMA (p,d,q) (P,Q,D)8  

where 
p = Order of Non-Seasonal Autoregressive operator 
d = Order of Non-Seasonal Differencing 
q = Order of Non-Seasonal Moving-Average operator 
P = Order of Seasonal Autoregressive operator 
D = Order of Seasonal Differencing 
Q = Order of Seasonal Moving-Average operator 
s = Length of Seasonality 
Here season refers to a period after which the pattern 

of the series repeats itself, e.g: traffic flows are 
expected to be higher during peak hours on every day, here 
day is one season and on different days the pattern of 
traffic flows are more or less the same. 

The fundamental idea in ARIMA models is that the variable 
Zt  is related to its own past (Zt-1, Zt_2,  Zt_3,  - - - ) and 
(Zt_0, Zt_28,  Zt-3s, - - - )• 

Where 
(Zt_1, Zt_2, Zt_3, - - - ) are the values of the series in 
the same season at different time periods, and 
(Zt-8, Zt-?s, Zt-3p,  - - - ) are the values of the series 
at same time period in different seasons. 
Consider an example where traffic delays on different 

days at different time periods are denoted by 

Dayl 	Day2 	Day3 	Day4 

tl 	Delayll  Delay12  Delay13  Delay14  

t2 	Delay21  Delay22  Delay23  Delay24  

t3 	Delay31  Delay32  Delay33  Delay34  

ts 	Delaynl  Delayn2  Delayn3  Delay" 
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Delay34  is a function of Delay24  , Delay14  and/or Delay33  
Delay32, Delay31  

The Box-Jenkin method for finding a good ARIMA model 
involves three steps; Identification, Estimation and 
Diagnostic checking. The schematic representation of these 
three steps is as follow. 

Step 1: 	Identification 

Step 2: 	Estimation 

Ste?) 3: 	Diagnostic Checking 

Selection 	of 	one 	or 	more 
ARIMA models 	that 	suit 	to 
the given data 

Estimation of parameters for 
the 	model(s) 	selected 	at 
step 1 

1 
Statistical tests for 	igt1 

adequacy 

4.2 Horizontal-seasonal model 

Most of the traffic parameters (flow, delay etc) show 
periodic behaviour within a day, i,e there are higher flows 
and delays during the peak period, this periodic behaviour 
of the parameters can be explained by so called seasonal 
models, here season refers to the period. 

In these models smoothing of the past demand entries is 
used and in this way higher weights are assigned to the more 
current entries. The feature allows the forecasts to react 
quicker to more current shifts in the level or seasonal 
influences of the demands. 

The model applies when the expected demand at time t is 
At = PPt 

where 
µ represents the average demand per day and 
Pt  represents the seasonal ratio at time t. 
The seasonal ratio for time period t is found from the 

relation between At  and p. The seasonal ratios are always 
greater or equal to zero and over a day their average value 
is 1, where pt=1, the expected demand at time period t is the 
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same as the average daily demand, where pt < 1, then pt is 
less than A and when pt > 1, then pt is greater than p. 

Two phases are necessary in order to implement the model. 
The first is concerned with initialising the system and 
second is with updating the forecasts. 

In the initialising phase the past demand entries (z1, 
z2, - - -, zT) are used to find estimates of p and pt. The 
estimate of p as of time t is at and estimates of the 
seasonal ratios pt+i are rt+i for i=1, 2, 3, - - -. These 
estimates can be obtained by the following recursive 
relations: 

= a(zt/rt) + (1-a) at-1 
rt+n = 7(zt/ât) + (1-7) ~t 
Here at time t, the ratio (zt/rt) represents the current 

seasonally adjusted demand, the ratio (zt/ât) gives the 
seasonal ratio for time period t. 

a and -y are smoothing constants, their values should b 
between 0 and 1, higher values of a and ry gives more weight 
to the current data. 

The most current n seasonal ratios 
T+1 ' rT+2 , - - -, 

are normalised so that their average is 1. 	This is 
performed by first finding the average 

r = (rT+1 + rT+2 + - - - + rT+n) / n 
and then adjusting the ratios by 

rT+i, = rT+i/r 	for i = 1, 2, - - - , n) 
Having carried out these steps, the initialisation phase 

is complete. 
At this time the first set of forecasts can be generated. 

The forecast for the ith future time period is 
Î(i) = âTrT+i 

Updating  
As each new demand entry becomes available, an updating 

scheme is carried forward to yield the current estimates of 
the mean demand level and the seasonal ratios. 

Calling the current time period T, the new observation 
is zT and the updating relations are the following: 

âT 	= a (zT/rT) + (1-a) aT-1 
rT+r1 = y(zT/âT) + (1 y)rT 
As before, the seasonal ratios are normalised so that 

their average is 1. 
With updating of the estimates completed, the forecasts 

for the ith future time period is generated by: 
2T(i) = âTrT+i 

4.3 Examples 

Examples of the application of the above models to data 
on two links in Southampton with different traffic 
characteristics are given in Figures 1 to 4. The data was 
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obtained from the SCOOT UTC system using the ASTRID database 
facility (McLeod et al, 1989). Figures 1 and 2 show the 
application of the two models to a link with relatively low 
and regular congestion, while Figures 3 and 4 apply to a 
link with considerably higher variability. In each case, 
forecasts are being made for data for a particular peak 
period, and are compared with actual measurements. Tables 
(1) and (2) show the Forecast-Error statistics. In both 
cases the one-step ahead (or updated) forecasts show 
improvement over 36-step ahead (not updated) forecasts. 
Forecast-horizons were also studied, which show that 
forecasting errors become greater with the increase in 
forecasting horizon. 

From the above examples and application of these models 
to some other links, it is seen that though Box-Jenkin 
modelling requires more rigorous analysis and computer time, 
it handles a wider variety of situations and provide more 
accurate short-term forecasts. 	Also, the concepts 
associated with Box-Jenkin models are derived from a solid 
foundation of classical probability theory and mathematical 
statistics, once a model is selected for the given data set, 
the estimation of the parameters are done by certain 
algorithms. 

On the other hand, the Horizontal-Seasonal model is 
simple to apply and can be implemented on computer by any 
high level programming language, this can reduce the cost of 
forecasting process. However the choice of the smoothing 
parameters is critical as the values of the smoothing 
parameters can affect the forecasts but there is no 
available method which can select the optimum values of 
these smoothing parameters. 

5. NETWORKS 

The forecasting methods described above apply to 
individual links and do not describe the interaction between 
links and the build up of congestion which can occur on a 
network basis. 	This analysis of links on an individual 
basis is relevant, because it reflects the operation of many 
traffic control systems, such as isolated signal controlled 
junctions and dynamic route guidance. It also has the great 
merit that a forecast is generated for the specific 
parameter of interest (e.g. delay). However, congestion in 
urban networks is often associated with one or more 
"pinchpoints" from which queues spread to affect a number of 
upstream links. 	Queues on adjacent links are then 
interrelated both in time and space, and the forecasting of 
congestion on an independent link by link basis becomes less 
relevant. 
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A useful method for studying the time varying growth and 
decay of network congestion is the use of a suitable network 
traffic model. At the University of Southampton, work is 
centring on the CONTRAM dynamic traffic assignment model 
(Leonard et al, 1989). The objective is to study the time 
varying congestion phenomenon in a variety of network, 
traffic and control scenarios to try and then develop short 
term congestion forecasting procedures for networks. It may 
be possible, for example, to relate statistically the rate 
of growth of congestion with its key controlling parameters, 
such as the incident characteristics (severity, location, 
duration), the underlying levels of flow and capacity and so 
on. 

The work is particularly concerned with incident-induced 
congestion, and a new logic has been written to better 
reflect drivers' routes and queueing characteristics for 
incident conditions than is available in "normal" traffic 
assignment models. Early work is illustrating the number of 
links affected by an incident and the effects on each link 
in terms of the increase in journey time per time interval. 
"Congestion trees" are also being studied, illustrating the 
growth, spread and decay of queues. 

Short term forecasting of network congestion for use in 
control systems ideally requires the use of an on-line 
dynamic traffic assignment model to produce the forecast 
itself.. Such models are also being recommended for other 
applications, such as dynamic route guidance. Research and 
development in this area is therefore likely to be of 
particular importance over the next few years, perhaps 
incorporating parallel processing techniques to enable rapid 
predictions and control recommendations to be obtained. 

6. CONCLUDING COMMENTS 

* 	Short term forecasting of urban traffic congestion 
will become an increasingly important requirement 
in traffic control and informatic systems. The 
current research has revealed suitable methods for 
such forecasting on a link-by-link basis and where 
congestion is reasonably recurrent. These methods 
could be further tested and refined on-line by 
adopting methods for automatic validation within 
systems where such forecasts are used (e.g. for 
route guidance). An expert system approach could 
also be adopted in which the performance of a 
range of forecasting methods is automatically 
monitored and the method chosen appropriate to the 
traffic situation. 

* 

	

	The current requirement is to develop forecasting 
procedures appropriate to unpredictable 

2000 



Nicholas Brian HOUNSELL, Saeed ISHTIAQ, Michael MCDONALD 

congestion, such as that caused by traffic 
incidents and where congestion is a network 
phenomenon. 	This will inevitably require a 
dynamic network modelling approach incorporating 
traffic assignment, for the formulation of 
appropriate procedures and, perhaps, for on-line 
applications. 

7. REFERENCES 

• Pankratz, Alan. Forecasting with univariate Box-Jenkins 
models. John Wiley and Sons, 1983. 

• Thomopoulos, Nick T. 	Applied forecasting methods. 
Prentice-Hall, 1980. 

• SCOPE: Project in DRIVE II dealing with Integrated Urban 
Traffic Management in Southampton, Cologne and Piraeus. 

• LLAMD: Project in DRIVE II dealing with Integrated Urban 
Traffic Management in London, Lyon, Amsterdam, Munich 
and Dublin. 

• University of Southampton. The forecasting and control 
of congestion in urban networks. Study in progress for 
the U.K. Science and Engineering Research, Council. 

• CARGOES: Project in DRIVE I dealing with the integration 
of dynamic route guidance and traffic control systems. 

• Hounsell, N. and McLeod, F. ASTRID: Automatic SCOOT 
traffic information database. 	Transport and Road 
Research Laboratory Contractors Report CR235, 
Crowthorne, 1990. 

• Leonard, D.R. et al. CONTRAM: Structure of the model. 
Transport and Road Research Laboratory Report RR178, 
Crowthorne, 1989. 

2001 



	 t—_ 
10:00 9:00 7:00 8:00 

De
la

y  
(e

ec
/v

e
h
)  

100 

110 

30 

20 

70 

40 

90 

80 

60 

10 

O 

De
la

y  
(e

ec
/v

a
h
)  

110 

100 

80 

40 

30 

20 

90 

80 

60 

70 

10 

SS17 

1 —Step Ahead Forecast For 1 4th May 1991 
link NOISE : Box—Jenkin Model 

Time 
O Observed + Forecast 

Figure 1 

1—Step Ahead Forecast For 14th May 1991 
Link NOISE : Horizontal—Seasonal Model 

Time 
❑ Observed + Forecast 

Figure 2 
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1—Step Ahead Forecast For 13th Jun 1991 
Link NO71A : 800—Jenkin Model 
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Figure 3 

1—Step Ahead Forecast For 13th Jun 1991 
Link NO71A : Horizontal—Seasonal Model 
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Link NO71A : Forecast-Error Statistics 

Box-Jenkin Horizontal-Seasonal 

36-Step Ahead 1-Step Ahead 36-Step Ahead 1-Step Ahead 

ME 

MAE 

MSE 

MPE 

MAPE 

2.22 

3.81 

20.69 

12.30 

30.37 

1.09 

2.82 

13.82 

5.58 

22.84 
n 

5.66 

5.79 

44.55 

41.47 

43.49 

-0.28 

3.44 

18.96 

-5.78 

29.16 

TABLE(1) 

Link NOISE : Forecast-Error Statistics  

Box-Jenkin Horizontal-Seasonal 

36-Step Ahead 1-Step Ahead 36-Step Ahead 1-Step Ahead 

ME 28.58 -1.68 36.20 2.01 

MAE 32.29 12.97 36.21 12.89 

MSE 1640,44 352.51 2113.40 325.44 

MPE 16.45 -35.24 72.78 -31.89 

MAPE 88.45 61.40 73.11 62.62 

TABLE(2) 

ME 	Mean Error 
MAE 	Mean Absolute Error 
MSE 	Mean Square Error 
MPE 	Mean Percentage Error 
MAPE 	Mean Absolute Percentage Error 
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