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Spatial dynamics is often the result of competitive forces in a network. It is increasingly 
recognized that dynamic interactions and (re)locations can hardly be described by conventional 
equilibrium models. In this paper the attention will be focused on the relevance of ecologically-based 
theories which have proven to be valid in dynamic ecosystems. Especially niche theory will be dealt with 
here. It will be shown that transportation dynamics can be meaningfully represented by means of 
ecologically-based frameworks. Based on a simple transport model, the relevance of niche theory will be 
illustrated by means of some simulation experiments. 

1. CONNECTIONS BETWEEN ECOLOGY AND ECONOMICS 

Social sciences seem to orient themselves increasingly towards the methodology of natural 
sciences. The analysis of the evolution of dynamic systems is, for instance, more and more based on 
concepts from ecology. In this context the potential of using the formalism of mathematical ecology in 
economics is advocated by an increasing number of researchers. We may refer here to Samuelson (1971) 
who attempted more than 20 years ago to construct a unified economic-ecological theory. But it is 
noteworthy that already in 1932 Lotka claimed that "economic competition is only a special form of the 
more general phenomenon of biological competition". However, the real initiator of this dialogue 
between economics and ecology was essentially Malthus (1798) with his principle (and model) of 
population dynamics and saturation, including his scientific influence on the co-discoverers of the theory 
of natural selection in organic evolution, viz., Darwin and Wallace (1858) (see Rosser, 1991). An 
interesting review of the historical evolution of the connection between economy and ecology can be 
found in Rosser (1991) where also the 'dialectical' difficulties between these disciplines are pointed out. 
We may also refer here to Marshall (1920) as the greatest admirer of Darwin among economists by 
accepting the proposition that the 'struggle for existence' explains the evolution of market structure and 
that human society gradually and continuously evolves (gradualism in evolution). 

It is interesting to note that economics preceded ecology in developing the concept of static 
equilibrium (see again Rosser, 1991). However, the reverse is the case for the development of cyclical 
models. Lotka developed the non-linear predator-prey model in 1920, more than one decade before the 
first formal business cycle model was designed by Kalecky (1935). In particular Lotka (1920) and later 
on Volterra (1931) explained the occurrence of coupled oscillations in nature by means of a system of 
two differential equations (the so-called 'Lotka-Volterra model'). One equation expresses the fact that 
the evolution of a species (the so-called prey) is limited in its growth by the presence of a predator which 
feeds on it. The second one (the so-call predator equation) implies that the growth of the predator is 
positively related to the prey population. Surprisingly, the work of Lotka was recognized by economists 
only 47 years later (see e.g. Goodwin, 1967 who analyzed a Lotka-Volterra system for describing both 
the motion of the employment rate and that of the workers' income share). 

In Lotka's analysis also the possibility of different dynamic trajectories, including saddle points, 
limit cycles and bifurcations is present. On this basis, May (1976) developed various models of chaotic 
dynamics of population, which are more recently also used by several economists (see, for example, Day, 
1982, and Benhabib and Day, 1980). It should be added that the role of instabilities in economics was 
previously already recognized by the 'saltationalist' approach (see Schumpeter, 1934), on the basis of 
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population leading to chaos. May's model is a simple form of the S-shaped logistic equation (first 
developed by Verhulst, 1938) in which a time lag of one generation exists (in other words, the logistic 
function assumes a discrete form). May discovered in his simple growth model the possibility of 
oscillations and chaotic dynamics for certain values of the growth parameter (in particular for a range 
of values between 3 and 4). His study focused on single species of insect populations. However, it is 
interesting that May claimed the possibility of extending his model to commodity quantity and price 
analysis, to learning processes, to propagation of rumours, etc. 

In the seventies there has also been an increasing amount of literature on mathematical ecology 
applied to urban and regional economics. We recall here, for example, the work by Allen et al. (1978) 
and Wilson (1981) on modelling urban dynamics and primarily based on the logistic law for growth 
processes. The use of models based on the Lotka-Volterra formalism was later on advocated, among 
others, by Dendrinos and Mullally (1985), in their study of inter-urban and intra-urban (in)stability, by 
Curry (1981) and Nijkamp and Reggiani (1990) in their analyses of labour market evolution, by Camagni 
(1985), Nelson and Winter (1982), and Sonis (1986) in their models of innovation-diffusion processes. 

The interest in the use of ecological models for (spatial) economic analysis is mainly 
methodological, since the two principal ecological models (i.e., the May model and the Lotka-Volterra 
model) have the possibility of showing complex dynamics starting from very simple mathematical 
equations which may be similar in both economics and ecology. Next also by means of more recent 
mathematical tools such as catastrophe and bifurcation theory, chaos theory or fractal theory, it is 
possible to study and to interpret a multiplicity of phenomena, such as cycles, fluctuations, dramatic 
changes, which appear to prevail some times in the empirical world. 

Now the question is whether models from natural sciences have a high degree of validity in 
spatial sciences. In order to avoid a purely mechanistic and non behavioural 'transfer' of ecological 
formalism to spatial-economic analysis, it is necessary to anchor the above mentioned ecological models 
strongly in theoretical hypotheses or propositions rooted in economics (see Camagni, 1990). In this 
context, Nijkamp and Reggiani (1992a) have imposed five conditions for a valid application of so-called 
'social physics' (the use of models and concepts from natural sciences in social sciences): 

(1) The model should satisfy normal logical conditions for the social system at hand. 
(2) There should be a high degree of plausible correspondence between the phenomenon 

described in the physical (or biological) world and that from a socio-spatial system. 
(3) The physical (or ecological) basis of the approach should be interpreted in terms of 

social aspects of the system at hand. 
(4) The mathematical specification of the various relationships should correspond to 

reasonable hypotheses about the behaviour of spatial (inter)actors. 
(5) The empirical results of a physically - or ecologically - based spatial-economic 

interaction approach should be confirmed by data from social reality. 
Such conditions were for instance also used to test the methodological validity of gravity theory 

and entropy theory in regional science and geography, and they seem to have also a relevance for 
ecology-based models. This does not only hold true for May type and Lotka-Volterra type of models, but 
also for a more recent and increasingly popular approach to competition analysis, viz, niche theory. This 
will be dealt with in the next section. 

2 SOME COW-Er-Es FROM 'NICHE THEORY' 

2L Definitions of 'niche' in ecology 

The term 'niche' has become a popular concept in ecology and biology. Grinnell (1917) was the 
first scientist using the term 'niche' in order to describe the 'functional role and position of an organism 
in its community.' His work was followed by other ecologists such as Elton (1927) who claimed: 'the 
niche of an animal can be defined to a large extent by its size and food habits' and Clarke (1954) who 
distinguished between the 'functional niche' and the 'place niche'. Clarke also observed that the same 
functional niche may be filled by quite different species in different geographical regions. This concept 
was subsequently more specified by Odum (1959) who considered the habitat as the organism's 'address' 
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functional niche may be filled by quite different species in different geographical regions. This concept 
was subsequently more specified by Odum (1959) who considered the habitat as the organism's 'address' 
and the niche. as its 'profession'. 

Later, a modern approach was offered by Hutchinson (1957) who defined a niche as 'the total 
range of conditions under which the individual (or population) lives and replaces itself. He also made 
a distinction between the 'fundamental' and the 'realized' niche (see Section 2.2). 

It is thus clear that the term 'niche' has been used in a wide variety of different contexts, while 
it has also met some criticism by a few ecologists (see Pianka, 1976). Following Pianka (1978, p. 238), 
we will now define here a niche as "the total sum of the adaptations of an organismic unit or as all of 
the various ways in which a given organismic unit conforms to its particular environment". This definition 
emphasizes in particular dynamic feedback patterns, which are the subject matter of our paper. 

Recently, the niche concept has also been linked to the phenomenon of inter-species competition 
and to dynamic patterns of resource utilization. 

22 Formalization of the niche concept 

The niche concept deals with optimal adjustment (or survival) processes in dynamic systems with 
scarce resources. Usually niche relationships among potentially competing species are often visualized 
by means of bell-shaped resource utilization curves, starting from Hutchinson's works (1957) on the law 
of tolerance (or curves of performance - or tolerance curves - analyzed by Shelford, 1913) (see Figure 
1). 

d --+ 	f K 

 

FIGURE 1. A bell-shaped tolerance curve. The curve labeled K represents some resource continuum, say amount of food as a 
function of food size, which sustains various species whose utilization functions (characterized by a standard deviation w and a 
separation d) are as shown). (Source•. May, 1973, pp. 140) 

Tolerance curves are typically bell-shaped and unimodel, with their peaks representing optimal 
conditions for a particular process and their tails the limits of tolerance. Performance or tolerance curves 
are often sensitive to environmental variables. Such external conditions may be multidimensional in 
nature and governed by synergistic linkages. In order to identify optimal adjustment (or survival) patterns 
of species (i.e., the best fitness), a non-linear programming model would have to be specified, which - 
in case of multiple objectives for the organisms concerned - might even take the form of a non-linear 
multi-objective programming model. 

Consequently, when tolerance is plotted against a single variable we get the following shape for 
a chain of niches (see Figure 2). 

FIGURE 2. Chain of niches 
(Source Pianka, 1976, p. 117) 
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In Figure 2 the vertical axis measures the amount of resource available in some time interval. 
The upper curve represents the supply of resources along a single resource continuum (e.g., prey size or 
height above ground). The seven lower curves represent seven (hypothetical) species; in particular those 
with longer tails have broader utilization curves (i.e., broader niches) because their resources are less 
abundant. Their total sum indicates more or less the envelope curve of their demand. 

By adding next new variables to the horizontal axis we get the tolerance curves in a 'more-
dimensional' space (see, e.g., Figure 3 for two dimensions). 

Environmental gradient X 

FIGURE 3. A three-dimensional plot with a fitness axis 
(Source: Pianka, 1978, p. 240). 

Besides these concepts of tolerance and fitness, also other concepts are useful in this context 
such as the concept of niche 'breadth' (or 'width' or 'size') which is simply the total sum of the variety 
of different resources exploited by an organismic unit (or individual or species). 

It is clear that any real organismic unit does not exploit its fundamental niche (or virtual niche, 
i.e., the idealized niche in which the individual can live and replace itself in the absence of any 
competitors or other enemies), since its activities are curtailed by its competitors (or its predators). Thus 
the realized niche (or actual niche) is a subset of the fundamental niche, since the difference between 
the fundamental and realized niche reflects the effects of interspecific competition. 

Another central aspect of niche theory concerns the amount of resource sharing, or niche 
overlap. Many ecological models (see Pianka, 1976) suggest that the maximum tolerable niche overlap 
should decrease as the number of competing species increases, where such a decrease in overlap would 
by approximation be a decaying exponential function. From a mathematical viewpoint measures of niche 
overlap are often divided by the estimates of the competition coefficients in the usually Lotka-Volterra 
competition equations (see also the next Section 3). However, it should be noticed that relationships 
between niche overlap and competition are dubious. For example, "although niche overlap is nearly a 
prerequisite to exploitative competition overlap need not necessarily lead to competition unless resources 
are in short supply' (cf. Pianka, 1976, p. 122). 

Thus niche overlap is only a necessary but not a sufficient condition for exploitation competition. 
For instance, in case of complementarity (i.e., joint positive use of a resource) there may often be an 
inverse relationship between competition and niche overlap, so that extensive overlap might be correlated 
with reduced competition (see again, Pianka, 1976). 

In order to clarify the above concepts but to offer at the same time a framework for confronting 
ecological concepts with those from the social sciences, we will in the next sections present some formal 
models on niches and niche chains. 

3. EVOLUTION OF A SYSTEM BY MEANS OF 'NICHE' CHAINS 

3.1. Introduction 

Starting from an analysis carried out by May (1973) we will show here how niche theory can be 
embedded in standard competition models whose potential has recently been advocated for geography 
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and economics (see Nijkamp and Reggiani, 1992b, as well as Section 1). 
As a starting point we will analyze here the prototype model of several competing populations 

studied by Lotka (1925) and Volterra (1926) and interpreted on the basis of niche theory by May (1973): 

= L 
m 

y. xi 	xi (ki - ~. ail xi) •  
j.l 

(3.1) 

where x, is the population of a species i (i = 1,2„..,m), the constant ly represents the suitability of the 
environment for the ith species (e.g., carrying capacity) and the competition coefficients a;j measure the 
overlap in the utilization functions depending via the ratio of d to w (see Fig. 1) on the ith and jth 
species. Thus model (3.1) is tied now to the underlying 'microscopic' model illustrated by Fig. 1. While 
first the 'macroscopic' parameters ki and au were phenomenological constants, we have now an explicit 
interpretation for k; and aii in terms of direct biological assumptions (see again 
May, 1973). This implies also an eventual feedback between the macroscopic structure of the 
evolutionary process described by (3.1) and the related microscopic mechanisms displayed in Fig. 1, so 
that the macroscopic structures emerging from microscopic events would in turn lead to a modification 
of the microscopic mechanisms (i.e., niche overlapping). 

Model (3.1) is not only a standard model in ecology, but has also been applied elsewhere, even 
without an explicit reference to niche theory. For example, system (3.1), simply interpreted as a 
competition system, was used by Johansson and Nijkamp (1987) in their study on urban and regional 
development with competing regions. 

It is well-known (see Smith, 1974) that for the system of type (3.1) (for both the continuous and 
discrete time specification) the equilibrium - if it exists - is either stable or unstable, but in either case 
non-oscillatory. However, in a recent analysis (see Nijkamp and Reggiani, 1992b) the possibility of 
irregular behaviour emerging in case of the presence of a 'chaotic' evolution in the system has been 
shown. An interesting step from this latter analysis is consequently the introduction of the niche concept 
in such a competition system. For this purpose we will analyze in the following subsection the evolution 
of a competition system on the basis of equation (3.1), where we will analyze the self-organizing potential 
of a dynamic system with two species. 

3.2 Evolution of self-organizing systems 

Biological evolution takes normally for granted three determining factors: 
a) reproduction, b) selection through competition and c) variation through "mutation” (see Nicolis and 
Prigogine, 1977). All these factors can be represented by a generalized equation of the type (3.1) (see 
Nicolis and Prigogine, 1977): 

= NA ($ - Bu xij - di x + F, (xi) + Fr (xi) + Fm {(xi, xì )} 	 (3.2) 

where: 

N; = growth rate of species i 
ly = carrying capacity of species i 
F„ F„ Fm = non-linear functions describing, respectively, the rate of competition other than 
implied by equation (3.1), the rate of regulation and the rate of migration (or movement), the 
latter one depending also on external values of N. 
It is clear that from equation (3.1) many particular cases can arise, for example, the well-known 

prey-predator system. It is noteworthy that from equation (3.2) also the concept of 'ecological evolution' 
emerges as described by Allen (1988, p. 19) 'The important point is that 'evolution' implies some changes 
of form, character or behavioural strategy, which affects the manner in which individuals perform in 
capturing prey, reproducing and avoiding death". 
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In this framework equation (3.2) may be applied to socio-cultural and economic evolution 
(where the population dynamics can be extended to urban and regional development, economic activities, 
diffusion of Ideas, transport systems, etc.) in which learning mechanisms, innovations, or technological 
changes exist. In other words, we are facing a choice situation with different strategies which can be 
adopted or rejected' by surrounding 'populations'. 

Equations based on formulation (3.2) have been applied, for example, to urban dynamics (see 
Allen and Sanglier, 1981 and Camagni et al, 1985) where each center's growth path is subject to 
successive bifurcations which are linked to the appearance of new economic functions as well as to the 
pace of general technical progress. In particular, an evolutionary model of type (3.2) can be interpreted 
in the framework of the self-organization of systems (i.e., the inner dynamics which drive them to 
reconstitute themselves in new structures) (see Prigogine, 1976), where the new 'competitors', or new 
'species', may be considered in terms of ecological fluctuations. These fluctuations continue and replace 
the old population when the new species have a better capability of exploiting the same resources, or 
the 'ecological' niche (see Figure 4). 

FIGURE 4. Niches occupied successively by species of increasing effectiveness. 

(Sources Nicolis and Prigogine, 1977, p. 457)  
A further example of the process described in Figure 4 is provided by the evolution of 

technological innovation, where the new series are represented by new technological products (or in 
general 'new technological paradigms'). But just like in ecology, each technology which replaces an old 
one is not capable of doing the same, but generally also generates new opportunities (see Jantsch, 1980). 
An empirical example of the above process can also be found in the substitution of transport 
infrastructures (see e.g. Figure 5 related to the U.S. context). 
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FIGURE 5. Substitution of transport infrastructures in the USA; shares in length, logit transformation. 
(Sourcc GrObler and Nakicénovic, 1991, p. 10) 

It is noteworthy that system (3.2) - which represents a hierarchy of levels of self-organisation - 
is also an autopoiètic system, i.e. a system whose function is primarily geared to self-renewal (or self- 

1228 



Peter NIJKAMP, Aura REGGIANI 

production) (see, for the concept of autopoièsis Maturana, 1970, and Maturana and Varela, 1975). 
It is thus clear now that, from a modelling point of view, the competition coefficient 4i  in (3.2) 

which represents the measure of niche overlap, plays a fundamental role in the evolution of a 'self-
organizing' system, since its value generates the possibility of extinction or co-existence of species. In the 
next section we will consider the indigenous dynamics of such a system by examining the particular case 
of the evolution of two species, focusing the attention on the role played by the competition coefficient 

4. ANALYSIS OF A TWO-DIMENSIONAL NICHE SYSTEM 

4.1. Introduction 

In this subsection we will analyze the case of two competing niches, i.e., niches occupied 
successively by species of increasing effectiveness, starting from the analysis carried out by Nicolis and 
Prigogine (1977). We will use here a particular case of system (3.2) where, for the sake of simplicity, the 
terms FoF„ and F,, are considered to be equal to zero. Furthermore we will examine the evolution of 
these two competing species in both continuous and discrete time. 

Our interest is mainly oriented towards the application of the above methodology to a transport 
network where the competing species can be arcs or nodes to be chosen in a network, or the modes to 
be chosen in a segment with one origin and one destination, or - given a certain mode - different 
infrastructural opportunities to be selected (for example, the introduction of high speed trains). 

In all these cases the analysis of time in a discrete form seems well suitable since these types of 
data are often discrete in nature. Moreover it is well known that results emerging from an analysis of 
differential equations do not always straightforwardly apply to the corresponding difference equations. 

4.2 A model in continuous form 

For the case of two competing species, system (3.2) in continuous form can be reduced to (for 
x, = x and x2  = y) : 

ic=N,x(k,-x- By) -d,x 
= N2 y (k2  - y - 112  x) - d2y 	 (4.3) 

where the meaning of the parameters is the same as in system (3.2). In a 'niche' interpretation, the 
competition coefficients represents a niche overlap over time, so that B, = 142  = B. In particular for B 
= 0 we have no competition (or no common resources), while for B = 1, x and y completely overlap, 
meaning the use of the same resources. Partial overlap is consequently expressed by the condition 0 < 
B < 1. 

It is easy to find the conditions for the evolution of the species y by writing system (4.1) as 
follows: 

= x (a - bx - cy) 
Y =y (e - fY -g) 

where: 

a=N, k, -d, 
e=N2 k2 - d2 
b=N, 
f=N2  
c=BN, 
g=BN2  

It is well known from the literature (see Smith, 1974 and Nijkamp and Reggiani, 1992b) that 

(4.2) 

(4.3) 
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(4.4) 

(4.5) 

(4.6) 

a stable equilibrium exists for: 

e/g > a/b and a/c > e/f 

or, by considering (4.3): 

(k2 -d2 /N2) > B (k3 - d1 / N2) 

and 
(k1 - (11 / N,) > B (k2 - d2 / N,) 

From (4.5) and (4.6) it is clear that, if the two species are limited by different resources (k3 and 
k2), the above inequalities are likely to hold, but if they have identical requirements, one of the species 
(the most efficient one) will eliminate its competitor. It should be noted that this latter result is also the 
so-called 'Gause's Principle' or 'the principle of competitive exclusion (see Smith, 1974). 

By considering now condition' (4.5) we see that it represents the growth of species y up to a 
finite limit value, by occupying a 'niche' in the system. Then, if B = 1, condition (4.5) shows that y 
completely replaces x on the other hand, if B = 0, y grows towards a steady population y• = k2 - (d21 
N2) and will coexist with the steady population x' = k1 - (d1 / N1). 

Consequently, conditions (4.5) and (4.6), in the interpretation of niche theory, represent the 
intermediate case of niche overlapping, by indicating the coexistence of x with y. 

43. A model in discrete form 

The specification of the discrete system related to the above competition functions (4.2) is the 
following: 

xt+1 = xt (n - bx, - cl/t) 

Y+~ = Yr (m-fYt - !p4 

where m = e+1 and n = a+1 

It can be demonstrated that also in the case of a discrete system of type (4.7), competitive 
interactions do not produce oscillations (see Smith, 1974). However it is interesting to report here a 
recent result on competition models (see Nijkamp and Reggiani, 1992b). If the evolution of one species 
is chaotic (more precisely, if it follows on equation of a May-type) the whole system may exhibit the 
possibility of oscillating behaviour based on a Hopf bifurcation, when the carrying capacity of species y 
exceeds a critical threshold value. 

Let us, for the sake of illustration, consider the following system: 

x4+i = 	(n - nx,) 

YL+1 = Y, (m - fyi - !p4) < 1 
(4.8) 

This is a simple dominance representation of system (4.7) by supposing that species y has no 
impact on the evolution of species x (clearly, the evolution of y is influenced by x). 

Hypothesis (4.8) is plausible from a spatial economic viewpoint, as this may reflect hierarchy in 
spatial systems. This may imply, in the context of a central place situation, that high-order places (or 
regions) have a decisive influence on spatial interaction connections with lower-order places (or regions), 
without being influenced by means of feed-back effects by lower-order places. 

An equilibrium analysis regarding system (4.8) shows then the existence of two fixed points: a 
trivial one, P1 (0,0), and a non-trivial one, P2 [n-1)/n; (mn - gn + g-n) / nfl (see also Annex B in Nijkamp 
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and Reggiani, 1992b). Next, a stability analysis shows for P, unstable behaviour when n> 1 and m>1. In 
particular when m=1/n we get a Hopf bifurcation. 

For the second fixed point P2, we can easily find the critical value of the carrying capacity related 
to region y, m', at which a Hopf bifurcation (i.e., a bifurcation of a fixed point into a closed orbit) 
occurs, viz: 

m• = (gn1  + 2n2  - 3n - 3ng + 2g) / (n2  - 2n) 	 (4.9) 

This implies that when the carrying capacity of region y exceeds the critical value m', the fixed 
point P2 becomes unstable with the possibility of oscillations. An interesting remark concerns also the 
form of equation (4.9). It appears that m' depends only on the competition coefficient g as well as on 
the growth rate of x. Thus the intrinsic growth rate of y does not influence the onset of instability of the 
system at hand! 

Result (4.9) is indeed remarkable. It shows that, if the first competing species in system (4.7) 
is reduced to art equation of a May type (leading to chaos), we get in the whole system the possibility 
of oscillating behaviour based on Hopf bifurcations. In other words, result (4.9) underscores the 
relevance of the emergence of a 'chaotic' evolution, since in this case oscillations may arise in a system 
which in itself is not oscillatory. Some retrospective remarks on ecologically-based models will be offered 
in Subsection 4.4. Next, simulation experiments related to the case of a system of type (4.8) will be 
illustrated in Section 5, with particular reference to a simple transport model. 

4.4. A retrospective view 

The use of ecologically-oriented paradigms in dynamic systems analysis seems to offer a new 
scope for analyzing evolutionary pathways in a dynamic spatial interaction system. Above we have 
specified a set of methodological conditions to be met in order to justify a transferability of such 
paradigms to the social sciences. 

It turns out that the usual logical conditions (e.g., non-negativity, additivity) are easily fulfilled 
in such models, as this is a natural result of a common mathematical specification. 

Next, there is quite a similarity between these phenomena from different worlds (or disciplines), 
as competitive behaviour in ecology bears a close resemblance to competition in a world of scorce 
resources, governed by the efficiency principle in using these resources. For instance, the functioning of 
cost-efficiency principles in spatial interaction models is in itself not fundamentally different from the 
functioning of ecosystems' efficiency goals. 

Third, social science behaviour is - in the context of models presented above - based on an 
interwovenners of spatial and socio-economic objectives of different actors whose behaviour may be 
either competitive or complementary. 

Furthermore, the evolution of spatial interaction systems is dominated by various competition 
laws which may cause an extinction of some actors whose performance is sub-marginal. 

And finally, the empirical validity of ecologically-based theories is difficult to validate, but 
simulation experiments can be used to come to grips with the empirical plausibility of such approaches. 
This issue will be further taken up in Section 5, where various simulation results will be presented. 

5. SIMULATION RESULTS 

5.L A simple transportation model 

Thus far the number of ecologically-based models in regional science is very low, while there are 
hardly any models in transportation science dealing with ecological niche analysis. It is clear that various 
examples of overlapping transportation systems in a dynamic environment can be imagined, such as mode 
competition, route choice, vehicle choice or systems' choice (see also Chapter 3). Here we will present - 
for the sake of illustration - a simple dynamic spatial interaction system based on hierarchically related 

transport flows. 
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For the sake of illustration - but without loss of generality in terms of basic thinking - we assume 
here a simple urban traffic system with two modes, viz a bicycle and a car. Both modes are competing 
in the urban traffic system: too many bicycles slow down the speed of cars and hence discourage car use. 
On the other hand, too many cars are dangerous for cyclists and discourage bicycle use. Thus here we 
assume the logistic growth model with mutual competitive behaviour as specified in (4.7). Under normal 
weather conditions there might be an equilibrium configuration according to (4.7) where the mode choice 
is more or less stable for this type of competitive system. Moreover, as soon as the weather changes, the 
equilibrium solution: will be affected. For instance, if it starts raining or snowing, then cyclists may be 
tempted to take a car, while the inverse will hardly happen. Thus depending on these initial conditions, 
a regime switch to system (4.8) will take place. Let us denote the dominant mode in case of rain by x, 
(i.e., car use), while we will denote the dependent mode (i.e., bicycle use) by y,. Then it is evident that 
we find the hierarchical system specified in (4.8). 

It is clear that many such examples in spatial systems can be found. Now the question is whether 
the originally non-oscillating behaviour of (4.7) may be affected by the above dominance regime to such 
an extent that unstable oscillating or even chaotic behaviour may emerge. This will be analyzed in 
Subsection 5.2 by means of simulation experiments. 

5.2 Numerical experiments 

As mentioned in the previous section. we will investigate here the benaviour of system (4.8) 
before and after reaching the critical value m' leading to a Hopf bifurcation (see equation (4.9)). 

Consequently, in the following simulations we will consider values of n which display in the 
conventional May equation both irregular behaviour (for example, for n = 3.6) and chaotic behaviour 
(for example, for n = 3.9). 

We will therefore consider here two cases: 

m<m` and m>m' 

In particular, for the first. simulation (Figure 6) we will assume: 

m = 1.4 < m' 

with the initial condition 

x = y = 0.1 

n=3.6 	f=0.5 g=3 

while for the second simulation (Figure 7) we will keep the same values, by only increasing the value of 
n toward the level n = 3.9. 
Figures 6 and 7 show in general an unstable movement for variable x (clearly more 'chaotic' in Figure 
7). Variable y reaches stability in the long run, being eliminated by x (however with some irregularity in 
the case of the 'chaotic' value n = 3.9). 

22 

4I 

1) 2 

4I 

4I 
lI 

0 900 

:6;5 	- 

c.5c 

,, 225 

~ 

1 

l ~
- 

ryl I 

0 0 
0 

50.000 

2 	2 	2 	2 

100!000 	150.000 	200 000 

FIGURE 6. Oscillatory behaviour for car use (x) and stable behaviour for bicycle use (y) in case of bad weather conditions, for 
m <m' and n= 3.6 
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FIGURE 7. Again oscillatory behaviour for x and stable behaviour for y, for in < m• and n = 3.9. 

Let us consider now a value of the carrying capacity m beyond the critical value m' (by keeping the same 
values of the other parameters utilized in the previous simulations). 
Then Figure 8 shows an irregular behaviour in the evolution of variable y for the following parameter 
values: 

m=3.4> m` n=3.6 	f=0.5 g=3 

while Figure 9 displays an even more irregular pattern in the whole system, due to the increased value 
of n= 3.9 (i.e., a 'chaotic' value). 
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FIGURE 8. Irregular behaviour for both the variables it and y for m > m• and n = 3.6. 
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FIGURE 9. Again irregular behaviour for both the variables x and y for in > m' and n = 3.9. 
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6. CONCLUDING REMARKS 

In this paper we have shown how niche theory, derived from ecology, may offer more insight into 
the use of logistic functions, usually adopted by economists, for describing the evolution (introduction, 
adoption, etc.) of dynamic spatial-economic phenomena. 

In particular a chain of niches can also be used to illustrate and interpret the evolution of a self-
organizing system, in which ecological fluctuations are considered in terms of new competitors or new 
species. 

This concept, in the framework of a transport network, with e.g. competing modes or routes, has 
in this paper led to the analysis of a particular case of a two-dimensional niche system. It appeared that 
the evolution of two competing modes may become irregular or even chaotic, as soon as - under given 
external initial conditions - the trajectory of one mode interacting with the other one (e.g., in a dominant 
choice regime) becomes turbulent. 
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