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The airline deregulation in the United States and other countries gave the 
freedom for airline management to set up efficient hub-and-spoke airport networks. 
The hub-and-spoke network is likely to intensify domestically and internationally as 
airlines attempt to improve efficiency of their operations and quality of services to 
customers. In the near future, we will see global air carrier alliances with hub-and-
spoke system extending beyond national boundaries in order to serve intercontinental 
passengers more efficiently and conveniently. 

This will continue to increase congestion at hub airports while some spoke 
airports will continue to be underutilized. Optimal pricing rule (e.g., social marginal 
cost pricing or peak period pricing) is likely to lead financial surplus at the hub airport 
and deficit at spoke airports. Given that the demands for hub and spoke airports are 
complementary, the optimal pricing of a hub-and-spoke airport network as a system 
may require subsidization of the money-losing spoke airports from the hub airport. 
This is in fact consistent with the current practice of airport financing in many countries 
including Canada. 

When an airport is treated as a single operating unit, the socially optimal pricing 
scheme has been discussed extensively in the literature. Carlin and Park (1970), 
Glaister (1974), Keeler and Small (1977), Borins (1984), Gillen, Oum and Tretheway 
(1987), and Park (1989) are just a few examples. Mohring and Harwitz (1962), 
studying highway cost recovery, first established that if capacity is divisible, marginal 
cost pricing of the infrastructure will lead to financial breakeven. Morrison (1983) 
arrived at the same conclusion for an airport characterized by multiple user and multiple 
period, in which congestion occurs during peak periods. On the other hand, Oum and 
Zhang (1990) find that when capacity is not perfectly divisible, social marginal cost 
pricing does not necessarily lead to the exact cost recovery for the airports. 

If airport capacity is fixed, at least in the short run, then social marginal cost 
pricing will likely create surplus for hub airports where congestion costs are substantial. 
If financial breakeven condition is imposed on the airport, constrained optimization will 
lead to Ramsey pricing scheme (See Oum and Tretheway (1988), for example). This 
paper extends the literature by considering the optimal pricing scheme over a system 
of hub-and-spoke airports for which traffic demands are interrelated. 
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If airports are characterized by lumpy, indivisible capacity, fixed in the short 
run, then cost recovery is not guaranteed by social marginal cost pricing. However, 
imposing financial breakeven condition to individual airports may not be a desirable 
solution. Given the fact that major airlines have formed their route structure based on 
their hub-and-spoke network, the traffic demands for the hub and spoke airports are 
complementary. Therefore, social marginal cost pricing in any hub airport without 
taking into account the spoke airports will have an external effect on the traffic 
demands at the apoke airports. This externality can only be eliminated by pricing the 
hub-and-spoke airports jointly as a system. 

Since hub airports are likely to be congested while spoke airports are 
underutilized, pricing the system jointly by social marginal cost will make surplus at 
hub airports and deficit at spoke airports. necessitating a cross-subsidy among the 
airports. Also, when the system of airports are jointly considered to determine the 
optimal pricing scheme, it is of practical importance to estimate the consequence on the 
amount of total charges a typical airline (with a hub-and-spoke network) will have to 
pay as compared to the amount it would pay under the independent pricing regime. 

In section 2, we will model the characteristics of the first best airport pricing 
in a hub-and-spoke system without financial constraint on the system, and investigate 
how the conventional pricing theory must be modified in order to deal with the 
intensifying hub-and-spoke network. In section 3, an overall financial constraint will 
be imposed to the model and second best solutions are examined. The impact on the 
airlines of the jointly optimal pricing for the hub-and-spoke system under the financial 
breakeven condition is discussed in section 4. Finally, section 5 concludes the paper. 

2. MODEL WITH NO FINANCIAL CONSTRAINT 

Consider an airport network consisting of one hub airport and n spoke airports. 
Let demand for the jth spoke airport be 

D = D~.(pi+2ph ), 

where pi is the airport charge at the jth spoke and p, is the airport charge at the hub. 
For simplicity, we assume that all the traffic originating from the spoke airports 
transfers at the hub. Therefore, if demand is expressed in number of passenger 
movements (one landing or takeoff is counted as one movement), any passenger leaving 
from one spoke airport will have one movement of taking-off at the spoke plus two 
movements at the hub (one landing and one subsequent taking-off). Final destination 
is assumed to be outside the hub-spoke system under consideration (possibly, another 
hub or its spoke airport). The airport user charge is expressed on a per movement 
basis. The demand for the hub airport is 
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Dh  = G(ph) + 2E Di  
j=1 

where G(.) is the traffic originating from the hub, and the sum of D;  is the transit traffic 
originating from the spoke airports. Airport operating costs and capacity costs for each 
airport are, respectively, 

chDh, rhKh, and c1D1, rlKp  j=1,2,...,n 

where K;  is the capacity of the airport j. For mathematical simplicity, in the following 
analysis, we will consider only the symmetric case. Specifically, we will assume 

	

D/ .) = Dr('), K j  = Ks, 	c, = ch  = c, r1 = rh  = r, j=1,2,...,n. 

Consider two pricing regimes. In regime I, each hub or spoke airport is priced 
separately while in regime II, hub and spoke airports are priced as a system. 

2.1. Regime I 
When hub and spoke airports are priced separately, the objective of the hub 

airport authority should be maximizing the following net social benefits: 

max f G(p)dp + of D,(p+p)dp 
Ph 	Ph 	 ZPh 

Dh  
+ phG + 2phnDs  - cDh  - rKh  - f

( K h 

where 
Dh  = G(ph) + 2nDs(ps+2ph) 

and f is the external congestion costs, a function of volume/capacity ratio. 
The first order condition for this problem can be derived as follows: 

4phnDs + phG1  - (c2 - ][4nD i  + GI = 0, 
h 

or 

ph =c+ -  
Kh  

where fh  denotes f(Dh/K,,). This is the social marginal cost pricing. 

For any spoke airport, the optimization problem can be expressed as: 
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f DS( 2ph+P)dP + PP, 
P, 

- cDS  - rKS  - _i() 

The first order condition can be written as: 

is 
PS =c+ 

K S 
where f, denotes f(D,/IC,). Generally, the hub airport has a much higher volume of 
traffic than each of the spoke airports, hence, congestion is likely to build up in the hub 
while spoke airports have relatively little congestion. In this case, we have 

Dh  > rKh , and 	DS  < rK 
Kh 	 s 

Without loss of generality, we may also assume that fl  > 0, f" > O. 
Obviously, the hub airport will enjoy financial surplus while the spoke airports 

will suffer from financial loss. To keep breakeven in the operation, the spoke airports 
will have to charge average costs, i.e. 

rK 
pS =c+ 

2.2. Regime II 
When hub and spoke airports are considered as a system, the objective of the 

airports authorities should be: 

fPw G(p)dp  + phG  + n[ fP, 2-PA DS(P)dp + (PS +2ph )D1 

- cDh  - rKh  - f( 
Ph 

l - n f cDS  + rK + 
f 1  K 11 l hJ 	L 	s 

Dh  = 2nDS  + G 

The first order conditions are: 

max 
P, 

Max 
PAP, 

where 
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p+G~ + 2n ps=c-~\ Df = 0 (1)  
h Ks 

Df 2 ph-c- ~+ f 
= 0 (2)  

Kh 
(p8 _c_— 

Ks 

Substituting (2) into (1) yields: 

ph-c- 
K GI = 0 

h 

which leads to 

ph = c + - Kh 
substituting the above result into (2) gives 

ps =c+- 
KS 

i.e., social marginal cost pricing should be used on both hub and spoke airports. 

2.3. Welfare and Financial Consequences of Regime Change without Financial 
Constraint 
Apparently, changing from regime Ito regime H is welfare enhancing, because 

social marginal cost pricing replaces average cost pricing in the spoke airports. 
However, the financial consequences are more complicated. 

As the spoke airports charge social marginal costs, the price of using the spoke 
airports declines, and demand will increase. On the other hand, increased traffic 
originating from the spoke airports increases the congestion at the hub, forcing a higher 
price for using the hub, which will reduce the traffic originating from the hub area. 
Formally, we have dp, < 0 as the result of a pricing regime change in the spoke 
airports. In the hub, 
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1-(Ga'+2nDs)(i/K1) 
dps < 0, 

2nD 
s~

l/~) 
2dPn+dps - 	 + 1 dps 
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i 
dpn = —dDh 

i 
_ ~[Grdpn + nD.I(2dpn+dps)] 

= 

- 
[(G +2nDs)dpn + nDsdps]. 

n 
Solving for dpei we get 

d 	
nDs~

/l K~%dps 	> 0. dph - 
1 - (GI+2nDs)(411K12,) 

However, 

and it follows that dD, > 0. 
Change in total revenue in any spoke airport after regime switching can be 

written as: 
dRs = Dsdps + (ps-c)dDs 

- D 	
dps 	- ps-c 

2dpn+dps 2pn+ps 
111(2dpn +dps) 

where ~1 is the elasticity of demand (assumed constant at all of the airports in the 
system). Previous studies (Gillen, Oum, Tretheway (1987), for example) showed that 
the elasticities of air traffic with respect to airport charge are quite small (less than 0.1 
in absolute value), therefore, the first term in the above bracket is greater than unity 
while the second term is less than unity. It follows that dR, < 0, i.e. the spoke airport 
will be in deficit after the regime change. 

In the hub, the change in total revenue will be: 
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dRh = Dhdph + (ph-c)dDh 

_ (G+2nDs)dph + (ph-c)(dG+2ndDs) 

= [1-
Ph-c 

11 
Ph 

c 
Gdph + 2nDsf dph Ph 	~l(2dPh+dP~ 

L 	2Ph+Ps 

> 0. 
Taking all the spoke airports and the hub airport jointly as a system, then the change 
in total revenue due to regime switching is: 

dRh+ndR 

c 	 2(P -c + -c) 
= G[1-Ph riIdph + nDs f 1-  h ) (Pa  

r (2dPh+dPS ) 
Ph J 	ll 	2Ph+Ps 

Since 2dp, +dp, is negative and dph is positive, the sign of the above expression depends 
on the relative magnitude of the traffic originating from the hub, G, and the sum of 
traffic originating from all the spoke airports. 

3. MODEL WITH FINANCIAL CONSTRAINTS 
If the system of hub-spoke airports is constrained to be financially breakeven, 

then first-best pricing scheme discussed in the previous section may not be feasible. 
In this section, we investigate the optimal pricing rules under financial constraints. 
First, consider the case where the hub and spoke airports are subject to separate 
breakeven conditions. 

3.1. Regime I 
When the hub and spoke airports are treated separately, each of the airports 

must satisfy breakeven condition. For the hub, the optimization problem becomes: 
max f G(p)dp + of Ds(ps+P)dp 

Pr, 	Ph 	 2Ph 

D 
+ phG + 2phnD - cDh - rKh - f ( 

K 

h 

l h 

s.t. (ph - c)(G + 2nDs) - rKh = 0 

The only feasible solution to this problem is: 

ph = C + 
rKh 
Ph 
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Similarly, the solution to the spoke airports can be written as: 
rKs  

ps =c+ 
Ds  

3.2. Regime II 
When the hub and spoke airports are treated as a system and the financial 

breakeven condition is imposed onto the system, the optimization problem can be 
formulated as: 

f
P* 	 L  G(p)dp + phG + n I f 	DS(P)dP + ( 2Pk+P,)DsJ 2Pi+P. 

-cDh  - rKh  - f (Kl  - nf cDs +rKs 	

K11 
+ f

1  tt 
h
ll 	lL 	

s 

s.t. (ph-c)G + n [2(ph-c)+(ps-c)]Ds - r(Kh+nK3) = 0 

The first order conditions for this problem are derived as follows: 

(Ph-c-  4)(nDs+G I) + 2n (ps-c- 	s )D 
h 

+ {(Ph-c)(4nDs+G) + 2n(ps-c)Ds + 2nDs  + G} = 0, 

Ds[2(ph —c —  — ) + (P3 —c--1C )]    
h s  

+ 1 {[2(Ph-c)+(ps-c)]Ds  + Ds} = 0, 

n[2(ph-c)+(ps -c)]Ds  + (ph-c)G - r(Kh+nKs ) = 0, 

which, after some tedius manipulations, lead to the following equations: 

1  fin 	A Ph 	 (3) Ph 	c- 
1+XKh  + 1+A, r1  

We now examine the financial consequences of a switching from regime I to 

max 
Pka, 
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PS 
_ 1 .~ 	,1 Ps c 	1 

+À Ks + 1+1 
(4) 

r(K 	~ h + nKs) f G + n Kh 
2 	a ~ 

+J Kh Ks' D s 

[phG + n( 2ph+ps )DS yrl - r(Kh + nKs) 

regime II. When there is little congestion in the spoke airports, i.e., f is small 

compared with f , 
equations (3) and (4) lead to the following inequality: 

Ph -c>ps -c>0 

Since the hub airport is subject to more congestion than the spoke airports, it must be 
the case that 

Dh> Ds 

Combining the above two 

On the other hand, 

Rearrange, we get 

K hI` 

(5) and (6) imply that 

	

Kh 	K 

inequalities gives 

	

(ph-c)Dh 	(ps-c)D
s (5)  

as follows: 

(6)  

Kh 

the breakeven 
(ph -c)Dh + n(ps 

f (ph -c)Dh 

Ks 

constraint can be stated 
-c)Ds = r(Kh + nKs ) 

(p -c)D 
s 	

s nK 	 r 
Kh 	

i si 	IÇ 

rKh 
Ph -c> 

D 
, 

h 

rK 
and ps - c< 

Ds 

i.e., there will be financial surplus in the hub and deficit in the spoke airports. 
Therefore, a cross subsidy is necessary within the hub-spoke system. 

4. IMPACT OF REGIME CHANGE ON OVERALL AIRPORT CHARGES 
In the last section, we examined the second best pricing regime with an overall 

financial constraint. Now, we look at the consequences on the amount of total airport 

3029 



SS21 

charges that an typical airline operating on the hub-and-spoke network will have to pay. 
It can be shown that, as the elasticity of demand is small, the price of using the hub 
airport will increase while the price of using the spoke airports will decrease under 
regime II, compared with regime I. Consequently, the traffic originating from the hub, 
G, will be reduced due to increased price, ph. However, the effect of changing prices, 
caused by a regime change, on the traffic originating from the spoke airports is less 
clear because the change in traffic demands depends on change in prices of using both 
the hub and the spoke airports, namely, Mph  + dp,. Under the financial breakeven 
condition, the total net revenue from the hub-spoke system must remains zero, i.e., 

(ph-c)(G+2nDs) + n(ps-c)DS  - r(Kh+nKs) = 0 

Differentiate, 
Gdph  + (ph-c)dG + n(2dph+dps)DS  + n[2(ph-c)+(ps -c)jdDs  = 0 

or 
c 

ph 
 
-c 

2 	-c + 	-c) (Ph 	) (ps G 1 - 
dph + nDs f 1  n (2dph+dps) = 0 (7 ) 

Ph 2Ph+Ps 	- 1LL 
Empirical finding that 	is small suggests that 

1 - Ph
-C 	

> 0 	1 - 2(ph-C)+(PS-c) 	
> O. 

Ph 	 2Ph+PS  
Hence, equation (7) implies that when dp„ > 0, it must be the case that (2dph  + dp,)D, 
< 0, or 2dph  + dp, < O. This means that for transit fleights originating from the 
spoke airports, airlines are facing an overall reduction in airport charges. This also 
implies that dD, > O. 

Next, we look at the change in total traffic volume as the result of a regime 
change. 

dDh+ndDS  = dG+3ndDs  

= -Gr dph  - 3nD 2dph+dps  
Ph 	J 2ph+ps 	 (8) 

= 
-Gil dp

h  r1  + 3nDs  (2dph+dps

)/(2ph+ps)J Ph I[ 	G 	(dP,/Ph) 
In the above equation, the first term is positive while the second term is negative. 
However, note that the change in total net revenue, dR, can be expressed as: 
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dR = G [1  Phc'  dph  + nDS  (1  - 2(ph-c)+(p,-c) nj(2dph+dps) 

L Ph 	 L 	2Ph+Ps JJ 
The financial breakeven condition implies that dR = 0, hence 

(2dPh+dP)/(2Ph+P) _ 	-  G[(1-rl)Ph+rlcl 

	

dPiPh 	nDs [( 1-q)(2Ph+p,)+3rlcl 

Substituting the above result into (8) leads to 
dph 	3(l-n)Ph+3ilc dDh+ndDs  = -TIG— 1 _ 
Ph 	(1-11)(2ph+pr)+3rlc 

	

= 	dph  (1-0(Ph  Ps)  
Ph (1-11)(2Ph+p)+3rlc 

> O. 

That is, the total traffic volume of the hub-spoke system will increase in regime II. 
Apparently, switching from regime I to regime II cannot be welfare reducing 

because the constraints used in regime I is a subset of regime H. Moreover, since the 
solution to regime I is not the optimal solution to regime II, switching from regime I 
to regime II must be stricly welfare enhancing. 

5. CONCLUDING REMARKS 
With the ever intensifying attempt by airlines to improve operational efficiency 

and expanding, or at least maintaining, market share in today's increasingly competitive 
market, the efficient hub-and-spoke networks have become vitally important to airlines' 
success. The hub-and-spoke airport networks allow the airlines to operate more 
efficienty, meanwhile providing travellers with better connection and more convenience. 
The trend is likely to extend beyond national boundaries in the future when the airline 
services become more and more globalized. However, the existing pricing policies 
discussed in the literature and/or used by various airport authorities have not recognized 
the interrelations among the air traffics originating from various points in a hub-and-
spoke system. Neither first best nor second best pricing schemes which consider each 
airport in a hub-and-spoke network individually is truly socially optimal because they 
fail to take into account the externalities which exist if interconnection traffics are not 
treated explicitly. 

This paper addresses the socially optimal pricing of airports taking the hub-and-
spoke network as a system, recognizing that the traffic demand in spoke airports and 
in hub airports are complementary. We first investigated a hub-and-spoke airport 
system without financial constraint, then we examined the airport system with financial 
constraint. Comparing the results of imposing financial breakeven condition to the hub- 
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and-spoke network as a system with imposing breadeven condition to each airport 
individually, we find that the system approach calls for a cross-subsidy within the 
airports in the system. Generally, congested hub airports should charge a higher price 
for the use of the airports and transfer its financial surplus to underutilized spoke 
airports to cover the deficits in the spoke airports. Relative to the optimal pricing 
concerning individual airports, the system approach is welfare enhancing. It is also 
found that under the new pricing scheme, a typical airline operating on the hub-and-
spoke network would probabily face an overall reduction in total airport charges on an 
average fleight. Further, switching to the system optimization pricing scheme is likely 
to stimulate overall traffic volume. 

The purpose of this paper is only to bring the issue up for further discussion. 
Admittedly, the models used in this paper are only illustrative and, therefore, are much 
simplified. There remain many problems with the designing and implementing socially 
optimal pricing scheme for the emerging hub-and-spoke airport networks. 
Nevertheless, we believe that the issue is of significant importance, both theoretically 
and practically, and deserves future research effort. 
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