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ABSTRACT 
The general lack of first/last mile connectivity is one of the main challenges faced by 
today’s public transit.  One of the possible actions towards a solution to this problem is 
the planning, design and implementation of efficient feeder transit services.  This paper 
develops an analytical model which allows for an easy computation of near optimal 
terminal-to-terminal cycle length of a demand responsive feeder service to maximize 
service quality provided to customers, defined as the inverse of a weighted sum of 
waiting and riding times.  The model estimates the recommended cycle length by only 
plugging in geometrical parameters and demand data, without relying on extensive 
simulation analyses or rule of thumbs.  Simulation experiments validate our model, which 
would allow planners, decision makers and practitioners to quickly identify the best 
feeder transit operating design of any given residential area. 
 
Keywords: Optimal cycle, demand responsive, feeder transit, transit performance, 
continuous approximations, first/last mile 
 
 
1. INTRODUCTION AND BACKGROUND 
The US Department of Transportation recently identified the general lack of connectivity 
as one of the main challenges faced by public transit.  Policies which encourage the 
desired reduction of Vehicle Miles Traveled (VMT), reduction of greenhouse gases and 
even an increase of “livability” depend on solutions to the issue of first/last mile access to 
transit and multi-modal connectivity.  One of the possible actions towards providing a 
solution to this problem is the planning, design and implementation of efficient Demand 
Responsive Feeder Transit services, connecting residential areas to major fixed-route 
transit networks, also known as Demand Responsive Connectors (DRC). 

Demand Responsive Transit (DRT) systems, also known as dial-a-ride transit 
(DART) or call-n-ride (CnR) systems, have been proven effective in responding to the 
need of low demand density areas and are welcomed by passengers as they provide an 
increased flexibility and higher service level compared to ‘regular’ fixed-route services.  
These services are, however, much more costly to deploy for the operators.  Typical 
examples, other than feeder services, include ADA Paratransit services (Diana  and 
Dessouky, 2004), rural services (Quadrifoglio  et al., 2009) or other flexible hybrid 
systems, like “route deviation” services. 

Mathematical formulations are often carried out for optimizing and managing 
fleet size for demand responsive or dial-a-ride systems (Horn , 2002). Single vehicle 
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study for dial-a-ride can be found in the work of Psaraftis  (1980) as an exact dynamic 
programming solution.  The single vehicle case deals with mostly minimizing route 
duration, ride time, and waiting time of the passengers.  Chandra  et al. (2011) studied a 
simulation based approach using a single vehicle case to estimate optimal cycle length for 
the feeder services within a residential community.  These kinds of studies, however, 
require considerable data input a priori that often are not available in a new area. 

Literatures can be found that deal with a single cycle (or headway) optimization 
for performance of operating a ‘fixed’ feeder transit services (Chowdhury  and Chien, 
2011). The same for flexible transit systems, such as DRT, is still not properly addressed 
due to complex service request times and demand uncertainty. Analytical modeling, 
simulation and continuous approximations have been used to analyze flexible transit 
services.  Cortés  and Jayakrishnan (2002) provide good examples and reviews on these 
type of research approach.  Research specifically on decision tool for the design of feeder 
transit services is somewhat limited.  

Serving passengers with a shuttle in demand responsive operations can be treated 
as a problem similar to those found in queuing theory, where the shuttles can be 
considered as dynamic service windows, passengers as service objects, and dispatch time 
from service windows as waiting times (Daganzo, 1990). However, the influence of 
service area characteristics cannot be easily integrated with performance in these studies.  
This paper fits in this category by proposing a model to estimate the most appropriate 
cycle length to operate the service given the demand and the shape of the service area. 

Better planning, design and operation of these services may provide a potential 
solution to the first/last mile problem, which ultimately contribute towards greater goals 
like reducing traffic, mitigating related pollution and congestion problems and ultimately 
increase the overall “livability”.  What stops this from happening is the lack of existing 
research and information for transit managers in improving the state-of-the-art practice in 
operating these flexible transit services, especially related to the ‘problems with 
scheduling’ (Potts et al., 2010).  In this paper, we are focusing our research efforts to 
partially fill the above gap.  More specifically, we propose a model to describe the 
relationship between the level of service provided to passengers and the terminal-to-
terminal cycle length (one of the decision variables of the service), allowing for a 
manageable computation of its optimal value that could otherwise be estimated only 
using extensive simulation analyses or by trial-and-error or rule-of-thumb procedures, as 
often done in practice.  Several sets of simulation experiments and some comparison with 
existing services appear to validate our model, which would allow planners, decision 
makers and practitioners to quickly identify a good estimate of the best feeder transit 
operating design within a given service area under given circumstances. 

 
 

2. METHODOLOGY 
 
3.1 Service area, demand and optimal cycle 
We are considering a generic residential area whose shape can be approximated with a 
rectangle with length L and width W, served by a single shuttle.  The terminal (designated 
as D) with coordinates (0, 0) is located in the middle of an edge (at W/2).  The shuttle is 
departing from D at constant time intervals (cycle) C to serve passengers, which can 
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request to go from D to the service area (“drop-off” customers) or vice versa (“pick-up” 
customers).  Demand within the area is assumed to be spatially uniformly distributed as 
well as temporally uniformly distributed (Poisson process) within a target time interval T 
of the day.  This demand assumption is reasonable if at the terminal there are enough 
transit lines with high frequency and/or if the terminal is also a trip production/attraction 
site, such as a shopping mall or similar. 
 
3.2 Existence of optimal cycle and performance definition 
In a given time slot of the day T, the shuttle performs a number of cycles to serve the 
given demand.  The longer the cycle length, the more ride sharing will be used, but 
passengers will experience longer average riding/waiting time, so shorter cycle lengths 
are intuitively more desirable for customers.  However, the shorter the cycle length, the 
more the cycles, the more extra driving will be needed to go to/from the terminal and 
fewer customers can be served.  At the limit, one customer at a time can be served, not 
taking advantage of any ride sharing.  With negligible demand, this taxi-like operating 
practice would be plausible and best for customers; but with high enough demand, the 
service would be oversaturated and queues and spillovers will more likely occur, average 
waiting time will increase, thus lowering the level of service.  These two combined 
effects cause an optimal cycle length to exist with the right amount of ride-sharing 
(minimizing disutility U, thus maximizing the average level of service), at which the 
system will be able to optimally serve all customers and that we aim to find in this paper. 

It is generally difficult to identify a unique definition of performance for a transit 
system as priorities differ among stakeholders. Several authors have used measures such 
as passenger cost, passengers per vehicle hour, vehicle miles per operator, cost per 
vehicle mile, cost per vehicle hour, the ratio of cost to fare box revenue and fleet fuel 
efficiency for the urban public transit (Gleason  and Barnum, 1986; Badami  and Haider, 
2007). However, all seem to agree that transit performance can generally be identified as 
a combination of operating costs and service quality.  In our model, the service quality is 
expressed as passengers’ disutility (cost): a weighted sum of expected waiting time and 
the expected in-vehicle travel time of passengers (there is no walking time for door-to-
door services).  Thus, the disutility (cost) U = γ1wt + γ2rt (wt = expected waiting time and 
rt  = expected riding time; γ1 and γ2 are the weight factors for the waiting time and riding 
time respectively, to be properly calibrated).  This is used to identify the optimal C to 
maximize serving quality.  Within each operating cycle C, the operations are then 
conducted so that total distance is minimized (like a Traveling Salesman Problem) to 
minimize operating costs. 

The proposed methodology consists of building an analytical queuing model for 
estimating the optimal cycle length in two steps.  The first step consists of identifying 
equations linking a given cycle length C and the average number of passengers n that can 
be served at most by the shuttle within C; the second part consists of building the model 
of our objective function (disutility) U as a function of C to find the optimum. 

 
3.3 C(n) models 
We are summarizing four models, found in the literature, which can be potentially used to 
describe the relationship between C and n. Note that these models provide an 
approximation of the optimal C needed to serve n passengers by minimizing the total 
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distance, just as in a Travelling Salesman Problem. These routes are devoid of any 
consideration for the waiting time or riding time of the individual passengers. We call 
these relationships between average C and n as designs and address them as Design (I) to 
(III). 
 
Design (I).  Nearest-neighbor approach:  The average closest distance between two 
uniformly distributed passenger demands, as developed by Quadrifoglio  et al. (2006) for 
a very high demand density ρ, can be used for this approach. This model provides a good 
approximation for the optimal C and n relationship with very high demand density.  After 
adapting the model to our case by including a needed newly developed mathematical 
derivation, the relationship can be written as (see Appendix for details), 

 

( )1.15 0.63 1 s
nC n t

V Vρ ρ

 
= + + +  
 

       (1) 

 
where, st  is the time taken at each stop or terminal to pick-up/drop-off of a passenger, 
and V is the average speed of the feeder bus. For a very high demand density ρ, the 
expression in (1) can be approximated as,  
 

( )0.63 1 s
n LWC n t
V

≈ + +          (2) 

 
 
Design (II).  Approximate TSP solution approach: Results from work of Beardwood  et 
al. (1959) and Jaillet  (1988) can also be used to express another approximate relationship 
between C and very large n, with 

 

( )1 s
nLWC n t
V

= + +         (3) 

 
Design (III).  No-backtracking approach: Exploiting the scheduling guideline as 
proposed by Quadrifoglio  and Li (2009), a strategy can be set for serving passengers for 
a lower passenger demand (low n) and a high length-to-width ratio of service area (see 
Fig. 1). In this case, the vehicle would move through the upper half of the region in a no-
backtracking policy left-to-right, and move through the bottom half in a no-backtracking 
policy right-to-left. The relationship between C and n is expressed in this case by the 
following, 

 

( )

22
1 3 6 1 s

n W WnL
nC n t

V

  + + + = + +        (4) 
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With the further assumption 1
1

n
n

  ≈ + 
, the relationship between C and n in (4) becomes 

linear and can be expressed as 
 

( )
22
3 6 1 s

W WnL
C n t

V

+ +
≈ + +  (5) 

 
Using (5) for computing C does not change its values significantly with respect to (4), 
especially for higher values of n (Quadrifoglio and Li, 2009).  This model also closely 
estimates the optimal cycle length and performs better for high L/W ratios. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Shuttle pick-up/drop-off strategy. 
 
3.4 Model Comparison 
It is important to compare the relative applications of each of the design methodologies 
discussed above to select the best C and n for a single cycle relationship according to the 
actual service area and demand.  The four relationships are compared to outputs obtained 
from an insertion heuristic policy (Jaw  et al., 1986; Quadrifoglio  et al., 2007) and 
optimality (for lower demand). This comparison for outputs is made with respect to the 
total travel time, which is C, of the DRT shuttle for a single service cycle. Insertion 
heuristic can be used for good solutions as compared to optimality obtained using 
optimization software.  In fact, as the demand becomes higher, it is quite impractical to 
compute optimal solutions, simply because of unreasonable computational times involved 
in the process (Li  and Quadrifoglio, 2010).  Besides, insertion heuristic is widely used in 
practice for most scheduling problems. 

Cycle length values were computed for three different shapes of a one square mile 
service area: Case 1 is a square with L = W = 1 mile; Case 2 is a rectangle with L = 2 
miles and W = 0.5 miles; Case 3 is a slimmer rectangle with L = 3 miles and W = 0.33 
miles. An average of 1000 replications were performed in MATLAB R2010b for each 
value of C and the values of n vary between 1 to 40 to cover any variability in demand 
within each cycle.  The average feeder speed was assumed to be 20 mile per hour, posted 
speed limit found in most residential areas where shuttles operate, and the value for 
average time ts spent at a passenger stop was assumed to be 30 seconds. Optimal cycle 
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lengths were obtained using a TSP code in MATLAB and optimal computed using 
CPLEX 12.1. Following the outputs, a close match between the insertion heuristic and Cs 
were found. We thus used insertion heuristic as benchmark for all the three design 
methodologies. 

Design method (III), No-Backtrack, matched well with insertion heuristic (V) 
cycle lengths for higher L/W and lower n, which is the more commonly found shape for 
real residential areas. The cycle length values from design method (II) were closer to 
insertion heuristic outputs for the square shaped area for almost all values of n. The 
values for C using design methods (I) and (II) matched more closely with insertion 
heuristic values as n increased as compared to other design methods. The match was 
further improved as the demand density became higher (as expected).  Also (I) and (II) 
showed identical cycle length values for all three cases for the same n, as they depend on 
the total area (LW, which is the same for all) and not on the shape (identified by the L/W 
ratio).  

These results set the stage for building our analytical model and choosing the 
most appropriate C(n) expression depending on the conditions, as they are useful in 
estimating cycle lengths for any given service area geometry and demand.  
 
 
3.5 Feeder Operations 
The feeder shuttle is assumed to operate daily for a fixed duration of time. We focus on a 

portion of the day (T hours), during which 
T
C
 
  

= [τ] cycles ([∙] stands for the nearest 

integer value of ∙) of constant duration C will be performed to serve a total of N 
passengers.  Passenger requests for a given cycle are collected during the previous cycle 
and considered in a FIFO fashion.  The above situation is explained through sets of slots 
(each of duration C) corresponding to each of the dispatch times of the feeder bus in the 
sketch of Fig. 2.  

The variables t1 and T1 are the start time of the passenger request times and the 
feeder bus service times, respectively. Similarly, tk+1 and Tk+1 are the end times of the 
passenger request times and the feeder bus service times, respectively, for a total of k 
slots in a day formed equal to [τ]. Note that (T1 - t1) = C (and (Tk+1 – tk+1) =C) with (tk+1 - 
t1) = T (and (Tk+1 – T1) =T). However, in case of passenger spillovers carried from the 
previous cycles, the shuttle operates an extra cycle to serve all at end time = Tk+2. 
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Average passengers 
served in a slot = n,  

 
Average number of 
passenger requests in 
a slot = l 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Illustration of passenger requests and service times using slots of duration C. 
 
3.6 Service Disutility 
In this section we develop a continuous approximation model assuming a deterministic 
process with constant (average) time intervals between service requests and compare 
them to simulated realistic Poisson process.  There are NC

T
 = l requests/cycle on average.  

We know that n is the numbers of passengers which can be served at most on average in a 
cycle C (as estimated by the models illustrated in the previous section 3.3).  If l ≤ n, the 
system is under saturation and can comfortably serve all demand in every cycle.  We 
assume that this collected demand (l) is scheduled for service in a given cycle following a 
near optimal sequence, generated by an insertion heuristic algorithm (this scheduling 
procedure is the same adopted by SuperShuttle (2012).  If instead l > n, the system is 
oversaturated and the (average) residual (l-n) passengers would need to be served in the 
next cycle, causing a stable queue to build up in the system and additional waiting time to 
exist. 

The disutility (cost) experienced by passengers U = γ1wt + γ2rt can be modeled as 
 

Request Start 
Time, t1 

Request End 
Time, tk+1 

Slot 1, duration C 

Slot 2, duration C 

Slot k, duration C 

Service Start 
Time T1 

For spillovers: 
End Time Tk+2 

Slot 1, duration C 

Slot 2, duration C 

Slot k, duration C 

Last slot for serving final set of 
spillover passengers (if any) 

Slot (k+1), duration C 
 

End Time Tk+1 
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1

2

       
           

Q if l n
U

Q if l n
>

=  ≤
      (6) 

 
We aim to model the above cases as a function of any demand level and L/W 

geometric dimension of the service area and the decision variable C, to derive its optimal.  
Derivation of wt and rt in Q1 and Q2 involves careful accounting for passenger requests 
served in a cycle.  We define α as the fraction of pick-up passengers (going to service 
area to terminal). 

For Q1, the average riding time will be easily computed for all passengers as rt = 
C/2.  The waiting time is more complicated.  1-α drop-off passengers (going from 
terminal to service area) need to wait an average of C/2 time (from their show-up time to 
the beginning of the shuttle ride from the terminal); α pick-up passengers need to wait an 
average of time C (C/2 from their show-up time to the beginning of the shuttle ride from 
the terminal and an additional C/2 till their pick-up time).  Thus, average waiting time for 
all customers served would be (1+α)C/2 (see also Quadrifoglio and Li (2009)).  
However, only n passengers per cycle can be served at their requested cycle; the 
remaining l-n passengers (both pick-up and drop-off ones) in each cycle will have to be 
served in the following cycle and there will also be an additive spillover effect.  Thus, l-n 
passengers in the first demand cycle will be served in the second service cycle and would 
need to wait for an additional average time of C.  In the second demand cycle, 2(l-n) 
customers will be served in the third service cycle (since additional l-n customers will be 
pushed back by the first service cycle’s spillover).  In general, at demand cycle k, k(l-n) 
customers will be served in service cycle k+1.  Thus, the additional waiting time to be 
considered will be C{[(l-n) + 2(l-n) + … + τ(l-n)]/N} = C[τ(1+τ)/2](l-n)/N, considering 
only τ = [τ].  Eventually, the overall average waiting time will be wt = (1+α)C/2 + 
C[τ(1+τ)/2](l-n)/N.  Note that the queuing effect we are trying to capture and model is 
significant, but small enough that we can safely assume that there will not be situations in 
which customers are pushed back more than one extra cycle within T, since this would 
not be realistic, as the system would be excessively oversaturated and would need more 
shuttles, not just an operational fix. In particular, this assumption would be acceptable 
when ( )l n nτ − < , which ensures that for the number of spilled-over passengers from the 
last slot τ are less than n and thus all served in the very next cycle. By substituting τ = 
T/C and l = NC/T, we need to have 
 

1

Nn
T
C

>
 + 
 

           (7) 

For Q2, when demand l < n, the shuttle would take an average time t < C to 
complete every cycle (and wait a slack time C-t at the terminal before the next service 
cycle).  An estimate of t that can be computed using the design methodologies (I), (II), 
and (III) discussed earlier, plugging in l

 
instead of n and taking the resulting C value as t.  

Average riding time for all passengers is rt = t/2.  The waiting time for drop-off 
passengers is the same as for Q1; for pick-up passengers it is C/2 + t/2, where the second 
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part takes in account the actual travel time t < C at each cycle.  There won’t be any stable 
queue formation in this Q2 case, so no extra waiting time. 

In summary,  
 

( ) ( )
1 1 2

11
2 2 2

l n CQ C
N

τ ταγ γ
+ − +  = + +   

  
      (8) 

( )2 1 2 1 1 22 2 2 2 2
C t t C tQ αγ γ γ αγ γ       = + + = + +       

       
     (9) 

 
As mentioned earlier (section 3.2), the existence of an optimal C to minimize U is 

intuitive; we are attempting to find it analytically and verify our results. 
Keep in mind that n is a function of C and can be obtained by using the reverse 

expressions from methods (I) – (III) by using approximate expressions wherever 
necessary.  Skipping the easy but cumbersome mathematical passages, we can write 

( )n hC f C g≈ + +  with the values of h, f and g listed in Tab. 1. 

 
Table 1:  Expressions for h and g 

Design 
Method h f g 

(I) 
1

st
 

3 2

0.63

s

LW
t V

 
−  

 
 2 2

0.311
s

LW
t V

− +  

(II) 
1

st  3 2
s

LW
t V

 
−  

 
 2 2

0.51
s

LW
t V

− +
 

(III) 
 

1

6 s
W t
V

 + 
 

 
0 

12 4 6
6

s

s

L W Vt
W Vt

 + +
− + 

 

 
It is difficult to work with non-linear expressions (due to square root of C 

involved) if design methods used are (I) and (II) as f ≠ 0. This also makes it hard to derive 
closed form expressions as roots of cubic polynomials are not trivial to estimate. Thus, 
we proceed to give some closed form results only for design method (III) when f =0 and 
only report optimal cycle lengths obtained graphically for the other two methods along 
with simulation results later. From now on, unless specified, assume we are only working 
with design method (III). Thus, writing Q1 in (8) for f =0, l = NC/T and τ = T/C we get 
 

( ) ( ) ( ) 2
1

1 22
2 2

hC g T hC g T CQ C T
N NC

γ α γ
 + +  = + − + − +   

  
    (10) 
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Q1 is monotonically decreasing with increasing C and representing the system till 
the first intersection with Q2 (9), which is a monotonically increasing linear function of C.  
This intersection represents the point at which the spillover condition stops and is also the 
estimate for the optimal C, which we aim to find.  The equality Q1 = Q2 would be a 
quadratic Equation of the following form: 

 

( )u vC r mC b
C

 + + = + 
 

        (11) 

 

where, 
2

1

2
gTu
N

γ  
= − 

 
, ( )1 22

2 2
hTv
N

γ γα   = + − +   
   

,
2

1

2
hT gTr T
N N

γ  
= − − 

 
, with h 

and g as defined in Tab. 1 for method (III). 
Depending on the relationship between C and n from design methods (III), the 

expressions for m and b are as shown in Tab. 2. 
 

 
Table 2: Expression for right hand side coefficients of Equation (11) 

Design 
Method  m b 

(III) ( )1 21

2 2 6
sNtNW

VT T
αγ γγ +  + + 

 
 ( )1 2 6 2

2 3 s
L W t

V
αγ γ+ + + 

 
 

 
Solving (11) gives the smallest value of cycle length which is C optimal (Copt), 

 

( ) ( ) ( )
( )

2 4
2opt

b r b r u v m
C

v m
− − − − −

=
−

      (12) 

 
with all variables defined earlier.  The other root is to be discarded as it would have a 
higher disutility, could also very well occur beyond realistic capacity of the shuttle, but 
primarily Q1 would simply not hold anymore (no more spillover). 

For (12) to hold true, it is essential that ( ) ( )2 4 0b r u v m− − − ≥  (say, Constraint 1) 
and ( ) 0v m− >  (say, Constraint 2). If Constraint 1 is violated it would mean that there is 
no real intersection point for the spillover and the no-spillover curves. Therefore, Copt 
cannot be obtained by the intersection of spillover and no-spillover case. Moreover, this 
situation would arise when the demands are much higher than sustainable causing a large 
number of spillovers at every cycle, violating our model assumptions. If Constraint 2 is 
violated then it would result in a negative value of Copt which is again impractical. 
However, this situation would never arise for any DRT system since this would occur at 
very high variable demand (for a very high N in m to make (v-m) non-positive). 

 
 

 



 

11 
 

3. SIMULATION EXPERIMENTS 
The purpose of this section is to validate the derived analytical expressions for optimal 
cycle length estimation. Disutility values are obtained for different cycle lengths with 
three different assumptions of dimensions for rectangular service area, denoted by Case 1 
(L = 1 mile, W = 1 mile), Case 2 (L = 2 mile, W = 0.5 mile) and Case 3 (L = 3 mile, W = 
0.33 mile) 

Many residential areas can be approximated by square and rectangular shapes 
with dimensions shown in the three cases. The simulation is performed by coding the 
Feeder operations in MATLAB R2010b. The shortest street based path between any two 
demand points is computed using the Dijkstra’s algorithm using the rectilinear distance 
between the points. The rectilinear distance is also a good approximation for street based 
distances between two demand points (Quadrifoglio and Li, 2009). This is particularly 
true for residential areas, most of which have a grid-like rectilinear street pattern, 
especially the ones using feeders.  There were 20 replications used for each simulation. 

The passenger demands used are N = 50, 80, 100 and 240 for T = 4hr of 
operations (assumed to be within peak-hours). The first three demands fall within those 
that are found in practice from several call-n-ride systems (Potts et al., 2010). 

We perform two sets of simulations: one (Simu1) with realistic demand 
distribution taken from the report by Santos et al. (2011). We focus on the morning peak 
hour distribution periods of 5 am to 9 am for the Total distribution. The other one 
(Simu2) is performed with the above N considered constant over T to closely match the 
assumption of our analytical model. 

For simplification, the Simu1 trip data for the commuters are converted to 
cumulative distribution functions (CDF) as shown in Fig. 3. The actual CDF (a 
polynomial of higher degree and hence, difficult to invert) is slightly modified into an 
easily invertible piecewise linear function for random generation of travel times for 
passengers. In simulation, this is achieved by generating random real numbers between 
0.1 and 1, and simply computing the corresponding travel request times using the linear 
function. A linear CDF is obtained that expresses the uniform random generation of 
passengers between 5 am to 9 am (Simu2).  
 

  
Figure 3: CDF representing trip travel time for commuting (Source: Santos et al., 

2011). 
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Note that the simulated morning peak-hour period will reasonably consist of 

mostly pick-up passengers (α ≅ 1).  A similar analysis can be performed for the afternoon 
peak hours with α ≅ 0.  However, our model allows for any kind of combination, just by 
choosing appropriately the value of α included in the analytical modeling earlier. 

The collected demand at each cycle is scheduled with insertion heuristic using up 
all the cycle time C.  Customers are considered in a FIFO fashion and simulated as pick-
up or drop-off depending on a random number generated depending on α.  Any customer 
not been able to be served in a cycle will be considered first in the next cycle. 
The shuttle is assumed to travel at constant speed V, leave the terminal at the beginning 
of each cycle, stop a time ts at each requested location following the generated schedule, 
and travel back to the terminal. 

Other simulation settings used are outlined in Tab. 3. 
 

Table 3: Input settings for the simulation model 
Parameter Input Numerical Values 
(L, W) Case 1: (1,1) Case 2: (2, 0.5 ) Case 3: (3, 0.33 ) 
V 20 miles per hour (i.e. the average speed in a residential area ) 
(γ1 / γ2) 1.8  (Wardman , 2004) 

Fleet size 1 (A single feeder shuttle) 
Shuttle Capacity 
 

Infinite (or large enough) to accommodate all passengers within 
a given cycle.  

Dwell Time (ts) 
30 seconds (at the depot as well as at the passenger pick-up/drop-
off location) 

Cycle Length C 
 

Minimum: Cm = (2L+W)/V + 2ts (time needed to reach the 
farthest point of the service area from the terminal and back in a 
rectilinear fashion) 
Maximum : Long enough to capture lowest disutility for each 
simulation case. 

 
 

3.1 Simulation Results and  Discussion 
Results are shown in Fig. 4-6.  We are pleased to observe a very close match of our 
queuing model Equations (8), (9) and (12) to simulation results, validating our approach 
and allowing us to adopt the analytical model for design purposes.  We are also pleased 
to observe a close overlap between Simu1 and Simu2.  This is particularly important to 
show that assuming constant demand over T as opposed to more realistic distribution is 
not a very strong assumption. 

Three of the curves are used in the charts of Fig. 4–6 for disutility from three 
different design methodologies adopted for relationship between C and n: Nearest 
Neighbor uses method (I), Approximate TSP uses method (II) and No-backtracking uses 
method (III).  Fig. 4–6 only show results for passenger demand = 100 with other optimal 
cycles and minimum disutility values for other demand levels being tabulated in Tab 4a-
c. The term Cm stands for the minimum cycle length needed (see Tab. 3). 
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All three models provide a good visual match for the no-spillover part (right) of 
the simulation curves.  The No-backtracking method visually gives a very close match to 
the spillover part (left) too, overall providing a good approximation of the behavior of the 
system in all situations.  As expected, curves obtained by the model underestimates the 
simulation one around the minimum, as delays and temporary queues are formed due to 
randomness to worsen the level of service, but not captured by our model based on 
expected values and continuous approximations.  More sophisticated queuing models 
might be more appropriate for close matches of the results, but they would certainly lose 
in practicality and simplicity, needed to more easily make planning decisions. 

The column |ΔU|% in Tab. 4a-c stands for the absolute percentage error 
calculated on the Simu2 curve caused by using Copt recommended by the analytical model 
vs. the actual optimal of the curve. The expression for |ΔU|% is calculated using (|ΔU| 
×100/ USimu2; see Fig. 6 as an example demonstration for No-backtracking design).  The 
best C (Copt) obtained from the theoretical curves are selected (bold) based on their 
|ΔU|% values.  The lower the |ΔU|%, the more preferred a particular design method is.  
Too high values of |ΔU|% are reported as ‘>100’ indicating values higher than 100 in 
Tab. 4 - it is an indication that the corresponding design model is not accurate and others 
are preferred. The error terms (expressed as Err Copt %) in the tables are similarly 
calculated with respect to the Copt on Simu2 but along the C axis.  Since we are aiming to 
identify the best estimate of Copt in order to minimize the disutility (U), it is appropriate 
to select model performance based on |ΔU|%.  

Results clearly show that the No-backtracking design method (III) gives the best 
results for lower demands (50, 80 and 100), but deviates for higher demand (240), where 
Approximate TSP curves provide the closest match. Since Feeder services generally 
operate at lower demand levels, we can recommend using no-backtracking model (III) for 
most practical situations. Better performance for (III) is also seen for slimmer service 
areas (Fig. 8 and Tab 4c) as opposed to square ones (Fig. 6 and Tab 4a) to further validate 
the concept mentioned earlier (Section 3.3) that the No-backtracking design method (III) 
is more suitable for high length-to-width ratio of the service area. 

 
 

 
Figure 6: Case 1 disutility versus C for passenger demand N = 100. 
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Figure 7: Case 2 disutility versus C for passenger demand N = 100. 

 

 
Figure 8: Case 3 disutility versus C for passenger demand N = 100. 

 
Table 4a:  Optimal cycle lengths (Copt in minutes) for Case 1 with different demands 

N 
Case 2 :L = 1 mile, W = 1 mile 

Simu1 Simu2 Design Method Used 
I II III 

 U Copt U Copt *Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

Copt 
|ΔU| 
(%) 

Err 
Copt 
(%) 

Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

50 0.71 14-15 0.70 13-17 Cm >100 31 Cm >100 31 10.7 4 17 
80 0.81 16-18 0.80 15-19 Cm >100 40 Cm >100 40 12.7 21 15 

100 0.88 19-21 0.82 17-20 Cm >100 47 Cm >100 47 14.5 67 15 
240 1.45 36-37 1.40 35-37 24.4 >100 30 37.6 8 16 28.3 >100 19 
*All Cm values are 9 min. 
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Table 4b:  Optimal cycle lengths (Copt in minutes) for Case 2 with different demands 

*All Cm values are 14 min 
 
Table 4c:  Optimal cycle lengths (Copt in minutes) for Case 3 with different demands 

N 
Case 3 :L = 3 mile, W = 0.33 mile 

Simu1 Simu2 Design Method Used 
I II III 

 U Copt U Copt *Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

Copt 
|ΔU| 
(%) 

Err 
Copt 
(%) 

Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

50 1.10 24-25 1.00 23-25 Cm >100 13 Cm >100 13 22.2 2 3 
80 1.20 27-30 1.20 25-29 Cm >100 23 Cm >100 23 24.6 6 2 

100 1.40 30-33 1.40 27-32 Cm >100 26 Cm >100 26 26.5 7 2 
240 1.80 44-47 1.75 42-46 24.4 >100 42 37.6 45 10 58.1 54 26 
*All Cm values are 20 min. 

 
Note that the inequality (7) is found to be true for all our experiments in the 

ranges of interest around the Copt.  In particular, lower demand and/or more compact area 
cases (like Case 1), which are less critical, are fully satisfied for all values of C.  For 
example, using N = 80, T = 4 hours, C = 9 min (Cm for Case 1), we have that n should be 
>2.9, which is satisfied by the values in Tab. 1, where n is a value between 3 and 4 for a 
C = 9 min.  For higher C (less critical scenarios), the inequality is satisfied with 
increasing margin.  For higher demand cases and/or more dispersed area cases (like Case 
3), we found that some scenarios do not satisfied (7) for lower C (close to Cm), but all 
begin to be satisfied at some value of C smaller than the Copt (and continue to be valid 
from that value up), ensuring that our model assumptions are verified around the critical 
point of interest (Copt). 

Besides verifying (7), which is a deterministic approximation, we also similarly 
verified that all our simulation experiments do not show customers left un-served after 
one extra cycle. 

 
 
4. EXTRA DRIVING AND OPTIMAL CYCLE LENGTH 
To further explain and validate the intuitive existence of an optimal C discussed in 
section 3.2 and shown in Fig. 4-6.  The expressions C(n) discussed in section 3.3 can be 
split into two terms. The first term consists of the estimated time taken by the shuttle to 
go from the terminal to the first passenger in the serving sequence and from the last 
passenger back to the terminal (this term identifies the estimated extra driving to/from 
terminal).  And the second terms consists of the estimated travel time taken to go from 

N 

Case 1: L = 2 mile, W = 0.5 mile 

Simu1 Simu2 Design Method Used 
I II III 

U Copt U Copt *Copt 
|ΔU|

% 

Err 
Copt 
(%) 

Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

Copt 
|ΔU| 

% 

Err 
Copt 
(%) 

50 0.83 17-18 0.82 16-19 Cm >100 13 Cm >100 13 16.0 0 0 
80 0.90 20-22 0.88 19-22 Cm >100 26 Cm >100 26 18.0 16 5 

100 1.00 23-27 0.90 22-26 Cm >100 36 Cm >100 36 19.4 22 12 
240 1.65 39-42 1.55 38-39 24.4 >100 36 37.6 11 1 44.2 55 16 
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the first passenger to the last one, passing by the remaining (n - 2) passengers in the same 
cycle. For the No-backtracking design method III, Equation (4) can be rearranged to 
show these two terms, denoted by (i)/(ii). 
 

( )
( )

( ) ( )

( ) ( )

2 24 2 1
2 1 1 6 6s s

i ii

L nW L Wn WC t n t
V n V n V V V

−
= + + + + + + −

+ +
 

    (13) 

 
We show an example to illustrate the influence of the extra driving leading to 

varying Copt. We assume a fixed demand of N = 100 for the service duration of the feeder 
with service area dimensions of L = 2 miles and W = 0.5 mile.  The chart in Fig. 7 shows 
the increase in Feeder service duration needed with lower cycle lengths. This increase is 
attributed due to the extra driving portion represented by Part (i) of Equation (13) which 
becomes dominating as C continues to decrease below the Copt obtained for T = 4 hours. 
This is shown using the shaded area in Fig. 7. In fact, with considerably lower cycle 
length values close to minimum cycle length value, Cm = 14 min, the Feeder shuttle 
would take more than a day to serve all the demand, which is impractical. An opposite 
behavior of the extra driving is seen as C > Copt, during which, Part (ii) of the Equation 
(13) dominates. This portion of the cycle length allows shuttle to serve all the demand 
within T = 4 hours of service duration, however, undermining longer waiting and riding 
times incurred by the customers. Thus, an optimal cycle length Copt for any given T exists 
which would ensure an equilibrium between the oversaturation effect of extra driving and 
too much of waiting and riding by the customers.  

A companion chart shown in Fig. 8 illustrates the variation of N versus cycle 
length C for a portion of Feeder service duration, T = 4 hours. A decrease in demand N 
results in decrease of Copt which allows shuttle to perform more cycles due to greater 
availability of slack times.  This can be visualized clearly with the example for N = 
50,80and 100 shown in Fig. 8. For really low values of N, the minimum cycle length (Cm 
= 14 min) becomes the optimal cycle length, Copt, needed to serve a customer, which is 
14 minutes for the assumed service area. 
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Figure 7: The concept of extra driving with fixed N 

 
 

 
Figure 8: The concept of extra driving with fixed T 

 
 

 
5. CONCLUSIONS 
Feeder services are a potential solution to the first/last mile transit connectivity problem 
faced by modern society.  An improvement of these services would ensure a more 
pleasant experience for passengers and eventually increase transit ridership, reduce 
congestion and pollution and increase the livability of residential areas.  As noted by 
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Potts et al. (2010), scheduling problems are a major concern for transit operators for these 
types of services.  This paper proposes the development of an analytical queuing model 
to estimate the best duration of the cycle length from terminal to terminal using 
continuous approximation and inputs from demand data and geometrical parameters of 
the service area.  An optimal cycle length Copt must exist to balance two opposite effects: 
too long cycles would result in excessive riding and waiting time for passengers; too 
short cycles would cause an oversaturation of the system unable to serve all demand for 
excessive driving to/from the terminal. 

Results give us a handy closed form expression which can be readily used to 
decide the best dispatch policy to operate a demand responsive feeder transit system. For 
square service area side length L = W = 1 mile, and total demands N = 50-100 over a T = 
4 hours period, the approximate Copt are found to be 11-15 minutes for the peak hours of 
commuting.  For service areas of length L = 2 miles, width W = 0.5 mile the estimated 
optimal cycle lengths Copt vary between 16-20 minutes for the peak hours of commuting. 
Further, increasing the service area dimensions to a very high length (L= 3 miles) to 
width (W =0.33 mile) ratio, the estimated optimal cycle lengths are found to be 22-27 
minutes.  Simulation experiments validate our approach well. 

In conclusion, the developed model suggests and encourages transit planners and 
operators to make use of this methodological approach in selecting the correct operating 
policy for feeders, whose proper design and operations are becoming increasingly 
important to enhance the performance of the public transportation system network, within 
modern sprawled urban and suburban areas.  We are aware of the limitations of the 
model, due to the needed approximation and assumptions used, but we believe our results 
give a contribution to the research in this area and are useful for practitioners too. Our 
future work consists of developing models for changes in fleet size and shuttle capacity 
as an extension of this current work. We are also investigating optimal cycle lengths for 
non-uniform demand distributions and for appropriate design methods that describe 
relationships between C and n, other than those mentioned in the paper. 
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APPENDIX 
 
Derivation of expected distance E[D] to the closest passenger demand from the terminal 
 
Within a rectangular service area with length, L and width, W, spatial-temporal ‘uniform’ 
demand distribution of passenger requests follow a Poisson distribution having expected 
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value of ρAR, with the probability of finding a given  number of points (An) within an area 
AR as  

( ) ( )
!

R

q
R A

n

A
P A q e

q
ρρ −= =    where, ρ = demand density and  q  = 1,2,3,…   (A-1) 

 
The average closest distance between the terminal and a passenger can be obtained for q 
= 0 and AR = d2 (see Fig. A-1), where d is the variable rectilinear distance between the 
terminal and the closest passenger. 
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Figure A-1: Illustration of expected closest distance between terminal and a passenger  
 

Using the average closest passenger-to-passenger distance as 0.63
V ρ

(by Quadrifoglio et. al 

(2006)), the cycle length C can be expressed as, 
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