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ABSTRACT 

The objective of this paper is to analyze the effects of road transportation investment on 

economic output and induced travel demand. Data for US urbanized areas are analyzed within a 

dynamic panel data VAR framework to test whether transportation induced economic growth 

effects and induced travel demand can be empirically validated. The results show that investment 

in road capacity increases average economic growth while simultaneously also inducing 

additional growth in traffic (vehicle miles travelled). Indeed, we find a general failure of 

investment to alleviate levels of congestion suggesting that productivity shifts are brought about 

due to a net increase in the scale of travel and associated interactions, rather than improved 

network performance as measured by travel times. The evidence also shows that congestion 

forms parts of the decision criterion used to allocate investments in road capacity. If 

improvements in network performance are to be achieved in a climate of travel demand growth, 

demand management techniques may be more effective than capacity expansion. 
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INTRODUCTION 

Transportation investment is a high priority in the United States and forms a large portion of the 

nation’s annual budget. In fact, it is considered so vital that on 6th September 2010, President 

Barack Obama announced a six year investment plan with an initial $50 billion infrastructure 

package to invest in roads, railways and airports [1]. Such policy statements are based on the 

principle that transportation and economic performance are positively linked, forming a key 

justification for the allocation of resources to the transportation sector. There has been extensive 

research examining the contribution of transportation infrastructure (and more generally public 

infrastructure) to economic output in the US. The quantification of these effects has been a 

source of much debate as there are difficult data and estimation issues complicating the analyses 

and the validity of their respective results. In their extensive survey of the literature, Banister and 

Berechman [2] conclude that whereas public capital investment can have positive impacts on 

economic growth, the magnitude and significance of the effects are far from conclusive. 

Nevertheless, there is ongoing support of a positive contribution of transportation investment to 

economic growth, as expressed by the abovementioned US DOT statements.  

Critiques of transportation induced growth strategies are articulated in the literature on 

induced travel demand. This literature asserts that investments in additional road transportation 

capacity will induce additional road traffic growth, thus failing to ease congestion levels and 

achieve superior network performance [e.g. 3, 4-6]. Consequently, investments in road capacity 

are sometimes viewed as providing poor value for money since the cost of congestion to the 

economy may not be substantially reduced and could even worsen.  

It is well understood that congestion has a negative impact on the delivery of goods, 

services, and people, eventually leading to a decline of economic growth. This is particularly 

important in the US, as unlike many other developed countries, the US relies more heavily on its 

road network. According to the Texas Transportation Institute (TTI), levels of traffic congestion 

have increased year on year since 1982. They further estimate that traffic congestion in the 439 

urban areas in the US contributed to losses of about $87.2 billion in 2007 [7]. 

It is important to emphasize at the beginning that the objectives of this paper are not to 

produce new estimates of the output elasticity of transportation infrastructure nor elasticities of 

vehicle miles travelled (VMT) with respect to road lane miles. The objective of the study is to 

analyze the relationship between road transportation investment and economic output within an 

empirical framework that also allows for induced travel demand. The empirical work conducted 

in this paper is based on dynamic panel data VAR models applied to US urbanized areas. We 

perform bidirectional Granger causality tests to evaluate whether transportation induced 

economic growth effects and induced travel demand can be validated, and whether, and how, 

their potentially conflicting effects may be reconciled. 

The results show that the hypotheses maintained both by advocates of induced 

transportation economic growth effects and induced travel demand appear to be valid for 

urbanized areas in the US. Investment in increased road capacity is found to increase economic 

output and vehicle miles travelled, while failing to alleviate congestion levels. We interpret this 

as showing that, far from being incompatible, transportation induced travel demand and 

transportation induced economic growth effects are consistent outcomes in the sense that by 
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allowing for an increase in the scale of travel and associated interactions, investments have 

induced a positive shift in economic output. This positive effect can be interpreted as a form of 

external returns to scale, akin to the effect induced through urban agglomeration economies. 

The results also show that although additional road capacity is not effective in lessening 

congestion, congestion does appears to influence the decision criteria used to allocate investment 

in road capacity. This implies that if improvements in network performance are to be achieved in 

a climate of travel demand growth, demand management techniques (e.g. road congestion 

pricing to achieve trip rescheduling and mode shift) may be more effective than capacity 

expansion. 

This paper is structured as follows. Section two provides an overview of existing empirical 

evidence for the US on the relationship between transportation and economic performance and 

induced travel demand. Section three describes the data and empirical methodology. The main 

results are presented and discussed in Section four. Section five provides a summary of the main 

conclusions.  

LITERATURE REVIEW 

This section provides an overview of the two transportation-related literatures relevant for the 

analyses conducted in this study. The following sections summarise existing empirical evidence 

for the US on the relationship between transportation and economic performance and induced 

travel demand, respectively.  

Transportation Investment and its Impact on Economic Output 

The impact of transportation investment on economic performance has been the focus of 

extensive research over the past decades. Public investments in transportation infrastructure can 

increase economic performance both in direct and indirect ways. Transportation is an important 

input factor in the production process as it enables goods and passengers to be transferred 

between consumption and production centres. Improvements to transportation networks can also 

increase firms’ output by reducing factor costs and thus allowing for scale effects (e.g. same 

output at lower cost or more output at same cost) [2, 8, 9].  

Another important contribution of transportation to economic performance relates to what 

the literature generally calls ‘transport-induced agglomeration effects’. Agglomeration 

economies occur when economic agents (firms, workers) benefit from being close to other 

economic agents. Transportation improvements can increase the strength of agglomeration 

economies to the extent that they increase connectivity within the spatial economy. By changing 

the way people and firms have access to economic activity, transportation bears an impact on the 

realization of agglomeration externalities and hence on the productivity effects derived from it 

[e.g. 10, 11]. 

There has been substantial empirical work for the US with the aim of quantifying the 

relationship between transportation infrastructure and economic performance. The pioneering 

work of Aschauer [12] established a very strong contribution from public capital to private sector 
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economic output, and provided an empirical platform for which much research has been 

conducted.  

The most common empirical approach consists of estimating single-equation production 

and cost functions to estimate the output and cost elasticity of transportation investment 

respectively. Early studies using this approach at state level in the US provide evidence on strong 

positive effects of transportation to economic output (e.g. Costa et al. [13], Munnell [14], Garcia-

Mila and McGuire [15], Williams and Mullen [16]). These studies were subject to criticisms on 

the grounds that they failed to account for major estimation issues notably that of unobserved 

individual heterogeneity and simultaneity bias between transportation and economic output. 

Latter studies made improvements on some of the key econometric issues and obtained lower 

and often statistically insignificant results (e.g. Evans and Karras [17], Baltagi and Pinnoi [18], 

Holtz-Eakin and Schwartz [19], and Garcia-Mila et al [20], Jiwattanakulpaisarn [21]).  

As an alternative the single-equation models, various researchers have adopted a vector 

autoregressive (VAR) approach to identify the productivity effect of transportation investment. 

The most cited examples of such studies for the US include Pereira and Flores de Frutos [22] and 

Pereira [23]. Pereira and Flores de Frutos [22] find public capital to be productive, although 

considerably less than previously estimated by Aschauer [12]. They find evidence of reverse 

causality between economic output and public capital, and conclude that policy decisions on 

public capital investment depend positively on lagged values of output. Pereira [23] finds a 

positive effect from all types of public investment (highways and streets in particular) on 

economic output, and estimates that the magnitude of this effect in the long run equalled $4.46 of 

additional output for each one dollar spent in public investment. Demetriades and Mamuneas 

[24] offer an international perspective, and develop a dynamic model based on cross-country 

panel data. A system of equations is estimated on the returns of public capital in 12 OECD 

countries, which provides evidence in favour of a significant contribution of infrastructure to 

output. The long-run marginal products of capital obtained for the US are comparable to those 

obtained by Aschauer [12]. 

Despite the abundant research on the impact of transportation investment on economic 

output, there is very little empirical evidence on the effect of increasing road congestion on 

economic growth. Previous research by Boarnet [25] and Fernald [26], both using data for the 

US, suggests that there is indeed a negative impact on economic output, while Hymel [27] finds 

a negative impact of congestion on employment growth in large US metropolitan areas. The 

studies mentioned differ in the way they measure congestion. Hymel [27] is the only study using 

a direct measure of road congestion (travel delay), while Boarnet [25] and Fernald [26] use 

measures of road use (e.g. VMT). In this paper, we attempt to provide additional evidence on the 

relationship between road transportation infrastructure, road congestion, and economic output.  

This brief overview of evidence for the US on the effects of transportation on economic 

growth suggests that existing empirical literature can be best described by the existence of mixed 

results, agreeing towards small, but statistically significant, positive effects. It also emphasise the 

lack of evidence on the effects of congestion on economic output.  
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Transportation Investment and Induced Travel Demand 

Attempts to alleviate congestion by increasing road capacity heralds the well understood theory 

of induced travel demand (e.g. Leeming [28], Lee et al. [29], Noland [3], Cervero and 

Hansen[5]).  There is an abundance of empirical studies on this topic. Cervero [4] carried out a 

meta-analysis and concluded that although empirical work confirms the hypothesis of induced 

travel demand, there is substantial variation in the magnitude of its effect. 

Hansen et al [30] provide one of the first authoritative studies on induced travel demand 

at project level by focusing on 18 highway segments over a 20 year period in California. The 

study carried out regressions under two opposed scenarios: capacity increase versus no capacity 

expansion. The difference in predicted traffic under the two scenarios was assumed to be the 

traffic induced by expansion. The results show an increase in travel demand elasticities over the 

years (first 4 years 0.2-0.3, after 10 years 0.3-0.4, after 16 years 0.4-0.6). A more recent attempt 

includes Cervero [31], who looks at 24 freeway projects over a 15 year period in California. The 

study employed a path model to explore the causal links between freeway investments and the 

corresponding traffic increases. The results also confirmed the presence of induced demand 

increasing over time, while estimating much smaller elasticity values of 0.1 and 0.39 for short- to 

long-run respectively.  

Considering the studies focusing on larger geographical areas, Hansen and Huang [32] 

analysed urban counties and metropolitan areas in California. The study used a panel data set and 

adopted several versions of a log-linear model including regional and time period fixed-effects. 

The results estimated elasticity values between 0.6-0.7 at county level, and 0.9 at the 

metropolitan level. Since then, more recent research has pointed out the issue of simultaneity 

bias. Fulton et al [33] applied fixed-effects panel data models and two-stage least squares 

procedures to data from Maryland, Virginia, North-Carolina, and Washington. Average 

elastiticity values were estimated to range between 0.2 and 0.6. Cervero and Hansen [5] 

considered urban counties in California. The study applied simultaneous models and proposed a 

comprehensive set of instrument variables to deal with simultaneity bias. The results indicate 

higher elasticities of 0.59 and 0.79 for short-term and medium-term respectively. Interestingly, 

both studies also included Granger causality tests. Fulton et al [33] used Granger causality tests 

to show lane miles precede growth in VMT, while Hansen [5] used Granger causality tests to 

cross-check the simultaneous estimations.  

Examples of state level studies include Noland [3] and Hymel et al [6]. The former study 

adopted a fixed-effects panel data model and concluded that 25% of VMT growth could be 

attributed to lane mile additions. The latter study adopted simultaneous models on cross-

sectional data, finding that congestion affects the demand for driving negatively, and an elasticity 

of induced demand of about 0.16.  

Regardless of the scale of analysis, it appears that induced travel demand is persistently 

significant in previous research, although its magnitude varies across studies. Interestingly, 

Cervero [4] reminds us that perhaps too much emphasis has been placed on measuring induced 

travel demand, and that regardless of the elasticity of VMT with respect to road investment, there 

should be more focus on the potential contributions of travel demand management strategies. 
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DATA AND METHODOLOGY 

Data 

The data used in this study relates to the 100 urbanized areas included in TTI Annual Urban 

Mobility Reports. Transportation infrastructure data and congestion data have been compiled and 

updated annually by the TTI as part of their series of Annual Urban Mobility Reports. The TTI 

Urban Mobility database is therefore used as the main source of data for the analyses conducted 

in the paper as it offers an integrated record of both road infrastructure and road congestion 

measures for a relatively long period (1982 to 2010). The same database has been previously 

used to study congestion in the US [e.g. 6, 27]. 

Two road types are considered, freeways and arterial streets. Freeways can be defined as 

express routes with limited access, while arterial streets essentially consist of major 

thoroughfares that serve traffic in urban areas. Under the DOT, the Federal Highway 

Administration (FHWA) [34] provide functional classification guidelines for which streets and 

highways are grouped into classes, or systems. In general, it is acknowledged that freeway 

commuters tend to travel longer distances. On the other hand, arterial streets are designed to be 

high capacity while tending to involve shorter commutes. An example includes Denver City 

[35], where their arterial street system is described as interconnecting “major urban elements 

such as the Central Business District, industrial facilities, large urban and suburban commercial 

centers, major residential areas, and other key activity centers”.  

As a measure of road supply, lane miles (LM) are available for each urbanized area and 

year between 1982 and 2009. As a measure for travel demand, the database provides daily 

vehicle miles of travel (VMT) for freeways and arterial streets, which consists of the average 

daily traffic on a road section multiplied by its length. To represent congestion, we use the TTI 

measure hours of delay per peak period traveller is used (TD), which provides an approximation 

of the total annual amount of time lost because of congestion. Appendix A of the TTI Urban 

Mobility Report provides a description of the methodology from which these measures have 

been calculated, as well as a discussion of its main limitations. 

Economic data for real Gross Domestic Product (GDP) per capita were obtained from the 

US Department of Commerce, Bureau of Economic Analysis (BEA), but are restricted to the 

period 2001 to 2009 for the Metropolitan Statistical Areas (MSA). The TTI data for lane miles, 

vehicle miles travelled, and delay are at the level of Urban Areas (UA), whereas data for 

economic output are available only at the MSA level. We therefore attributed real GDP per 

capita data to UA based on the respective MSA to which the UA belongs; we use this measure as 

a proxy for each UA’s production. While, we acknowledge that this may give rise to some 

measurement error, this was thought to be a reasonable way to derive economic data for UA. 

Table 1 describes the variables used in our analyses, their sources, and provides some 

basic descriptive statistics. Figure 1 shows the evolution in vehicle miles travel, lane miles, and 

annual delay per peak period traveller between 1982 and 2009 for freeways and arterial streets. 

We computed Compound Annual Growth Rates (CAGR) to analyse the growth in these 

variables. 



   8 

Over the period 1982-2009 VMT has grown by an average annual rate of 2.2% for 

arterials and 3.13% on freeways. Note that between 2007 and 2009 the number of VMT dropped 

(-0.98% for arterials and -1.17% for freeways) and this can be attributed to the global financial 

crisis. When we compare the average annual increase in VMT to that of network lane miles over 

the same period, which is 1.71% and 1.63% for freeway and arterial roads respectively, it is clear 

that the rate of increase in demand is far greater than the rate of increased capacity. In fact the 

growth of freeway and arterial street lane miles has been very steady over the period (even 

during the recent recession period the CAGR for arterials and freeways was positive and equal to 

0.31% and 0.24% respectively), but has lagged rates of VMT growth (see Figure 1). 

Consequently, congestion has also increased. In particular, total delay per peak period traveller is 

observed to have increased according to a CAGR equal to 3.21% between 1982 and 2007, while 

it reduced by -3.88% between 2007 and 2009 (see Figure 1).  

Methodology 

We develop a dynamic panel VAR model to examine the presence of Granger causality by 

testing whether past values of a given variables (e.g. X) help predict future values of another 

variable (e.g. Y). The first application of VAR models using panel data was presented by Holtz-

Eakin et al [36]. Recent approaches have drawn from this, and relevant examples include 

Jiwattanakulpaisarn [21] and Graham el al [37]. These papers are especially relevant as the 

models used in this paper follow the same empirical procedure.  

The empirical model underlying our analyses can be described as follows: 
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    (2) 

where the subscripts i (i=1,…,N) and t (t=1,…,T) index the various urbanized areas and time 

periods respectively. The terms     and     denote white noise residuals, while    and    account 

for unobserved shocks that are common to all urbanized areas but vary across time, and    and    
represent unobserved individual time-invariant heterogeneity. The number of time lags is m, 

which is specified to be identical for all variables.  

For equation (1), Y is said to Granger-cause X if we can reject the joint null hypothesis 

that the parameters            are equal to zero. Similarly for equation (2), X is said to 

Granger-cause Y if we can reject the null hypothesis that the parameters           are 

equal to zero. Essentially, the criterion being tested is whether the lagged independent variable 

provides statistically significant information that helps to predict contemporary values of the 

dependent variable.  

Because the VAR model above includes autoregressive terms that are correlated with the 

time-invariant individual effects, standard panel data estimators will produce inconsistent 

parameter estimates. The Generalised Method of Moments (GMM) can offer a means of 

obtaining consistent parameter estimates in the context of dynamic panel models [e.g. 38, 39]. 
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Essentially, the idea is to construct a set of valid instruments based on the time series nature of 

the dataset, which are correlated with the covariates but uncorrelated with the error term.  

We will consider two dynamic GMM estimators. The difference-GMM estimator [38] 

involves taking first differences of the model, to eliminate individual effects, and using time lags 

from periods t-2 and earlier (t ≥ 3) as instruments. However, the difference-GMM has been 

shown to perform rather poorly when highly persistent data (i.e. little variation aver time) are 

used [e.g. 40]. This is because of the weak correlation between the lagged levels of the variables 

and their first-differences, which gives rise to the well documented issue of weak instrument bias 

[39]. In this context, the system-GMM [39, 41], which proceeds by estimating regressions in 

differences and in levels simultaneously, has been shown to be a preferable alternative to the 

difference-GMM as it can offer substantial increases in efficiency and less finite sample bias 

[e.g. 40].  

In carrying out the Granger causality tests, there are a number of issues to contend with. 

Firstly, we must consider the appropriate lag order of the models to be estimated. To select the 

most appropriate lag structure, we adopt a sequential general-to-particular approach, where a 

joint significance test is used to evaluate the statistical importance of successive time lags of the 

variables in the model. The maximum number of lags was limited to three. This approach is 

consistent with Graham [37], who notes that the inclusion of further lags does not provide 

additional information and can introduce strong multicollinearity in the estimation in a context of 

highly persistent data. 

Consistency of the dynamic GMM estimator depends on two crucial assumptions: no first 

order serial-autocorrelation in the error term of the levels equation, and instrument exogeneity. 

To evaluate these assumptions, we consider the Arellano and Bond autocorrelation tests and the 

Sargen/Hansen tests. The Arellano and Bond [38] tests for serial autocorrelation evaluate the 

hypothesis that there is no second-order serial correlation in the first differenced residuals, which 

in turn implies that the errors from the levels equations are serially uncorrelated [37]. If there is 

serial correlation then the instruments used are not valid and there is need for another set of 

instruments starting with deeper time lags. The Sargan/Hansen test of overidentifying restrictions 

is the standard test for the validity of the instrument [37].  

The relevance of instruments used in the difference and system GMM can be determined 

by performing Wald tests. Similarly to [37], these are obtained by regressions on the identifying 

instruments. We consider two tests. The Wald test (FD) shows the results for the regression of 

first differences on past levels of the endogenous variable, corresponding to the moment 

conditions of the difference GMM estimator. The Wald test (Levels) shows the results for the 

regression of the current levels on first differences, corresponding to the additional moment 

conditions contained in the system GMM estimator.  

Similarly to any general IV estimation, the appropriateness of the dynamic GMM 

estimators also depends on the quality of the instruments used. To evaluate instrument relevance 

in the context of dynamic GMM, we estimate auxiliary regressions, for both the difference- and 

system GMM, of the lagged dependent variable on its corresponding instruments. We then 

conduct a test for the joint significance of the instruments in order to assess which of the 
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difference and system GMM estimators appears to provide better instruments. A similar 

approach is used by Jiwattanakulpaisarn [21] and Graham el al [37]. 

As explained in Jiwattanakulpaisarn [21] and Graham el al [37], the individual 

parameters of Granger causality models are difficult to interpret when considered alone; as a 

result we compute long run elasticity estimates related to respective Granger causality results. 

Considering equation (1) above, the long run coefficient for Y - γLR - is calculated as follows: 

    
            

                
         

 (3) 

where    and    are the coefficients of variables Y and X lagged m
th

 periods, respectively. All 

other long-run coefficients were calculated in a similar manner.  

RESULTS 

Full GMM estimates from the VAR models are presented in Table 2. There are 20 columns of 

estimates in the table, comprising 10 for freeways and arterial streets respectively. The long run 

elasticity estimates relating to the statistically significant Granger causality tests are reported in 

Table 3 and are also illustrated in Figure 2. 

We first consider the results in Table 2 and the validity of the assumptions underlying the 

model specification. The following tests are to be considered. There is one test for the lag order 

of the VAR model – Wald test (Order) -, and three tests concerning the validity of the dynamic 

GMM estimators: tests for serial autocorrelation - AB AR(1) and AB AR(2) -, tests for 

instrument exogeneity - Hansen test -, and tests for instrument quality - Wald test (FD) and Wald 

test (Levels). 

We select the lag structure using a Wald test and a sequential general-to-particular 

approach as explained in section three of the paper. All the models shown in Table 2 pass the 

Arellano-Bond tests (AB AR(1) and AB AR(2)) of serial autocorrelation in the error term of the 

levels equation. The Hansen test fails to reject the null hypothesis of instrument exogeneity in all 

of the models, suggesting that the set of instruments used is valid.  

The rows ‘Wald test (FD)’ and ‘Wald test (Levels)’ inform about instrument quality and 

refer to the regressions of the instruments used in the difference- and system-GMM respectively. 

The tests show that the system-GMM provides an improvement of instrument relevance, 

compared to the difference-GMM. This is as expected, as the system-GMM estimator provides 

more efficient estimates as it combines moment conditions obtained from equations in first-

differences with additional moment conditions exploited from equations in levels. 

In order to interpret the results, it is important to remember that the criterion being used 

to establish Granger causality is whether the lagged independent variables provide statistically 

significant information that helps us to predict contemporary values of the dependent variable. 

As explained previously, we must also take into account the long run coefficients, as the 

individual parameters of Granger causality models are difficult to interpret when considered 
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alone. We report the long run elasticities relating to the statistically significant Granger causality 

tests in Table 3; these relationships are also illustrated in Figure 2.  

We first consider the evidence relating transportation investment to economic growth. 

We find evidence that investment in both freeways and arterial streets Granger causes economic 

growth in urbanized areas. This result is in line with the theory proposing that public 

infrastructure has positive effects on economic performance levels. There is, however, no 

evidence of reverse causality from economic growth to road transportation infrastructure. 

Although perhaps unexpected, this result is consistent with the remaining findings emerging 

from our analysis, as we discuss below. 

The second main finding relates to induced travel demand. We find evidence supporting 

the presence of induced travel demand in urbanized areas. This result is in accordance with the 

induced travel demand argument that additional road capacity is ‘absorbed’ by increases in 

traffic volumes, leading to the worsening of congestion and its eventual return to initial levels. 

The following Granger causality relationships underpin this result. Investment in additional 

arterial streets’ lane miles is found to Granger cause traffic volumes (VMT), which in turn are 

also found to Granger cause congestion levels (hours of delay per peak traveller). As a result, 

adding more capacity to road leads to the building-up of increased traffic and the subsequent 

deterioration of road performance levels and travel time reliability, both reflected in increased 

hours of delay.  

Turning to the evidence for reverse causality, we find that congestion Granger causes 

arterial lane miles, whereas there is no evidence of Granger causality from arterial VMT to 

arterial lane miles. This result suggests that road supply investment decisions may be based on 

congestion levels, that is, investment in additional road capacity is allocated both spatially and 

temporally according to road performance levels. Moreover, this result may also help understand 

the failure to observe Granger causation running from productivity to road transportation supply, 

as it seems that the latter responds to road performance levels instead. 

It is interesting to notice that the relationships discussed above, between road supply, 

road traffic, and road congestion, are only identified for arterial streets, not for freeways. There is 

no evidence of Granger causality links between freeway lane miles and induced travel demand or 

congestion. To help understand this result, we consider the following reasons. Whereas arterial 

streets relate essentially to urban interactions, freeways are more likely to connect different urban 

areas. As a result, we would expect freeways’ road supply to be a function of the degree of 

economic interaction and size of neighbouring urban areas, rather the size of the own-urban area 

size. Given their inter-urban nature, relationships involving freeways are likely to be better 

characterised according to gravity type models. The results obtained in the Granger causality 

context developed in this paper may therefore result, at least partially, from the inability of our 

models to appropriately capture the effects described above. 

So far, we have found evidence supportive of the assertions defended by both the 

transportation- productivity literature and the induced travel demand literature. Both claims 

appear to be confirmed by our empirical analyses using data for urbanized areas in the US. To 

reconcile what may appear to be a conflicting result, that is, the fact that investment in additional 

road capacity should not be pursued by decision makers on the grounds that it only achieves, at 
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best, initial congestion levels, we now consider the final set of results. We find evidence that 

VMT in both freeways and arterial streets Granger cause economic output. This means that even 

though congestion levels are not alleviated by additional road capacity, the increase in the scale 

of interactions promoted by increased road capacity gives rise to a form of increased returns to 

scale, which similarly to urban agglomeration economies, have a positive impact on economic 

performance. Compared to the studies conducted by Boarnet [25] and Fernald [26], we find 

weaker evidence of a negative impact of road congestion on economic output growth. We 

believe this is because we also allow for a scale effect captured by the additional economic 

interactions (represented by VMT) enabled by additional road capacity. 

Four key findings emerge from these results. First, the results unambiguously suggest that 

investment in road transportation networks helps predict future levels of economic output, a 

result consistent with the causality proposed by theory. The second important finding is that we 

also find evidence in favour of the theory of induced travel demand: increases in arterials’ road 

capacity induce additional growth in traffic volumes, raising road congestion levels. The third 

important finding is that in spite of the inability of additional road capacity to alleviate 

congestion, the evidence supports the existence of positive returns to scale resulting from the 

increase in interactions made possible by investments in additional road capacity.  

Finally, and although the aforementioned scale effect appears to still outweigh the 

negative impacts from congestion, it is also evident from our analysis that improvements to road 

performance levels should not be pursued solely on the grounds of additional road capacity, but 

rather include demand management measures which may be more effective in influencing the 

different components of additional travel demand (e.g. mode shifts, time-of-day shifts, etc.). As a 

result, these measures may also allow for efficiency improvements resultant from a selection 

process that favours more productive trips/interactions over less productive ones.  

CONCLUSION 

This paper conducted empirical work based on dynamic panel data VAR models to analyze the 

relationship between road transportation investment and economic output within a framework 

that also accounts for the role of induced travel demand.  

The results of the analyses confirm that the claims maintained both by advocates of 

induced transportation economic growth effects and induced travel demand appear to be valid for 

urbanized areas in the US. Increased road capacity is found to increase economic output in 

urbanized areas. Similarly, increased road capacity is also found to increase traffic volumes 

(vehicle miles travelled), without alleviating congestion levels. We interpret this as showing that, 

far from being incompatible, transportation induced travel demand and transportation induced 

economic growth are consistent outcomes in the sense that by allowing for an increase in the 

scale of travel and associated interactions, investments have induced a positive shift in economic 

performance. This positive effect can be interpreted as a form of external returns to scale, akin to 

the effect induced through urban agglomeration economies. 

While our results suggest that investment in road capacity may not offer an effective 

congestion mitigation strategy, the evidence indicates that congestion has been used as a decision 

rule to allocate investment in road capacity. If improvements to road performance and travel time 
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reliability are desired, investments which are not restricted to the physical capacity of road 

networks, but rather include demand management techniques may be more effective by targeting 

the various components of induced travel demand individually (e.g. road congestion pricing to 

achieve trip rescheduling and mode shift). 
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TABLE 1 Description of Variables, Data Source, and Descriptive Statistics 

Variables Code Years  Count Mean 
Standard Deviations 

Overall Between Within 

Freeway Lane Miles
a
 LM 1982-2009 2,800 790.18 970.36 959.81 171.08 

Arterial Street Lane Miles
a
 LM 1982-2009 2,800 2,328.48 3,016.61 2,994.31 469.65 

Freeway Vehicle Miles of 

Travel
a
 (000s) 

VMT 1982-2009 
2,800 11,311.73 17,294.76 16,742.29 4,637.71 

Arterial Street Vehicle Miles of 

Travel
a
 (000s) 

VMT 1982-2009 
2,800 11,535.38 16,030.47 15,688.91 3,634.33 

Annual Hours of Delay per Peak 

Period Traveller
a
 

TD 1982-2009 
2,800 27.76 17.44 14.68 9.52 

Gross Domestic Product per 

Capita
b
 

GDP 2001-2009 900 42,732.85 11,316.88 11,138.3 2,261.41 

a
 Texas Transportation Institute (TTI), as part of 2009 Annual Urban Mobility Report, http://mobility.tamu.edu/ums/ 

b 
US Department of Commerce, Bureau of Economic Analysis - http://www.bea.gov/. Real GDP data are for 

Metropolitan Statistical Areas and are in millions of chained 2005 dollars.  
 

http://mobility.tamu.edu/ums/
http://www.bea.gov/
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TABLE 2 GMM Estimates from Granger Causality Tests 

Freeway LM – TD LM - GDP LM – VMT VMT – TD VMT - GDP 

 1 

ln(LM) t 

2 

ln(TD) t 

3 

ln(LM) t 

4 

ln(GDP) t 

5 

ln(LM) t 

6 

ln(VMT) t 

7 

ln(VMT) t 

8 

ln(TD) t 

9 

ln(VMT) t 

10 

ln(GDP) t 

ln(LM)t-1 1.395*** 0.005 1.134*** -0.036 1.450*** 0.066 - - - - 

 (0.049) (0.008) (0.280) (0.123) (0.255) (0.085) - - - - 

ln(LM)t-2 -0.187** - -0.221 0.088 -0.749*** 0.039 - - - - 

 (0.074) - (0.152) (0.137) (0.178) (0.143) - - - - 

ln(LM)t-3 -0.209*** - - - - -0.064 - - - - 

 (0.036) - - - - (0.128) - - - - 

ln(VMT)t-1 - - - - 0.110 1.321*** 1.530*** 0.003 1.012*** -0.098 

 - - - - (0.115) (0.144) (0.104) (0.008) (0.243) (0.087) 

ln(VMT)t-2 - - - - 0.143* -0.142 -0.460*** - -0.145 0.142 

 - - - - (0.078) (0.325) (0.126) - (0.128) (0.095) 

ln(VMT)t-3 - - - - - -0.218 -0.084** - - - 

 - - - - - (0.249) (0.042) - - - 

ln(TD)t-1 0.002 0.997*** - - - - -0.028* 0.996*** - - 

 (0.008) (0.023) - - - - (0.016) (0.024) - - 

ln(TD)t-2 0.002 - - - - - 0.022 - - - 

 (0.005) - - - - - (0.015) - - - 

ln(TD)t-3 -0.002 - - - - - 0.016** - - - 

 (0.004) - - - - - (0.007) - - - 

ln(GDP)t-1 - - 0.037 0.951*** - - - - 0.211 0.969*** 

 - - (0.092) (0.131) - - - - (0.156) (0.130) 

ln(GDP)t-2 - - 0.119 -0.329*** - - - - 0.063 -0.336*** 

 - - (0.172) (0.073) - - - - (0.133) (0.076) 

ln(GDP)t-3 - - - - - - - - - - 

 - - - - - - - - - - 

AB AR(1) 0.000 0.002 0.029 0.002 0.000 0.019 0.000 0.002 0.027 0.002 

AB AR(2) 0.678 0.280 0.508 0.304 0.010 0.968 0.044 0.280 0.584 0.341 

Hansen test 0.153 0.477 0.192 0.438 0.124 0.174 0.156 0.480 0.064 0.360 

No. instruments 55 55 17 17 54 53 54 55 17 17 

IV lags t-1 t-1 t-1 t-1 t-2 t-3 t-2 t-1 t-1 t-1 

Wald test (Order) m=3 m=1 m=2 m=2 m=2 m=3 m=3 m=1 m=2 m=2 

Wald (FD) 79.68 837.40 58.19 65.11 132.53 297.34 231.89 841.53 98.91 69.83 

Wald (Levels) 3570.31 5149.06 703.77 783.03 20603.27 35305.20 8798.20 5481.62 823.68 809.90 

Observations 2500 2700 700 700 2600 2500 2500 2700 700 700 

Notes: Significance at 10%, 5% and 1% levels is indicated by *, **, and ***, respectively. 
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TABLE 2 GMM Estimates from Granger Causality Tests (continued) 

Arterial Streets LM – TD LM - GDP LM – VMT VMT – TD VMT - GDP 

 11 

ln(LM)t 

12 

ln(TD) t 

13 

ln(LM) t 

14 

ln(GDP) t 

15 

ln(LM) t 

16 

ln(VMT) t 

17 

ln(VMT) t 

18 

ln(TD) t 

19 

ln(VMT) t 

20 

ln(GDP) t 

ln(LM)t-1 0.872*** 0.003 1.480*** -0.377* 1.287*** 0.079 - - - - 

 (0.092) (0.010) (0.141) (0.225) (0.065) (0.131) - - - - 

ln(LM)t-2 - - -0.545*** 0.423* -0.109 -0.217** - - - - 

 - - (0.104) (0.233) (0.068) (0.097) - - - - 

ln(LM)t-3 - - - - -0.165*** - - - - - 

 - - - - (0.058) - - - - - 

ln(VMT)t-1 - - - - 0.003 0.903*** 0.849*** -0.313*** 1.041*** -0.136 

 - - - - (0.016) (0.142) (0.133) (0.110) (0.143) (0.117) 

ln(VMT)t-2 - - - - -0.002 0.236** - 0.148*** -0.197** 0.186 

 - - - - (0.008) (0.118) - (0.055) (0.070) (0.128) 

ln(VMT)t-3 - - - - -0.014 - - 0.165* - - 

 - - - - (0.015) - - (0.096) - - 

ln(TD)t-1 0.072* 0.998*** - - - - 0.101 1.072*** - - 

 (0.043) (0.024) - - - - (0.094) (0.046) - - 

ln(TD)t-2 - - - - - - - 0.001 - - 

 - - - - - - - (0.046) - - 

ln(TD)t-3 - - - - - - - -0.082*** - - 

 - - - - - - - (0.030) - - 

ln(GDP)t-1 - - 0.055 0.936*** - - - - 0.080 0.911*** 

 - - (0.041) (0.139) - - - - (0.064) (0.156) 

ln(GDP)t-2 - - 0.033 -0.304*** - - - - 0.169 -0.300*** 

 - - (0.084) (0.069) - - - - (0.158) (0.065) 

ln(GDP)t-3 - - - - - - - - - - 

 - - - - - - - - - - 

AB AR(1) 0.038 0.002 0.000 0.002 0.022 0.098 0.110 0.000 0.000 0.002 

AB AR(2) 0.661 0.279 0.282 0.546 0.776 0.424 0.169 0.797 0.719 0.390 

Hansen test 0.215 0.482 0.533 0.458 0.356 0.386 0.217 0.419 0.731 0.419 

No. instruments 55 55 17 17 55 55 55 55 17 17 

IV lags t-1 t-1 t-1 t-1 t-1 t-1 t-1 t-1 t-1 t-1 

Wald test (Order) m=1 m=1 m=2 m=2 m=3 m=2 m=1 m=3 m=2 m=2 

Wald (FD) 1208.91 820.71 58.78 64.63 180.65 156.09 463.41 166.34 41.78 64.85 

Wald (Levels) 6814.14 5587.50 950.03 810.26 10027.47 14782.88 13074.36 6957.59 644.95 818.95 

Observations 2700 2700 700 700 2500 2600 2700 2500 700 700 

Notes: Significance at 10%, 5% and 1% levels is indicated by *, **, and ***, respectively. 
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TABLE 3 Summary of Significant GMM Granger Causality Tests 

 Long Run (     

Freeways  

LM → GDP 0.137** 

  

VMT → GDP 0.122* 

Arterial Streets  

LM → GDP 0.125** 

  

VMT → GDP 0.129* 

  

LM → VMT 0.989* 

  

VMT →TD 0.031** 

  

TD → LM 0.559* 

Notes: Significance at 10% and 5%  levels is indicated by * and ** respectively. 
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FIGURE 2 Illustration of Significant GMM Granger Causality Tests and Corresponding 

Long Run Coefficients. 

 


