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ABSTRACT 

In this research, we developed a methodology to analyse traveller’s fare product choice in a 
competitive market using stated choice data. To maintain the non-overlapping hierarchical 
price structure applied in revenue management system, an availability design was proposed, 
in which the ‘presence’ and ‘absence’ of alternatives in each choice set is controlled by an 

orthogonal fraction of a factorial design.  

The estimation results of a random parameter model with presence and absence effects 
showed that travellers who book their tickets within one week are less price-sensitive to 
those booking longer ahead. In addition low income travellers are much more price-sensitive.  

Keywords: Airline Revenue Management, Demand Dependency, Discrete Choice Modelling, 
State Preference Data, Experimental Design 

1 INTRODUCTION  

In the early regulated aviation markets full-serviced first class and unrestricted coach fares 
were tied to the mileage-based fare calculations. Deregulation meant that service-based 
pricing was replaced by product differentiation strategy using both service and ticket 
conditions. Under a typical differentiated fare structure, each fare product is designed for a 
specific demand segment with distinct level of willingness-to-pay (WTP). At the high end, 
airlines offer premium fares with enhanced service amenities and fewer restrictions, and at 
the low end, discount fares with more rigorous fare rules are often applied (Belobaba, 2009). 
To avoid the diversion of high WTP customers, the availability of discount fares are often 
controlled by revenue management systems (RMSs).  



Traditional SP designs applied to air ticket choice do not maintain the dependence of air fare 
on the booking class1. This is because most of the design methods include all booking 
classes.  For such designs, the hierarchical fare structure is very likely to cause dominant 
choices of the discount fares. This is especially true when mild fare restrictions are present. 
The price levels need to overlap the ticket classes (i.e. a more restrictive fare could be 
presented as the cheaper option) to force trade-offs.  The parameter estimates generated in 
this way are only valid for the stated choice scenarios rather than a true reflection of market 
behaviour. To mimic actual market behaviour a few studies have included a search 
mechanism (Proussaloglou and Koppelman (1999), Collins et al. (2010) and Bliemer and 
Rose (2011). This study includes a presence/absence or an availability design to imitate the 
market when ticket classes are closed due to prior purchases.   

The availability design maintains the hierarchical fare structure applied in the airline market 
by presenting choice sets with a systematically controlled ‘availability’ of fares.  The 
estimation of an error components model shows that such a design scheme is able to 
capture travellers’ preference heterogeneity. The strategy offers a potentially more revealing 
and reliable method to estimating passengers’ choice of air tickets than design methods that 
assume fixed number of alternatives in the choice sets. 

The rest of the paper is organised as follow. The next section introduces the experimental 
design method used in this research. This is followed by a presentation of the empirical 
setting and the estimation results of an empirical study conducted on Chinese domestic 
airline market. The paper is closed in section 4 with a conclusion.  

2 EXPERIMENTAL DESIGN 

Experimental design is the process of generating a matrix of values to allocate attribute 
levels that describe hypothetical options in a stated choice survey. A good design allows 
analysts to detect the influence of the attributes upon observed choices made by sampled 
respondents (Rose & Bliemer, 2009).  Orthogonal and balanced incomplete block designs 
represent one strategy to isolate the effect of an attribute (Bunch et al., 1996; Louviere et al., 
2000). However, these designs can often confound the primary attribute effects with higher 
order interaction effects. Full factorial designs eliminate this confounding but they are rarely 
practical, especially in choice settings where many attributes and their interactions affect 
choice. In addition, orthogonality is sensitive to practical survey concerns, such as the 
inclusion of socio-demographic variables in the estimation model, missing data and sampling 
issues (Rose & Bliemer, 2004).  

An alternate design strategy is to minimise the error (variance) introduced in any partial 
design. Efficient designs aim to produce stable and reliable parameter estimates in a 
fractional design setting (Ryan et al., 2007). This is achieved by minimising at least one 
property of the asymptotic variance–covariance (AVC) matrix: determinant, trace, variances. 
The smaller the standard errors introduced by the design are for the parameter estimates, 

                                                 
1 Notably, booking class should be differentiated from anther concept, the travel class (e.g. business class, 
economy class). Normally, each travel class may contains several booking classes, each of which is fenced by 
certain fare rules and price level, and provided with a unique code.  



the more likely the statistical inferences are to be correct. The non-linear functional form of 
choice models and the fact that the parameter estimates are determined by attribute 
differences cause added complications in determining an efficient design. Namely, the 
combination of attribute levels presented to the respondent and the ‘true’ parameter of choice 
directly affect the standard errors.  

McFadden (1974) derived the AVC matrix for the multinomial logit model by solving the 
second derivatives of its log-likelihood function with respect to the parameters. The same 
method is used to arrive at the AVC matrix for other choice model error structures (see 
Huber and Zwerina, 1996; Kanninen, 2002; Sándor and Wedel, 2002; Carlsson and 
Martinsson, 2003; Ferrini and Scarpa, 2007; Bliemer et al., 2009a,b; Rose and Bliemer, 
2009). One of the challenges present at the design stage is the requirement for a known or 
previously estimated parameter vector when deriving the AVC. Obtaining reliable prior 
estimates aids the design process, because a misspecification leads to losses in efficiency 
(Kessels et al., 2008; Bliemer et al., 2009b). Priors may be obtained from literature reviews 
or pilot studies. However, in relatively new markets the researcher may be left with no other 
choice than to use null-parameter priors.  

The empirical case presented here is highly specific – a short haul domestic flight departing 
from Shanghai International airport. In addition, this is the first availability design for air ticket 
choices that we are aware of. For these two reasons, we applied a Dz-error criteria, which 
assumes a value of zero for the prior parameter estimates. The alternatives in the design 
were defined as all the possible combinations of fare products, itineraries, and carriers in a 
target origin-destination market. Since this research focused on domestic travel, an itinerary 
was defined as a non-stop flight departing from Shanghai International to nearby airports with 
flight durations less than 120 minutes. The fare products were characterised by price, 
departure time, on board amenities and fare class restrictions.  

Non-overlapping hierarchical levels of price were assigned to each fare product given its 
booking class. To avoid dominant choices, the presence of each alternative in a choice set is 

controlled by an orthogonal fraction of a factorial design. The advantage of such a practice 
is that the dependency between alternatives perceived by decision makers can be estimated 
independently from the co-occurrence of alternatives. The design follows the two-step 
sequential ‘availability design’ proposed by (Louviere et al., 2000). However, their method 
imposed orthogonality on both the availability of alternatives and attribute levels within each 
alternative. Such a design in our setting would require a very large number of respondents or 
place an extremely high burden on the response task for a reasonable sample size. In 
comparison, the ‘efficient’ availability design applied in this research contained much fewer 
choice scenarios. To generate the design, the following model was used.  

                                                             (1) 
where  

 = intercept for fare class i, i=1,…,M 
  = price effect, 

 = the price levels of the ith fare class, 

= the availability cross effect of fare class  on fare class i, 



 = 1 if fare class  presents in the choice set A, -1 otherwise. 

The above model takes a standard multinomial logit form. The Log-likelihood function is: 

                                                   (2) 

where y describes the outcomes of all choice tasks, that is,  equals to one if alternative  
is chosen in the choice set n, and zero otherwise. The AVC matrix can be derived from the 
second derivative of the log-likelihood function. Since the cross-alternative parameters are 
alternative specific, the elements in the matrix are based on the specification in Bliemer and 
Rose (2005). The availability design permits a violation of the regularity condition of random 
utility models. If the parameter estimate  

Notably, with the existence of cross-alternative attributes, the IIA property of the MNL no 
longer holds. Such a model is no longer a random utility model since the utility of one 
alternative depends on the attributes of other alternatives (Brownstone and Train, 1999). On 
the contrary, it is more in line with the so-called ‘mother logit’ model (McFadden, 1975) which 
is a standard logit model with attributes of other alternatives entered in the representative 
utilities. For studies of similar models please refer to Batsell and Polking (1985), Jain and 
Bass (1989), Timmermans and Borgers (1991), and Lazari and Anderson (1994).  

3 EMPIRICAL INQUIRY 

A paper and pen survey was administered to travellers on business and non-business trips 
over the period of 15th March to 5th April 2012 in Shanghai, China. A total of 485 
questionnaires were collected, among which 305 were collected in the departure lounge at 
Shanghai Hongqiao International Airport. The rest were completed by travellers who booked 
tickets at a local travel agent. All together the exercise produced 3734 choice observations. 
This paper is limited to the choice behaviour of the 326 passengers travelling for personal 
reasons.  



3.1 Questionnaire Design 

The first part of the questionnaire includes general information of travellers and trip related 
information regarding their travel experience within the last 12 months. Other than purpose of 
travel respondents indicated the number of days that they had purchased their ticket prior to 
departure, how frequently they fly, their personal income and rating for the importance of 
inflight quality indicators. 

The second part contains scenarios from a stated choice experiment generated using the 
method proposed in the last section. In each scenario, respondents were asked to select a 
ticket for a short haul trip departing from Shanghai. Figure 1 is an example of the choice 
scenarios used in the questionnaire.  

Major 1
Low cost 2
Major 3
Major 4
Major 5

Low cost 6

����Not Travel

Night - - ￥￥￥￥300

Midday Sold Out Sold Out Sold Out

Afternoon Sold Out Sold Out Sold Out

Morning - - Sold Out

No.1

Night ￥￥￥￥550 ￥￥￥￥500 ￥￥￥￥350

Carrier Flight Departure

Morning ￥￥￥￥600 ￥￥￥￥450 ￥￥￥￥400

Premium Eco Semi Flex None Flex

 
Figure 1 A Scenario in the Stated Choice Experimental Design 

As shown in Figure 1, there are two carriers in this hypothetical market. The major carrier 
offered four flights a day with three distinct booking classes, and the low cost carrier offered 
a single ticket class for its two flights per day. Each class was assigned a given fare rule 
varying from ‘no change can be made’ (i.e. non-refundable and non-transferable) to ‘fully 
flexible’ (i.e. the ticket is valid for 12 months and redeemable against any booking without 
penalty for changes to the itinerary).  A non-overlapping price schedule is used as presented 
in Table 1. Notably, in order to distinguish the non-flexible fare products provided by the two 
different carriers, the price of the low-cost fares was set to be slightly lower than those 
offered by their major opponent.  

The fare classes are offered at four time slots throughout the day. The 8:00am morning and 
8:00pm evening flights were early and late enough to signal an inconvenience. Alternatively 
the two day flights, whilst being more convenient for accessing and egressing the airports, 
disrupted the working day. 



Table 1 – Fare rules and Price of the Booking classes 

Booking Class Fare Rules and Price Range 

Non-flexible Economy (Low cost) 

No change can be made. No refund will be provided when 

cancellation occurs.  
Price level: ￥300, ￥350 

Non-flexible Economy (Major) 

No change can be made. No refund will be provided when 

cancellation occurs.  
Price levels: ￥350, ￥400 

Semi-flexible Economy (Major) 

Change will generate a fee equal to 30% of the ticket price. 

Cancellation will generate a fee equal to 50% of the ticket 

price. 
Price levels: ￥450, ￥500 

Premium Economy (Major) 

No charge will be made when change occurs. Cancellation 

will generate a fee equal to 5% of the ticket price. 
Price levels: ￥550, ￥600 

Choose not to book Reference Alternative 

The design produces 14 fare products and non-travel alternative as shown in Table 2. A full-
factorial experiment design has a total of 4.8 million scenarios. A fully specified model has 
the potential of 197 parameters to be estimated (An alternate specific constant and 13 cross 
effects for each alternative and one generic parameter on price). The design was optimised 
under the Dz-error criteria (Rose and Bliemer, 2005) with all prior parameter values equal to 
zero. After a 24-hour optimisation run using a genetic algorithm (Olaru, Smith and Wang 
2011) a 64-scenario design with a Dz-error=2.21887 was chosen for the questionnaire. The 
overall design was randomised and blocked into 8 subsets with 8 scenarios for each 
questionnaire.  

 

Table 2 – Alternatives and Abbreviations 

  
8:00am 
Morning 

12:00pm 
Midday 

4:00pm 
Afternoon 

8:00pm 
Night 

Low Cost Single class LCMor   LCNig 

Major 
Non-Flex NFMor NFMD NFAft NFNig 
Semi-Flex SFMor SFMD SFAft SFNig 
Full-Flexi PEMor PEMD PEAft PENig 

3.2 Empirical Results 

In this section, we reported the estimation results of a random parameter logit (RPL) model, 
an RPL-availability model, and an error component model (ECM). In all three models, the 
price effect for the major carrier was treated as a normally distributed random variable with 
the heterogeneity around the mean explained by two dummy coded variables. Income enters 
as an indicator of low income classes with monthly salary less than ￥5000. Passenger 
indicated the number of days that they had booked their ticket prior to departure. A pre-
booking variable enters the model as 1 if the passenger booked their ticket within one week 
of departure, and zero otherwise.  



The availability model with 14 alternatives has a total of 197 parameters to be estimated. As 
such preliminary estimations were trialled based on some a-priori expectations of where 
cross-effect may be stronger. The following criteria were a guide to the modelling strategy.   

a) the cross effects between fare products on the same flights;  

b) the cross effects between the same fare classes on parallel flights; and 

c) the cross effects between different fare classes on parallel flights. 

Positive cross effects based on the ‘presence’ of an alternative are difficult to interpret in 
terms of random utility maximisation. These coefficients indicate that adding an alternative to 
the choice set increases the probability of choice for some alternatives. In the initial 
investigations using a) to c) above we found five positive cross-effects significant at the 5% 
level. It possible for these to be reflective of some choice behaviour in that the presence of a 
more expensive ticket may make the difference between two cheaper alternatives less 
imposing. However, there was no clear pattern among the five. The positive cross-effect with 
the highest T-value was the presence of a non-flexible afternoon flight on the choice of 
premium economy at night. The final RPL-Availability model is limited to negative presence 
coefficients. 

Table 3 listed the estimations of the price effects for the RPL and RPL-availability model, the 
complete estimation results are available from the corresponding author on request. The 
non-business customers are sensitive to price, especially to the fare products offered by the 
low cost carrier. Compared to higher income groups, people with low to medium income are 
more sensitive to price. Moreover, in both the RPL and the RPL-availability models there is 
weak evidence that customers who booked their current flight within one week of departure 
are less price sensitive than those who booked earlier. The  

Table 3 –Estimation Results for RPL and RPL-Availability model 

 RPL RPL-Availability 

 Estimates T-value Estimates T-value 

Price (CNY)     

Price (Major) -0.0160***   9.40 -0.0155*** 9.35 

Price (LC) -0.0277*** 10.91 -0.0279*** 10.77 

Heterogeneity in mean (Price for the major carrier) 

Late Booking  0.0020*..  1.77 0.0021* 1.79 

Low income -0.0073*** 6.05 -0.0075*** 6.31 

Std. Devs. (Price for the major carrier) 

Price (major) 0.0040*** 4.78 0.0092*** 15.05 

Observations 2507 2507 

LL -3537.47 -3507.55 

 0.467 0.472 

χχχχ2 10 d.f. 5% level =18.3 
χ2 test of for the significance of availability terms 

59.84*** 
Note: ***, **, *   Significance at 1%, 5%, 10% level. 



Table 4 lists the presence/absence coefficients for the RPL-Availability model significant at 
the 5% level. Apart from the first presence term (SFnig in LCMor) the substitutions are 
intuitive. The presence of a cheaper ticket at the same time of day tends to lure passengers 
from the more expensive ticket (i.e. LCMor effects NFMor and NFAft effects SFAft). This is 
known as buy down behaviour. Also the presence of similar class tickets in adjacent time 
slots creates a greater level of switching between flights – buy across behaviour. 

Table 4 – Availability Effects for Non-Business Travellers 
Choice  

of 
in the 

presence of 
Coefficient T-value 

LCMor SFNig -0.432 2.86 

NFMor LCMor -0.906 4.81 

NFMD LCMor -0.335 2.31 

NFAft NfNig -0.333 2.20 

NFNig NFMD -0.632 2.04 

NFNig NFAft -0.478 1.79 

SFAft NFaft -0.498 1.96 

SFAft SFNig -0.648 2.64 

PEMD PEMor -0.688 2.34 

PEAft PEMD -0.714 3.88 

The logic behind these substitutions points to correlations in the unobserved components 
and therefore a modelling strategy that involves nesting the alternatives. Because the data is 
a quasi-panel created by repeated SP choices an error components model, rather than a 
nested logit, is used. The error components were included to capture correlation between 
ticket classes and for the departure times. These are displayed in Table 5. 

 
Table 5 – The Error Structure in the ECM 

Alternative E01 
Non-

flexible 

E02 
Semi-

flexible 

E03 
Premium 
Economy 

E04 
Morning 

Flight 

E05 
Day  

Flight 

E06 
Night  
Flight 

LCMor *   *   
LCNig *     * 
NFMor *   *   
NFMD *    *  
NFAft *    *  
NFNig *     * 
SFMor  *  *   
SFMD  *   *  
SFAft  *   *  
SFNig  *    * 
PEMor   * *   
PEMD   *  *  
PEAft   *  *  
PENig   *   * 

Two error component models are estimated. The first is the error component extension to the 
non-availability RPL model in Table 3. The second keeps the availability parameters in the 
estimation. Hence, we are able to see if the availability (presence) parameter estimates were 
picking up some of the correlation in the unobserved utilities. If this is the case, the standard 
errors on the availability parameters will be larger when unobserved correlation is included in 
the model.  



The results in Table 6 show that the nesting-structure for preferences has a better fit to the 
data than the RPL models. However, the inclusion of availability parameters still adds some 
power to the estimating model.  

Table 6 –Estimation Results for RPL and RPL-Availability model 

 RPL RPL-Availability 

 Estimates T-test Estimates T-test 

Price (CNY)     

Price (Major) -.0175*** 10.4 -.0155*** 9.35 

Price (LC) -.0408*** 9.59 -.0279*** 10.77 

Heterogeneity in mean (Price for the major carrier) 

BKL  .000 0.13 .0021* 1.79 

INC  -.0054*** 8.91 -.0075*** 6.31 

Std. Devs. (Price for the major carrier) 

Price (major) 0.0074*** 17.71 .0092*** 15.05 

Heterogeneity in mean (Price for the major carrier) 

E01 Non-Flex  3.42*** 18.40 3.78*** 16.99 

E02 Semi-Flex  1.67*** 10.61 1.90*** 11.19 

E03 Premium 3.12*** 9.97 2.03*** 6.80 

E04 Morning 2.06*** 15.63 2.53*** 14.52 

E05 Day 1.53*** 11.45 1.24*** 9.84 

E06 Night 1.36*** 8.24 1.11*** 8.72 

Observations 2507 2507 

LL -2953.90 -2929.85 

 0.555 0.558 

χχχχ2 10 d.f. 5% level =18.3 
χ2 test of for the significance of availability terms 

48.10*** 
Note: ***, **, *   Significance at 1%, 5%, 10% level. 

 
The standard errors for all presence coefficients increased in magnitude by an average 30% 
(not shown here). Six of the ten parameters are no longer significant at the 5% level, shown 
in Table 7. However, the first listed coefficient has a larger T-value than its corresponding 
value in the RPL-Availability model. This parameter is anomalous because it is the only 
presence effect not subsumed by the error component specification.  
 
Table 7 – Availability Effects for Non-Business Travellers 

Choice  
of 

in the 
presence 

of 

Coefficient T-test 

LCMor SFNig -0.827* -3.39 

NFMor LCMor -0.182 -0.67 

NFMD LCMor  0.007  0.03 

NFAft NfNig -0.328 -1.64 

NFNig NFMD -0.282 -0.78 

NFNig NFAft -0.381 -1.13 

SFAft NFaft -0.768 -1.62 

SFAft SFNig -0.704* -2.47 

PEMD PEMor -0.702* -2.40 

PEAft PEMD -0.837* -1.98 



 
Table 8 lists the direct price elasticities for the above models. Adding availability parameters 
to the RPL and the Error Components Model makes little difference to the elasticities; the 
first two and the last two rows are fairly consistent. However, there is a substantive difference 
between the models of the unobserved effects.   
 
 
 
Table 8 Direct Price Elasticity of Non-business Travellers 

 RPL RPL-
Availability 

ECM ECM-
Availability 

LCMor -3.73 -3.90 -4.35 -4.59 

LCNig -5.78 -5.83 -6.14 -6.62 

NFMor -4.62 -4.46 -3.39 -3.25 

NFMD -3.44 -3.37 -2.72 -2.66 

NFAft -3.88 -3.78 -3.08 -3.01 

NFNig -5.67 -5.46 -4.86 -4.62 

SFMor -5.62 -5.48 -4.62 -4.56 

SFMD -4.66 -4.43 -4.13 -4.03 

SFAft -5.26 -4.98 -5.02 -4.92 

SFNig -5.75 -5.57 -5.47 -5.40 

PEMor -4.39 -4.08 -5.13 -5.02 

PEMD -4.15 -3.80 -4.94 -5.10 

PEAft -4.22 -3.97 -5.53 -5.59 

PENig -4.39 -4.19 -5.75 -5.83 

 
 
 
Availability of ticket classes has a bearing on where respondents direct their preferences. For 
both the RPL and the ECM estimates the inclusion of presence (cross-effect) parameters led 
to a better fir to the data. However, it clear that much of the specific substitution between two 
tickets is explained by decomposing the error into a ‘fare class’ component and a ‘departure 
time’ component. The error-components model was able to capture the preference structure 
better than that of the inclusion of presence coefficients in the RPL model. An alternate 
strategy – not shown here – is to specify the presence coefficients as random parameters. 
However, the strategy potentially leads to many random parameters to be estimated.  
 



4 CONCLUSION 

A choice modelling exercise is undertaken for short haul, non-business travel in the south 
east of China. Respondents answered eight replications of choice scenarios generated by an 
availability design. The availability design differs from fixed choice set designs in one 
important way: The observed correlation between (dependence of) price on quality does not 
have to be artificially suspended to force trade-offs. In this example the airline’s ticket price 
hierarchy is maintained in the choice experiment. The results gave robust estimates for the 
price responsiveness. In addition the availability design was able to capture substitution 
patterns that appear to be quite reasonable. Respondents were more likely to buy down – 
book the cheaper of two tickets when available on the same flight or time of day or to buy 
across – choose the next closest time slot when their preference was not available. 
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