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ABSTRACT 

In this paper, we propose a framework to monitor distress conditions of multiple structural facilities 

simultaneously. Multivariate statistical process control methods were employed to: 1) reduce the 

dimension of data; 2) capture the interrelations among distresses and; 3) rigorously control the false alarm 

rate. We implemented the methods to monitor the long-term fatigue process of the Hurley Bridge on the 

border of Wisconsin and Michigan. Real-time measurements were collected on the strains and 

displacements at critical locations of the bridge over two years. Weather and traffic conditions were 

sampled over the same period to account for exogenous factors. Empirical studies signaled suspicious 

events with 99% confidence and interpreted their plausible sources. The results indicate that the proposed 

framework is effective in field practices. 
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1. INTRODUCTION 

Health monitoring of field infrastructures has interested researchers for several decades. Recent 

advancement in wireless technologies has made long-term real-time monitoring applicable at reasonable 

costs, and prompted the need for state-of-the-art methods to analyze and interpret the data. The primary 

goal is to ensure the longevity and safety of infrastructure and to optimize resource allocation. 

Chen et al. (1) proposed a statistical framework to monitor the deterioration conditions of 

individual facilities, i.e. distresses. The framework treats the variation in the deterioration conditions as a 

combination of common-cause variation and special-cause variation. The former refers to changes that 

can be explained and predicted by usual, and often recurrent, operational conditions; the latter refers to 

changes attributed to extraordinary events. We took a two-step approach to analyze these two variation 

components respectively. In the first step, we formulated performance models to describe and predict 

common-cause variation in a distress and decompose it into linear trends, seasonality, systematic patterns, 

and residuals. In the second step, we used Shewhart control charts to detect special changes in the 

residuals series. 

The main contribution of the paper herein is to bring the second step in (1) forward to monitor 

multiple distresses together as a group. The main motivations to use multivariate methods include the 

following: First, to reduce the dimension of data. For example, if we are monitoring 10 distresses, then we 

have 10 separate sets of control charts to be computed, visualized, and managed. This is not efficient. In 

contrast, using multivariate method will integrate them into a central set of chart that is more manageable. 

Second, the behaviors of multiple distresses are usually interrelated, which represents the structural nature 

of the underlying facility. So it is desirable to capture those redundancies for comprehensive monitoring 

and effective decision-making. Unfortunately, the separate univariate charts will likely lose that 

information. Third, when we alarm the out-of-control signals, we want to control the type-I error rate to 

ensure rigorous inferences. The type-I error rate is a confidence level that defines the probability of false 

alarms, and we want to keep it small. However, if we use separate univariate charts to monitor multiple 

variables, the overall type-I error rate will be either larger than the predetermined confidence level or very 

difficult to calculate. 

Motivated by these factors, we introduce the idea of Multivariate Statistical Process Control 

(MSPC). It refers to a set of advanced techniques for the monitoring and control of the operating 

performance of batch and continuous processes. More specifically, it reduces the information contained 

within all of the process variables down to two or three composite metrics through the application of 

statistical modeling. These composite metrics can then be easily monitored in real time in order to 

benchmark process performance and highlight potential problems, thereupon providing a framework for 

continuous improvement of the process operation. Harold Hotelling established multivariate process 

control techniques in his 1947 pioneering paper (2). He proposed the Hotelling's    control chart, which 

takes into account that a change in one variable can cause a rippling effect throughout the system. The 

control charts is based on a scalar statistic that measures how far a multivariate process is away from its 

target values. Since its development, the chart has been used to evaluate, monitor and control processes in 

a wide range of areas such as manufacturing, finance, healthcare, customer service, etc.  

The remainder of the paper is organized as follows. Section 2 proposes the methodological 

framework. Section 3 provides an empirical study to validate the framework. We conclude our paper in 

Section 4. 
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2. METHOD 

In this section, we describe the methods used to develop multivariate control charts. We start with 

deriving the Hotelling’s    statistic and then use it to construct a corresponding control chart that 

monitors multiple distress behaviors. We further introduce a primary method to identify the source 

variable(s) for out-of-control signals in the    control chart. 

2.1 Constructing the Multivariate Control Chart 

In a univariate control chart, the core concept is to measure how far a sample point is away from the 

target value or the mean level obtained from a group of historic data. Similarly, the core concept of a 

multivariate control chart is to measure how far a sample vector is away from a target vector, or a mean 

vector obtained from the historic data set. In addition to the increased dimension, a big difference between 

the two measurement scenarios is that the latter one needs to take into account the associated covariance 

among the variables. Also, although we are measuring the distance between multivariate vectors, it is 

desirable to convert the result into a scalar value so that we can conveniently make comparisons and 

visualization. Mahalanobis (3) proposed such a measurement method when the true parameters (mean and 

covariance structure) of the historic data set are known. Following the same idea, Harold Hotelling (2) 

proposed the    statistic to serve the same purpose when the parameters are unknown. 

 

2.1.1 Mahalanobis Distance 

For a multidimensional vector  , the Mahalanobis distance    measures its divergence from the mean 

vector   of a given group of sample vectors, taking into account the covariance structure associated. The 

distance can be formulated as: 

   √(   )      (   )                                                          (1) 

where   is the covariance matrix among the sample vectors. 

Now let us apply the Mahalanobis distance to monitoring quality characteristics. Assume we are 

monitoring the characteristic of   variables over   sampling periods, and for each variable we observe 

    measurements in each sampling period. We regard the   observations as a subgroup of data, and 

denote the subgroup mean value of variable   at sampling period   as: 

 ̅   
 

 
 ∑     

 
              

         
         

                                               (2) 

where      is the  th measurement point in the subgroup (         ). If we arrange the subgroup mean 

values for all the   variables together, it will form a  - dimensional vector: 

 ̅  [ ̅    ̅     ̅  ]                                                          (3) 

that integrates all the quality characteristics information at sampling period  . Since  ̅  is a random 

variable, we can define a statistic to measure its distance from a known mean vector   and a known 

covariance matrix   along the   characteristics: 

  
    ( ̅   )

 
     ( ̅   )                                                     (4) 

  
  is a one-dimensional random variable, and it is the squared value of the Mahalanobis distance 

between  ̅  and   multiplying the subgroup size  . In addition, it can also be shown (4) that   
  follows a 
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chi-square distribution with   degrees of freedom if the characteristics of  ̅  is consistent with the given 

parameters. 

2.1.2 Hotelling’s    Statistic 

The    statistic presented above can only apply to situations when parameters   and   of the quality 

monitoring process are known. However, in many practical applications, this is not the case. Therefore we 

need to estimate the parameters using the sample data. Harold Hotelling (2) proposed the Hotelling's    

statistic to serve this purpose. Similar to the    statistic, the    statistic regards multiple quality 

characteristics as a simultaneous group of variables that interact with each other and synthesize them into 

a scalar variable. 

We consider the situation where subgroup size    . Following the same notation as above, the 

   statistic at sampling period   can be formulated as: 

  
    ( ̅   ̂)

 
     ( ̅   ̂)                                                  (5) 

where  ̂ is the sample mean vector,   is the sample covariance matrix and  ̅  is defined in equation (3). 

We describe the calculation of  ̂ and   below. 

An overall estimate of the mean of variable   is obtained by averaging across all the   subgroup 

means: 

 ̿  
 

 
 ∑  ̅  

 
                                                                      (6) 

Repeating this for all the   variables we obtain an unbiased estimate of the mean vector: 

 ̂  [ ̿   ̿     ̿ ]                                                                 (7) 

To estimate the covariance matrix  , we start with calculating the subgroup variances and 

covariance. For the  th group of variable  , the sample variance    
  within the group is calculated as: 

   
  

 

   
 ∑ (      ̅  )

  
                                                          (8) 

Similarly, an estimate of the covariance between variable   and variable   at sampling period   is 

calculated as: 

     
 

   
 ∑ (      ̅  )  (      ̅  )               

                                      (9) 

An overall estimate of the variance of variable   and the covariance between variable   and 

variable   can be obtained by averaging the subgroup variances and covariance across all the   subgroups: 

 ̅ 
  

 

 
 ∑    

  
                                                                     (10) 

 ̅   
 

 
 ∑     

 
                                                                     (11) 

Repeating this for all the   variables we obtain an unbiased estimate of the covariance matrix  . 

Denoting this estimate matrix as  , we have: 
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  ̅  
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]
 
 
 

                                                            (12) 

Therefore, the    statistic at sampling period   is calculated by equation (5) with the estimated  ̂ 

and  . If the monitored quality characteristics derive from random processes and follow a  -variate 

normal distribution, it can be shown that the    statistic follows an   distribution with a constant multiple: 

  
  

(   ) (   )  

  (   )    
     (   )                                                             (13) 

Note that the   sign takes positive when  ̅  represents a newly observed sample that is not 

included to calculate the overall sample mean vector  ̂, and negative otherwise (4). 

 

2.2 Charting the    Statistic 

Control charting introduced by Shewhart (6) is a widely used tool to monitor quality processes. The basic 

procedure includes data organization, choosing the appropriate charting statistic, determining the desired 

type-I error rate, computing the control limits, and alarming the out-of-control signals. As is in the 

univariate application, there are two distinct phases in monitoring a multivariate quality process (7). Phase 

I takes a retrospective review at the historic data samples, determining whether they come from an in-

control process. An important goal of this phase is to obtain a set of reference samples so that reliable 

control limits can be computed accordingly. In this sense, Phase I is also regarded as a start-up stage of 

the monitoring procedure. Phase II presents a prospective review for future data to monitor whether the 

process remains in control. 

As is described in the previous section, the    statistic provides an effective measure of the 

divergence of a multivariate sample from the mean level, and the    statistic is a practical alternative 

when the true parameters are unknown. We use it to construct the multivariate control chart. 

Once we have collected and organized data for phase I, we can calculate the    value for each 

sampling period to be monitored. Since we are monitoring a series of squared values, we only need an 

upper control limit which is defined as: 

     
(   ) (   )  

  (   )    
       (   )                                                (14) 

where   is the desired type-I error rate and       (   )     is the (   ) quantile of the   distribution 

with degrees of freedom   and  (   )     , (7). In fact, this equals to testing a hypothesis in 

response to the distribution statement in equation (13)  

        
  

(   ) (   )  

  (   )    
     (   )     

against its alternative at the   confidence level. Note that the   sign takes negative here because each of 

the samples in phase I is used in estimating the mean vector  ̂. The choice of   should be determined 

based on the acceptable false alarm rate over the designed monitoring procedure. In many cases the 

values is fixed at         following the traditional    standard used in Shewhart control charts. In 

other word, it allows 3 false alarms in every 1000 samples. 



Yikai Chen & Pablo Durango-Cohen 

 

6 

 
FIGURE 1    Control Chart of Both Phases 

We lay out the    values over a horizontal line and superimpose the      computed above 

(Figure 1). Any point beyond the control limit triggers an out-of-control signal. We record the signals for 

further explanation, remove them from the phase I control chart, and recalculate the      using the 

remaining data. We repeat this process until no signals are detected. 

When quality characteristics data for phase II are available, we calculate their    values and lay 

them over the extended horizontal line (Figure 1). The upper control limit for phase II is defined as: 

      
(   ) (   )  

  (   )    
       (   )                                                (16) 

Note that the       here is different than the      in equation (15) since it adopts (   ) rather 

than (   ) in the numerator. This reflects the fact that the monitored samples in phase II are not used 

to estimate the mean vector  ̂. Any point beyond       triggers an out-of-control signal in this phase. 

 

2.3 A Special Case: Bivariate Distress Monitoring 

Consider a bivariate observation   [   ] . Denote the unknown mean vector of the observation by 

  [     ]
 
 and the unknown covariance relationship by: 

  [
  

    

     
 ]                                                                      (17) 

where         represents the covariance between the two variables. The correlation between the two 

variables is given by          ⁄ . 

Hotelling’s statistic converts the observation vector   into a univariate control statistic   . Its 

mathematical form is given as:  

                         (   )      (   )                 

         
 

     [
(    ) 

  
     

(    )

  
 
(    )

  
 

(    )
 

  
 ]                                           (18) 

When the equation is set equal to a constant, it depicts an ellipse as is illustrated graphically in 

Figure 2. The horizontal and vertical axis of the plane in Figure 2 corresponds to variable   and variable   
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respectively. The dashed lines represent the two pairs of univariate control limits, and the solid ellipse 

represents the bivariate    control limit defined in equation (18). Interestingly, the ellipse is tilted when 

variables   and   are interrelated and flat if they are independent to each other. 

 

FIGIRE 2 Elliptical Control Region for Bivariate Chart 

 

2.4 Interpreting Out-of-control Signals 

Not similar to univariate control charts where each out-of-control signal is exclusively linked to a unique 

variable, in multivariate control charts, the interpretation (i.e., the root cause) of signals is not clear by 

looking at the chart itself. For example, an observation may be detected as out-of-control in the    chart 

because one or more of the individual variables is outside their respective control boundaries. 

Alternatively, such a multivariate signal could also occur when two or more individual variables do not 

adhere to the established correlation structure. An even more complicated situation is when the signal 

stems from a combination of the two situations above, with some variables being outside their boundaries 

and others being counter-correlated. 

As a result, it is of primary interest to identify the main sources of the signals in the    control 

chart. In other words, we need to know which variable(s) have significantly contributed to the large value 

in the    statistic. 

Researchers have proposed several solutions to address this problem. Interested readers are 

referred to (8), (9) and (10). In this paper we implement the Mason-Young-Tracy (MYT) Decomposition 

to analyze and interpret the multivariate signals in the    control chart.  

2.4.1  Decomposition 

One method to interpret the signals in    control chart was given by Mason et al. in (11) and (12). The 

idea is to decompose the signaled    value into orthogonal terms that represent contributions from 

different individual variables. Any term that exceeds a determined threshold indicates that the associated 

variables have contributed significantly to the signal. 

Bivariate decomposition 

As a simpler example, let's look at a bivariate case where    and    are two interdependent quality 

characteristics. At any sampling period, the MYT method decomposes the total    value into two 

orthogonal and equally weighted terms: 
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                                                                (19) 

where   
  represents the marginal contribution of    to the total    value as if    is disregarded, and     

  

represents the additional contribution of    when the value of    is fixed. The calculation of the two 

components is given by: 

  
    

(    ̅ ) 

  
                                                               (20) 

    
    

(    ̅   )
 

    
                                                             (21) 

where  ̅    is an estimate of the mean level of    conditioned on a given value of   ,     
  is the 

corresponding estimate of the variance of    conditioned on the given   , and     is the number of 

observations in each sample. 

Symmetrically, we can also decompose the total    value as: 

     
      

                                                                (22) 

with the formulation and statistical explanation switched around between    and   . Equation (19) and 

(22) look at the same problem from opposite perspectives and they serve as two alternative anatomies of 

  . Based on their statistical nature, we denote the first term in both equations (i.e.,   
  and   

 ) as the 

marginal or unconditional component of    and the second terms (i.e.,     
  and     

 ) as the condition 

components. 

The statistical interpretation is: a large value in marginal components indicates an outlier in the 

corresponding variable, while a large value in the conditional components indicates a break of the 

relationship among the involved individual variables. In order to determine a threshold for consistent 

judgment, Mason et al. (11) showed that both marginal and conditional components follow an   

distribution times a constant: 

  
  

   

 
     (   )                                                             (23) 

if nothing unusual happens to the related components. Here “ ” represents all the four    components in 

the bivariate case,   is the number of sample periods and   is the number of observations in each sample. 

Therefore, we can compare the    components calculated by equation (20) and (21) with the determined 

thresholds above to evaluate the contributions of each component. A more detailed explanation of the 

bivariate MYT method can be found in (12). 

P-variate decomposition 

For p-variate situations, the decomposition in equation (19) can be generalized to: 

     
      

        
                

                                           (24) 

where   
  is the    statistic calculated using only the first   variables, and the conditional term 

            
  represents the additional contribution of variable     when variable 1 through   are fixed 

(           ). The formulation and detailed explanation can be found in (11). 
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Equation (24) is one of the many ways to partition the overall    statistic. A different partition 

could be: 

     
      

        
                

                                           (25) 

Since each partition involves   terms, Mason et al. showed that there are in total    different ways 

to partition   . In addition, it is worth noting that the order of conditional terms does not matter, that is: 

            
              

                                                         (26) 

Taking that into account, there are    (   ) unique component terms involved over the entire 

decomposition scheme. Similar to the bivariate case, all of the components follow a predetermined 

distribution with a multiple if no unusual change happens within the associated variables. 

 

3. EMPIRICAL STUDY 

In this section, we apply the multivariate control charting method described above to monitor the distress 

measurements on the Hurley Bridge. The bridge carries westbound USH-2 traffic over the Montreal River 

from Ironwood, Michigan into Hurley, Wisconsin. It is a three-span continuous five-girder steel structure 

with a composite deck. Figure 3 illustrates a structural layout of the Hurley Bridge as well as a profile of 

the sensor deployment on it. A detailed list of the bridge components that are measured as well as their 

locations is given in Table 1.  

For each distress, we collected data from April 1st, 2010 through December 20th, 2011, a total of 628 

days, as a sample set for numerical analyses. The measurements were sampled at 100Hz, and they were 

averaged on an hourly basis by the on-site computer processor before we obtained the data. In addition to 

the distress measurements, we simultaneously collected the environmental conditions: steel temperatures, 

air temperature, and relative humidity in the same data set. A description of these exogenous variables is 

also listed in Table 1. 

 

FIGURE 3 Structural Layout and Sensors Deployment of the Hurley Bridge 

In the rest of this section, we illustrate the results of a bivariate study on the biaxial displacements 

at the east side of girder 1 (denoted Displ-L and Displ-T respectively) as an example. 
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TABLE 1 Description of Instrumentation on the Hurley Bridge 

Instrument Measurement Unit Component Location 

Displ-L 
Displacement mils Girder 1 East abutment 

Displ-T 

G1-S2-M 

Strain  strain 

Girder 1 

Span 2, mid-point 

G2-S2-M Girder 2 

G3-S2-M Girder 3 

G4-S2-M Girder 4 

G5-S2-M Girder 5 

G4-P2-TF Girder 4 top flange Pier 2 

G4-WCP-SL 

Girder 4 top flange cover plate 

Pier2, west end south edge 
G4-WCP-ST 

G4-WCP-CL Pier 2, west end center 

G4-WCP-NL Pier 2, west end north edge 

G4-ECP-SL Pier 2, east end south edge 

G4-ECP-CL Pier 2, east end center 

G4-ECP-NL Pier 2, east end north edge 

ST-G1 

Steel temperature ºF 

Girder 1 

Span 2, mid-point ST-G3 Girder 3 

ST-G5 Girder 5 

Temp Air temperature ºF 
  

Humid Relative humidity % 

 

3.1 Multivariate Control Charts 

For each distress, we calculated the daily conditions by averaging the hourly measurements during the 

day, and then further organized the daily conditions into weekly subgroup samples. In other word, a 

subgroup sample includes 7 observation points, each of them representing the average daily condition of 

the underlying characteristic. Therefore we had 628/7 = 89 subgroups for each characteristic variable. 

 

FIGURE 4    Control Chart of Displ-L & Displ-T in Phase I 

We constructed a    control chart in Phase I by laying the first 52 samples of    statics over a 

horizontal line in Figure 4. The superimposed upper control limit (UCL) was calculated by equation (14), 

where the type-I error rate was set as         to keep consistence with the    boundaries widely used 

in quality monitoring. 
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FIGURE 5 Univariate Control Chart of Displ-L & Displ-T in Phase I 

Figure 4 shows that an out-of-control point is signaled at sampling week #46. In order to make 

comparisons, we also plotted the univariate control charts separately for Displ-L and Displ-T in Figure 5. 

The control limits in the univariate charts were set as    away from the center line (i.e.,        ). The 

results indicate an out-of-control signal at sampling week #33 in Displ-L as well as another out-of-control 

signal at sampling week #46 in Displ-T. It means that the signal in the    control chart is explained by the 

unusual change in Displ-T, while it barely passes the unusual change is Displ-L. A plausible explanation 

argues that the signal in Displ-T in week #46 is farther beyond the control limit than the one in Displ-L in 

week #33. To better understand this different treatment, we constructed a 2-D data plane as shown in 

Figure 6. 

 

FIGURE 6 Elliptical and Rectangular Control Region of Displ-L & Displ-T in Phase I 

The horizontal axis in Figure 6 corresponds to the innovation values of Displ-L, and the vertical 

axis corresponds to the innovation values of Displ-T. Therefore, any point on the 2-D data plan represents 

a bivariate sample in the Phase I data set. In addition, we drew the two sets of control limits which shape 

a rectangular region (dashed line). Not surprisingly, a point outside this rectangle represents an out-of-
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control signal detected by the univariate control charts. For example, in week #33, the point falls to the 

right of the rectangle, indicating that it falls beyond the UCL of Displ-L. On the other hand, the    

control limit corresponds to a tilted ellipse in the data plane (solid line) as is suggested in section 2.3. It is 

worth noting that when the bivariate samples are independent to each other, the ellipse will be flat. And it 

becomes increasingly tilted when the samples are increasingly correlated. Similarly, any point outside the 

ellipse represents an out-of-control signal in the    control chart.  

The graphic layout in Figure 6 helps to explain why week #33 is not signaled in the    control 

chart. In fact, this happens because: in order to achieve an equivalent overall type-I error rate, the 

univariate charts are slightly more conservative than the    chart on both axes. In other word, the    

chart pays addition attention to the deviation from the established correlation structure, and as a trade-off, 

it is slightly more liberal to univariate outliers.  

 

3.2 Interpretation of Signals 

Now suppose neither the univariate control charts nor the 2-D data plane are conveniently available 

(which is true when the number of distresses is larger than two), we used the MYT decomposition 

technique to interpret the signal in Figure 4 from a statistical perspective. Following the method described 

in section 2.4.1, we decomposed the    value in sampling week #46 in Table 2. Here we denote the 

marginal (i.e. unconditional) contribution of Displ-L to the    value as   
  and the marginal contribution 

of Displ-T as   
 . Meanwhile, we denote the conditional contribution of Displ-T as     

  when Displ-L is 

fixed and vice versa. Remember that the components follow the relationship: 

     
      

    
      

  

TABLE 2 MYT Decomposition of    Statistic for Displ-L & Displ-T 

Signal    
Unconditional  Conditional 

  
    

       
      

  

#46 22.77 0.5 19.29  22.27 3.48 

  Critical value: 8.97 (       ) 

 

Moreover, we set the confidence level as          and obtained the critical value for both the 

marginal and conditional    components and provided it at the bottom of Table 2. We can see that both 

the marginal and conditional components of Displ-T (i.e.,   
  and     

 ) significantly exceeds the critical 

value. In contrast, both components regarding Displ-L stay comfortably below the critical value. As a 

result, it is reasonable to state that Displ-T has significantly contributed to the large value of    at 

sampling week #46, and should be further investigated for plausible causes. 

Finally, we removed the sample in week #46, re-estimated the control limit and constructed the 

   control chart again. It turns out that the rest of Phase I data are within the updated control limit, which 

in a bivariate sense indicates an in-control process where no unusual change occurs. 

Therefore, it is reliable to use this historic data set to estimate the control limits for Phase II 

monitoring. We calculated the UCL for Phase II by equation (16) and an overall    control chart 

including both phases is illustrated in Figure 7. Since none of the samples is beyond the control limit, we 

conclude that the bivariate displacement behaviors show no unusual changes over the 89 weeks except for 



Yikai Chen & Pablo Durango-Cohen 

 

13 

the previously removed sample in week #46. This single outlier physically means that Girder 1 unusually 

moved southbound over the week of Feb. 7th in 2011. 

 

FIGURE 7    Control Chart of Displ-L & Displ-T in Both Phase I and Phase II 

 

4. CONCLUSIONS 

The statistical framework we proposed uses multivariate statistical process control techniques to 

monitor multiple facility distresses simultaneously. Specifically, it employs Hotelling’s    

control chart to synthesize multivariate measurement series to a scalar series that is convenient to 

compute, compare, visualize and manage. In addition, we described the MYT decomposition 

technique to find plausible causes for the out-of-control signals in the    control chart. We 

implemented the framework to monitor multiple distresses on the Hurley Bridge and illustrated 

the results on a biaxial displacement pair to validate the detecting capability of the framework. 
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