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ABSTRACT 

 



The power law is a fundamental constant in the dynamics of organisms and ecological 

systems. That cities exhibit this law for its dynamics is the surprising evidence from 

empirical studies developed recently. Applying extreme value theory to describe all 

urban agents’ rational stochastic behavior and Alonso’s urban economic principles, 

this paper formulates a theoretical construct of urban systems that supports the 

evidence of power laws. The observed super-linear increase of rents and wealth 

emerges here from microeconomic behavior due to population’s diversity and size. A 

dynamic model of cities’ growth emerges allowing to predict the expected evolution 

of urban organizations.     
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1. INTRODUCTION 

 

The existence of a general law that governs the dynamics of all cities has been present 

in geography since the early evidence that cities complies with the Zipf’s law (see 

Gabaix, 1999). More recently, however another regularity has been postulated: the 

power law. In several papers West, Bettencourt and colleagues (W-B papers: 

Bettencourt et al., 2007; 2008) report studies of a number of cities across the 

developed world that support the argument that cities, like other organisms in nature, 

consume and produce according to a power law with population N: y = N β . This 

result is striking because for the first time the evolution of cities resembles a basic 

evolutionary law of organisms, i.e. social structures replicating known natural 

processes, or rational beings replicating the basic structure of “less intelligent” 

creatures. Thus, there appears to be important lessons to learn from what is known 

about the evolution of species to help understanding the dynamic of cities. For 

example, that under some circumstances power laws in organisms lead to catastrophic 

ends at critic levels of development. But it also raises the fundamental question about 

the underlying mechanism that yields such invariability in social organizations with 

such different histories and cultures.  



 

An interesting and relevant lesson from biology comes from the once enigmatic 

parameter β  in organisms (see West 1999), empirically observed as a multiple of  ¼  

in almost all forms of life, defining metabolic rate (energy consumption), time scale 

(e.g. lifespan and heart rate) and sizes (aorta lengths or tree heights). A theoretical 

explanation emerged using fractal geometry and the fact that the fractal structure at a 

micro scale ends in a common dimension given by the size of the organism’s cell 

(West et al. 1999; 2001).  

 

The evidence provided by W-B was obtained from a data of numerous urban 

indicators of American, European and Chinese cities revealing the statistically 

significant relationship between several indicators, denoted y, and population (N) 

along time t: ; here, y0 represents a normalization constant that varies 

across cities. Their main conclusions are: first, that for every urban indicator the scale 

parameter is statistically constant for the set of cities analyzed; second, that 

indicators of economic quantities that characterize the creation of wealth and 

innovation show increasing returns of scale, i.e. 𝛽 > 1; third, that indicators of 

material infrastructure are characterized by economies of scale, i.e. 𝛽 < 1. Combined, 

these results justify a strong tendency to concentrate population on large cities: per 

capita wealth increases while living costs (of infrastructure) decrease.  

 

The W-B evidence directly motivates the question if the observed urban power law 

can be derived similarly to organisms from allometric -size and shape- relations. 

While this is a line of research, is not the approach followed of this paper. Instead, in 

what follows I use microeconomic principles to formulate a theory of the microscopic 

social and economic behavior of all agents in the city, i.e. at the individual level, 

including their interactions in all goods markets and their social life. From this theory 

emerges an explanation for power laws in cities between land prices and welfare and 

the population size that encapsulates and combines two potential sources of scale 

effects: economies of scale in the urban economy, which is the classical effect studied 

by economists, and the effect of the greater spectrum of opportunities offered for 

creativity and innovative production by larger and more diverse population.  

 

y (t ) = y0N (t )
β

β



The herein proposed theory of the cities’ dynamics stands on one fundamental 

assumption: humans are rational beings facing stochastic information of the 

environment, which is modeled as if all agents in the city behave á la McFadden 

(Domencic and McFadden, 1975) maximizing a random utility or profit (Section 2), 

and landowners maximize rents á la Alonso (1964) in a context where bids for land 

are also stochastic (Section 3). It is precisely from the randomness of this optimizing 

behavior that the power law of rents and wealth with population emerges, with an 

explanation for the scale parameter beta directly from the variance of the extreme 

value distribution (Type II or Fréchet) that characterizes the stochastic distribution of 

bids in the auction of urban land. This model naturally yields a model of urban growth 

of Section 4  and therefore relevant consequences on the city dynamics. Additionally, 

under the weak assumption of non-decreasing  scale economies in production and 

consumption, the scale parameter derived from agents heterogeneity supports –on its 

own- super-linear returns on the population scale, while scale economies –if any- 

reinforces this effect. 

 

 

2. TOWARDS A THEORY OF URBAN SOCIAL ORGANIZATIONS 

 

The complex behavior of agents in the city, including individuals’ socio-economic 

activities and firms’ business activities, is the matter of this Section assuming that all 

agents have a known residence location. This approach benefits from the significant 

literature on urban transport modeling, summarized for example by Ortúzar and 

Willumsen (2001) and Ben-Akiva and Lerman (1985). A brief summary of the 

essentials of this literature plus an additional hierarchical structure on the decision 

process, a it what follows. 

 

The human organization is described here by the individual behavior of their 

members, including households and firms, who behave similarly maximizing a 

measure of satisfaction (utility or profit) under constrained resources. In this context 

we consider a large number of heterogeneous agents that interact creating socio-

economic structures that emerge from their mutual social and economic 

interdependency and their maximizing behavior in a spatial context.  

 



2.1 The Gumbel utility model 

 

Proposition 1 (Gumbel stochastic utilities): Agent’s utilities are independent random 

variables ω~𝐺𝑢𝑚𝑏𝑒𝑙(𝜇, 𝑣), with  µμ, 𝑣ϵℝ. 

 

The merits of the independent Gumbel distribution  of benefits comes from the 

Extremal Types Theorem (Fisher and Trippett 1928, generalized by Gnedenko, 1943). 

They proved that the asymptotic (no-degenerative) distribution functions of the 

maximum of a set of independent stochastic variates belongs to a set of three types of 

extreme values distributions (d.f.), no matter what are the d.f. of the  maximized 

variates. See also Leadbetter, et al. (1983); Galambos (1987), Mattson et al. (2011) 

for references. Hence, an extreme value distribution is –by the extremal types 

theorem- to the maximum operator, as the normal distribution is -by the central limit 

theorem- to the addition operator. 

 

The Type I, Gumbel or double exponential d.f. is particularly relevant in utility 

maximizing models because out of the three extreme value distributions, this one is 

the attractor of a larger number of maximized d.f. and its support is the real numbers, 

which is consistent with the definition of utilities in economics as an ordinal. The 

Gumbel d.f. became popular with the individual’s discrete choice theory with random 

utilities proposed by Domencic and McFadden (1975), whom under the assumption of 

identical and independent Gumbel variates, proved that the probability that a given 

alternative 𝑖𝜖𝐶 yields the maximum utility is given by the now popular multinomial 

logit model: 𝑃! =
!!"!

!!"!!"#
 . Another well-known Gumbel based model is the nested 

logit model (with a similar close probability function), which is of interest in this 

paper because of the hierarchical choice process considered next.  

 

 

2.2 The individuals and households choice process 

 

Each individual agent is assumed to choose, conditional on the residential location, 

the optimal set of discrete activities and their locations, along with the required set of 

consumption of goods and expenditure of time; on these choices she allocates the 



limited income and time as to maximize utility. This complex space of individual’s 

options and the choice process is simplified as a hierarchical process as shown in 

Figure 1.  

 

Consider an urban area partitioned in a set I of locations indexed by i, and consider 

one inhabitant indexed by 𝑛𝜀C! that belongs to a household indexed by ℎ. At any 

given time the individual faces a set K of leisure (social) and productive (work) 

activities available in the region, indexed by . Following the hierarchical choice 

process of Figure 1, provided that individual n resides at location i, she chooses 

activity k -described by the random utility 𝜔!"#- with probability 𝑃!"#; conditional on 

this choice the individual compares the location to perform this activity and chooses 

location j with probability 𝑃!"#$ as the optimal location which yields her a utility 

𝜔!"#$ .  

 

Under the assumption that rational agents choose among options that maximize her 

utility, we define 𝜔!"# = 𝑚𝑎𝑥!∈!(𝜔!"#$) and 𝜔!" = 𝑚𝑎𝑥!∈!(𝜔!"#). Assuming a 

sufficiently large set of locations I, no matter what are the distributions of the lowest 

level utilities (𝜔!"#$), as long as they are independent we know that by the Extremal 

Types Theorem each 𝜔!"# distribute extremal. Additionally, since utilities are 

unbounded real numbers such variates distribute asymptotically Gumbel; because the 

Gumbel is close to the maximization operator then 𝜔!" is also Gumbel. This simple 

hierarchical structure of random utilities may also include additional random terms 

(with some specific form) yielding a nested logit probability for each choice in the 

hierarchy (see Ben-Akiva y Lerman, 1985).  

 

In this choice framework a static equilibrium is attained in all markets in the urban 

system yielding goods prices, labor wages and transport times and costs that are 

inputs for the consumers’ estimation of utilities; this internalizes into individuals’ 

utilities market signals. Equilibrium prices are differentiated by spatial location 

according to transport costs that spatially differentiate otherwise non-differentiated 

goods. Consumers’ utilities are also affected by travel times further differentiating 

consumption across the urban space. Additionally, leisure activities involve not only 

consumption but also social interactions, therefore the utility derived also depends on 

k ∈K



travel costs which are conditional on the agent’s location. In sum, utilities considered 

to make optimal choices are evaluated at the urban market equilibrium which yields 

optimal activities and expenditure –of time and income- conditional on the agent’s 

location. 

 

Regarding the emergence of power laws, what is relevant of this choice process is the 

assumption of the irrelevance of the d.f. at the micro choice level utilities 𝜔!"#$, the 

only relevant assumption is that they are independent variables, enough to conclude 

that the individual’s maximum utility 𝜔!" is distributed independent Gumbel. Also 

relevant is that this utility is conditional on the residential location and that it can be 

computed for any location in the urban area. Additionally, this distribution is 

preserved from individuals to households units under the additional assumption that 

households distribute their common resources in other to maximize the global utility 

of the household unit, given the residential location and the maximum utility 

attainable by each member of the household from their optimal choice process. 

 

 

 
 

Figure 1: Hierarchical individuals’ choice process 

 

 

 

2.3 The firms’ behavior 
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Firms’ behavior in the urban system can be modeled analogously to individuals and 

households. In the same setting, consider firms as indexed by 𝑛 ∈ 𝐶! located at i. The 

firms’ objective is to maximize a utility or profit by choosing what and how much to 

produce among a finite set of production options, each one defined by inputs and 

outputs of goods’ interactions with other firms and by the consumers’ labor and 

consumption, all spatially distributed. Following Figure 1, the bottom level represents 

the discrete set of spatial interaction options, each one yielding different levels of 

profit. 

 

As before, what matters is that at the top level of the decision tree, there is a random 

utility or profit conditional on the location choice that is independent Gumbel 

distributed. For this to hold, considering the Extremal Type theorem, it is enough to 

assume that at the micro detailed choice level the utilities 𝜔!"#$ are stochastic 

independent variables.  

 

In this hierarchical choice process again market prices of inputs and outputs feed 

profit levels, as well transport costs and freight times. Industries may face economies 

of scale and scope and the market may be totally or partially competitive, all options 

that define optimal production and market equilibrium without affecting  the 

conclusion of Gumbel profits.     

 

2.4 Section Remarks 

 

The above model of decision making leads to the conclusion that households’ and 

firms’ choice making processes can be represented by a set of generic agents that 

make optimal choices in large sets of options of social and economic activities 

spatially distrubuted.  It is worth noting that all these choices are interdependent 

through market interactions between consumers, between suppliers, and between 

consumers and suppliers. Out of these interactions price signals emerge in the 

economy as the result of a complex non-linear system equilibrium that is implicit in 

this approach. An example of a detailed model of these interactions in a similar 

random utility context can be seen in Anas and Liu (2007), where consumers and 

firms are modeled by Cobb-Douglas random utilities and profit functions. 



 

As a result agents’ utility conditional on the location choice define the vector 

households’ utilities 𝜔!! !!     and firms’ profits 𝜔!" !"
 as: 

  

𝜔 = (𝜔!")!" = ( 𝜔!! !! , 𝜔!" !!
;   ℎ = 1,… ,𝑁! , 𝑓 = 1,… ,𝑁! , 𝑖𝜖𝐼). 

 

where each 𝜔!"   is an independent Gumbel variates (𝜇!, 𝑣!"). The mode of the utility 

distribution, 𝑣!", represents the expectation of the utility the agent can obtain from the 

optimal choice process in the urban economy conditional on her location; parameter 𝜇 

is the variance of these utilities.  

  

Studies of expected utility out of the agents’ behavior assuming the Gumbel 

distribution are common in the transport literature that followed Daniel McFadden’s 

legacy, and models already applied in a large number of cities can provide estimates 

of the conditional utility vector. As we shall see below, it is of special interest to study 

the existence of scale economies by testing if at the agent level, benefits and profits 

scale with population of the city N, i.e. if 𝜔!"(𝑁). 

 

This section has only sketched a model of agents’ activities in a social and economic 

system, with the aim of providing a complete behavioral model structure of social 

organizations. Although it is a simple construct, it does contribute to explain the 

emergence of power laws in the next section by linking the results  obtained there 

with the individuals’ micro choice processes. 

   

 

3. THE LOCATION PROCESS 

 

In this section the Alonso’s urban economic principles are considered to allocate the 

urban land to different residential and non-residential agents following the best bidder 

rule. Each of these agents’ behavior is represented by their bids for location options, 

derived directly from the indirect utility conditional on the location choice.  

 



An illustrative example of how random bids are derived from random utilities 

follows. Consider Anas and Liu (2007)’s general equilibrium model where the Cobb-

Douglas utility of residents yields the following logarithmic indirect utility function 

conditional on residential location: 𝑈!"(𝑅) = 𝑎!" − 𝑏! ∙ 𝑙𝑛 𝑅! + 𝜀!", with an 

additive stochastic term distributed independent Gumbel; U is utility, R is land price 

per square area unit, a and b are parameters. The maximum willingness to pay or bid 

(𝜃!")  to attain a given level of utility is derived by Rosen (1974) inverting U(R). Note 

that in our case with stochastic utilities, setting a given utility level at Un implies a 

constant value of utility for every realization of the random term, which given that a 

and b are constants, we require that bids offset the variability of 𝜀!". Thus, inverting 

the utility function in rents yields the following stochastic bid:   𝜃!" = exp   !!"!!!
!!

∙

ξ!" , with 𝜉!" = 𝑒𝑥𝑝 !!"
!!

; hence, 𝜃!!𝜖ℝ!!. Notice the one to one mapping between 

random terms (𝜀!")  and  (𝜉!") exactly offsets the effect of the variability of utilities on 

bids to hold the utility constant across all optional locations. 

 

Given that 𝜀!" are independent Gumbel variates, as assumed in the previous section, it 

directly follows that the stochastic terms 𝜉!" are distributed independent Fréchet, as 

shown in Mattssonn et al. (2011). Therefore, we conclude this preamble noting that 

models of utility with logarithmic rents yield positive bids that, combined with 

Gumbel distributed utilities, support the assumption of Fréchet distributed bids.   

 

 

3.1 The Fréchet model for land rents  

 

Consider again the urban area partitioned in a set I of locations indexed i, with 

population of Nh households and an economy with Nf  firms, all agents indexed by n, 

with Na=Nh+Nf .  

 

Assumption 2 (Fréchet stochastic bids): Agent’s bids for urban land are independent 

random variables 𝜃!"~𝐹𝑟é𝑐ℎ𝑒𝑡(𝛽, 𝑣!"), with  𝜃!"𝜖ℝ!!, 𝑣!" > 0,𝑛𝜖𝐶, 𝑖𝜖𝐼, and 𝛽 > 0. 

 

𝛽 is the scale parameter inversely related with the variance of the distribution. The 

Fréchet, also called Type II extreme value distribution function, is the domain  of 



attraction or the limit non-degenerative distribution of the maximum operator of a set 

of variables distributed independent Fréchet, among other distributions; i.e. this d.f. is 

closed to the maximum operator.  

 

Then, Assumption 2 holds if bids are the result of the maximization of underlying 

variables with independent Fréchet distributions. In the case of bids, this holds 

because they represent the maximum amount the agent is willingness to pay to attain 

a given level of utility. Then, for Assumption 2 to hold it is sufficient to assume that 

willingness to pay are positive independent Fréchet stochastic variables because their 

maximum is asymptotically positive and distributed independent Fréchet.  

 

It is worth noting here that the 𝜉-Fréchet variates of the location bids are functionally 

dependent on 𝜀-Gumbel variates of utilities (see Section 2). This implies that their 

variances are also dependent, such that 𝛽 = 𝑓(𝜇) with 𝜇 = (𝜇!,∀𝑛𝜖𝐶). The 

importance of this fact will be evident below when we interpret the power law 

emerging from micro behavior. It is also important that the assumption of independent 

Fréchet variates refers to independent bids between agents. 

 

Assumption 3 (Auction): The land market is auctioned to the best bidder. 

 

Following Von Thünen (1863), and particularly after Alonso’s (1964) seminal work, 

urban economists have hold on and develop the basics of urban economics from this 

assumption. The auction as a trade protocol in land markets is a direct consequence of 

differentiated goods (Rosen, 1974), because the specific location of land gives the 

owner the right to enjoy the neighboring amenities which are different from one 

location to another. Land, however, is a special case of differentiated goods, because 

every land lot has close substitutes as it shares neighbor attributes with close 

locations, hence information about expected prices is considered commonly available 

to every agent. This, however, does not make them homogeneous goods, but classifies 

urban land markets for the type of common value auctions (McAfee and McMillan, 

1987). 

 



Ellickson (1981) uses the auction protocol to support that land bids are extreme value 

variables, because he asserts that only the maximum bid of a socioeconomic cluster is 

relevant for the auction. Hence no matter the d.f. of elementary bids within the 

cluster, the maximum bid relevant to the auction is an extreme variable. However, he 

ignored the positive domain of bids assuming a Gumbel distribution, widely used 

thereafter leading to multinomial logit models. Nevertheless, his argument is also 

valid to support the Fréchet model used hereafter. 

  

Proposition 1 (Rents power law): Under assumptions 2 and 3, the total rent of the 

city scales with population as a power law describing increasing returns to scale. 

 

Proof: Consider Assumption 2 to define the maximum bid as 𝜃! = 𝑚𝑎𝑥!𝜃!" with 

𝜃!~𝐹𝑟é𝑐ℎ𝑒𝑡(𝛽, 𝑟!), with 𝛽 > 11    and    𝑟! > 0 calculated, following Mattsson et al. 

(2011), as: 

 

𝑟! = v!"!!"#
!/!                       ∀𝑖 ∈ 𝐼  (1) 

 

The expected rent yield by the auction (Assumption 3), resulting by the expected 

maximum bid, is computed  by 𝑅! = 𝐾 ∙ 𝑟!, with  𝐾 = Γ 1− !
!
a  known  constant  . 

It can be approximated by considering 𝑣!" ≈ 𝑣! the average bid across agents: 

 

𝑅! ≈ 𝐾 ∙ v!!!"#

!
! = v! ⋅ 𝐾 ⋅ 1!"#

!
! = v! ∙ 𝐾 ∙ 𝑁!

!
!              (2) 

 

which indicates that the expected rent at every location scales with Na following a 

power law, i.e. ceteris paribus rents increase with population. It is direct to conclude 

that this law is sub-linear because !
!
< 1. Note also that rents decrease with 𝛽, or 

increase with bids’ variance.  
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Using (2), replace the number of agents by total population N such that 𝑁! = 𝑎𝑁,𝑎 ≤

1, to compute the aggregate land rent as: 

 

 𝑅 = 𝑅! ≈!"# 𝐾 ∙ 𝑁!
!
! ∙ 𝑣!!"#      

         

then 

 𝑅 ≈ 𝑎
!!!
! 𝐾 ∙ 𝑉 ∙ 𝑁

!!!
!   (3) 

 

with 𝑉 = !
!!

𝑣!!"# , the average bid value across locations.  

 

Since 𝛽 > 1,   then !!!
!
𝜖(1,2) implying that total rents have increasing returns to scale 

with population, i.e. total rents increase super-linearly with population.    ∎                              

 

Remark 1: Empirical support. From Assumption 2, the rent at any location is 

described by the stochastic variable  𝜃! = 𝑟! ∙ 𝜉!, with 𝜉! also distributed independent 

  𝐹𝑟é𝑐ℎ𝑒𝑡(𝛽, 1). It follows that total land rents are also stochastic variables distributed 

Fréchet (𝛽,𝑅/𝐾). The multiplicative form of the stochastic term 𝜉! implies that rents 

are heteroscedastic variables, which is strongly supported by evidence in several 

empirical of hedonic price models (see Cho, et al. 2008).  

Remark 2: Super linearity emerges from microscopic diversity. The power law of 

equation (3) describes returns to scale produced by the variance of agents’ behavior 

across the population –represented by 1/𝛽-, which in turn depends on the variance of 

agents’ utilities and profits (proportional  to 1/𝜇); i.e. 𝛽 emerges from microscopic 

behavior. This effect is interpreted as caused by the better likelihood of larger and 

more diversified populations of making matching between the individual agents’ 

optimal interactions.  

 

Remark 3: Economies of scale. The stochastic super-linear effect is in addition to 

other potential “deterministic” economies of scale embedded in the expected average 

land value, i.e. V=V(N). In the urban context these economies combine the 

consumers’ socio-economic returns to scale (utilities), and business returns to scale in 



production (profit).  Most studies in urban economics are focused in this relationship 

only. If there is any, these returns are built by individual agents’ (households and 

firms) benefits scaling with population; i.e. vni =vni(N). On this matter, urban 

economist consider the simple monocentric city –fix location of firms in the city 

center and workers in the periphery- to explains residential rents by transport costs, 

concluding that they scale up to 𝑉 𝑁 ∝ 𝑁!/! (Black and Henderson, 1999). But 

introducing relocation of residents and jobs and allowing different transport modes 

and route choices, reduces increasing travel with size down closer to a linear 

relationship with population (Anas and Hiramatsu, 2012). On the business sector, if 

production has constant returns to scale and face no external economies, the classical 

results is zero profit  in the industry, i.e. land bids are constant with production scale 

(Anas and Liu, 2007). In empirical studies Henderson (1986) found evidence of intra-

industry (location) economies of scale in some industries, particularly in medium size 

specialized cities, but they peter out as the city size increases; no relevant evidence of 

population (urban) scale economies was found. Then, the issue of scale economies is 

still under debate with evidence that tend to challenge the existence of significant 

economies of scale. Therefore, assuming 𝑉 𝑁 = 𝑏 ⋅ 𝑁! with b constant and 𝛼 > 0 is 

plausible. Under this conjecture equations (3) becomes:  

 

 𝑅 ≈ 𝐴 ∙ 𝑁!  (4) 

 

where A=𝑎
!!!
! ∙ 𝑏 ∙ 𝐾 and 𝛾 =   𝛼 + !!!

!
> 1. Note that even for an economy with dis-

economies of scale up to of grade   𝛼 > − !
!

, still  𝛾 > 1 and rents scale super linearly 

with population. 

 

 

 

 

3.2 The Fréchet model of consumers’ surplus 

 



Assumption 4 (Equilibrium): Every agent 𝑛𝜖𝐶 in the urban system is allocated 

somewhere in the set I, given that the number of agents in set C, denoted Na, is equal 

or smaller than the size of set I. 

 

This definition of equilibrium, which clears demand but not necessarily supply of real 

estate units, is standard in urban economic literature. The special case is when supply 

also clears, which requires the additional condition that size of real estate stock equals 

total demand. 

 

For Assumption 4 to hold each agent has to adjust their bids, either: upwards, if there 

is no location where the agent is best bidder until wins the auction in one location, 

thus reducing the utility level on which bids are conditional upon until reaches the 

maximum attainable utility; or downwards, if there several locations where the agents 

wins the auctions until there is only one, in this case increasing utility up to the 

attainable maximum. The analytical process of bids adjustments is discussed below 

(see Remark 4), meanwhile consider bids calculated at equilibrium utility levels.   

 

Proposition 2 (Consumers’ surplus): Under assumptions 2, 3 and 4, and the 

following ratio definition of the nth agent’s surplus:  𝜙!" =
!!"
!!

 , at equilibrium the 

expected consumers’ surplus of every agent is non-negative. 

 

Proof: The ratio defining 𝜙!" represents the proportion of the consumer willingness to 

pay capitalized into rents. Since 𝑅! is a deterministic variable, from Assumption 2 the 

welfare defined by 𝜙!" =
!!"
!!

  follows the distribution bids, i.e. independent  

𝐹𝑟é𝑐ℎ𝑒𝑡(𝛽, !!"
!!
),   nϵC, iϵI,  𝑣!" > 0. Then, the expected maximum surplus associated 

with the set I of available locations in the city is:  

 

𝑤! = 𝐾 ∙ !!"
!!

!
!"#

!/!
                      ∀𝑛 ∈ 𝐶 (5) 

 

Additionally, given a location i  offered in the market, from Assumptions 2 and 3, 

agent n has the following probability of being the best bidder (Mattsson et al. 2011): 



 

𝑝!" =
!!"!

!!"!!"#
= 𝐾! !!"

!!

!
      ∀𝑛 ∈ 𝐶, 𝑖 ∈ 𝐼.  (6) 

 

Now, consider Assumption 4 to write the following agents’ equilibrium conditions:  

 

𝑝!"!"# = 𝐾! ∙ !!"
!!

!
!"# ≥ 1                ∀𝑛 ∈ 𝐶 (7) 

 

Using (5) and (7) yields the conclusion that 𝑤! ≥ 1,∀𝑛 ∈ 𝐶. 

 

This results implies that the expected proportion of willingness to pay actually paid at 

equilibrium is either: 𝑤! = 1, i.e. consumer’s brake even because rents equal 

willingness to pay at the equilibrium location and all benefits are capitalized into 

rents; or 𝑤! > 1, i.e. consumer retains a proportion of benefits, which holds, for 

example, when supply of real estate units exceeds demand. ∎ 

 

Remark 4.Equilibrium bids and rents. Consider the case of total supply equal total 

demand where equation (7) holds for equality. Consider also a set of utility levels 

(un)n such that v!" = 𝑢! ∙ v!" which adjust at equilibrium to comply with: 

 

𝑝!"!"# = !!∙!!"
!!∙!!"!∈!

!
!"# = 1                ∀𝑛 ∈ 𝐶 (8) 

 

It is evident that this condition provides the following fixed point equation for 

equilibrium utilities: 

 

𝑢!∗ =
!!!
!!∗ ∙!!"!∈!

!
!"#           ∀𝑛 ∈ 𝐶 (9) 

 

which once replaced in bids functions yields bids at equilibrium, and also rents: 

 

 𝑅!∗ = 𝐾 ∙ (𝑢!∗ ∙ v!")!!"#
!/!                       ∀𝑖 ∈ 𝐼 (10) 

 



A positive maximum consumers’ surplus holds if total demand (size of set C) is equal 

or larger than the size of supply (size of set I). However, surplus becomes negative if 

total demand  exceeds total supply, which generates homeless agents (see Martínez 

and Hurtubia, 2006). In the long run, the usual assumption is that total supply equals 

demand and all consumers brake even.  

 

Theorem (Welfare power law): At the city’s long term market equilibrium, total 

welfare is given by the following power law: 

 

 𝑊 ≥ 𝐴 ∙ 𝑁!   . (11) 

 

and for economies with non-negative economies of scale (  𝛾 > 1) it represents a 

super-linear power law.  

 

Proof: Define the city’s welfare as the sum of all agents’ and real estate suppliers’ 

surplus, with the latter given by rents. Proposition (2) proves that rents follow a  

super-linear power law with population size up to a degree of dis-economies of scale 

of 𝛼 > − !
!

  (because 𝛽 > 1). Then, 𝛼 = 0, complies with this condition. 

Additionally, Proposition 2 proves that equation (11) represents a lower bound with 

two cases:  

i) ∀𝑛  𝑤! ≥ 1, in this case Propositions 1 and 2 demonstrate the theorem.  

ii) ∃𝑛/𝑤! < 1  ,  i.e. some agents are homeless because are  unable to outbid any 

other in the city; this case is irrelevant since the proof is conditional on the 

population in the city.        ∎ 

 

3.3. The base line  

 

A final extension is necessary to complement the Fréchet model. Note that the rent 

equations (1) and (2) are homogeneous of degree one and the probability distribution 

of agents in space given by equation (6) is homogeneous of degree zero. Hence, the 

location model is invariant to a multiplicative factor on all bids (denoted by R0), but 

all rents are amplified by R0. Additionally, the general equilibrium framework used in 



this paper define relative prices and rents scaled by an unknown numeraire price 

represented in (12) by R0. This numeraire factor modifies scale laws as follows:  

 

 

 !
!!
≈ 𝐴 ∙ 𝑁! (12) 

 

 !
!!
≥ 𝐴 ∙ 𝑁!   . (13) 

 

This apparently simple correction to the scale law is relevant to properly compare 

dynamics among cities. The numeraire factor relates the prices in each urban system 

with the rest of the economy where it is embedded, it is common to all cities in the 

same economy but it might be different across economies or countries. Therefore this 

correction completes the power laws making them finally consistent with W-B 

evidence, comparable across different economies and consistent with microeconomic 

theory of equilibrium.  

 

 

4. URBAN GROWTH 

 

The power law of the city socioeconomics derived above embeds the dynamic process 

of the cities’ growth described by Bettencourt, et al. (2007, 2008), with fundamental 

consequences on the evolution of urban systems. In this section their model is applied 

using the theory developed above. 

 

The authors applies the power law associated to resources generation to the following 

simple balance equation on resources:  

 

𝑅(𝑡) = 𝐸!  𝑁(𝑡)! − 𝐸  
!"
!"

 (14) 

 

were R denotes net available resources that at a given time t splits into maintenance 

cost of current population -first term on the LHS of the equation- and the investment 

necessary to increase total inhabitants (second term on the LHS). Eo and E are per 



capita resources needed for maintenance and for population increase and, of course, 

N=N(t). In the urban context, population increases naturally with birth/death rates and 

also with migration. Then E represents an average resource cost between growing a 

new adult and to “import” one from abroad, net of savings from deaths.   

 

In what follows I discuss the case where resources represent economic wealth given 

by equation (12), which combined with (14) yields 

 

 !"
!"
= !∙!!

!
  𝑁(𝑡)! − !!

!
  𝑁(𝑡)!  (15) 

 

The solution of this equation differs, and hence yields different dynamics for cities, 

depending on the parameters 𝐴 ∙ 𝑅!/𝐸, E0/E,     𝛾 − 𝜌 and the initial population N0. The 

solution for 𝜌 = 1 (Bettencourt et al. 2007, 2008) is:  

 

𝑁 𝑡 = !∙!!
!!

+ 𝑁!
!!! − !

!!
𝑒𝑥𝑝 − !!

!
1− 𝛾   𝑡

!
!!! (16) 

 

 

The power law model on wealth of Section 3 justifies a value 𝛾 > 1; essentially 

thanks to the Fréchet distribution condition 𝛽 > 1 and to the empirical evidence for 

economies of scale in infrastructure with cost parameters bounded by 0 < 𝜌 ≤ 1 

(most likely between 0.8 and 0.9). Considering constant costs per capita in other 

resources,  like housing and individuals’ maintenance as shown also by evidence, lead 

us to assume a sub-linear maintenance cost factor. Therefore, the assumption 𝜌 = 1 is 

plausible to represent an upper bound for this parameter according to the evidence.  

 

As shown by W-B, the solution for 𝛾 = 1 leads to an unbound exponential growth; 

for 𝛾 < 1 leads to a bounded sigmoidal growth typical of biological systems; for 

innovation and wealth driven cities with 𝛾 > 1 leads to a faster than exponential and 

unbounded growth reaching a mathematical singularity with infinite population 𝑁! at 

a finite amount of time T. 

 



Then if we consider   𝜌 = 1, the critical time for growth if 𝑁! < 𝑁!, also given by 

Bettencourt et al. (2007, 2008) is: 

   

𝑇 = − !
!!! !!

𝑙𝑛 1− !!
!
𝑁!
!!! ≈ !

!!! !
  𝑁!

!!!   ; (17) 

 

if  𝑁! > 𝑁! population collapses.  

 

An important note made by W-B is that in equation (15) T decreases with initial 

population (because  1− 𝛾 < 1), which indicates that the growth periods or cycles 

between 𝑁!  and  𝑁! decreases with the city size, what represents an acceleration of 

cities cycles. To understand this phenomena, Bettencourt et al. 2007) interpret 𝑁! as 

the population when a new cycle starts, or when technological, political or other 

system innovations or adaptation change the dynamics of the city to enter in a new 

cycle. Also notice that T decreases with 𝛾, indicating that (for 𝜌=1) super-linear 

wealth and innovation accelerates cities’ cycles and thus reducing the time left to 

produce mayor changes in the system.  

 

For 𝛾 > 1 the wider range of growth with 0 < 𝜌 < 𝛾 can be explored numerically. In 

this case the solution of equation (13) is an hypergeometric curve with very similar 

shape as equation (14) and characterized by 𝛾 − 𝜌, which mesures the net returns to 

scale or the strength of the economic growth: the larger the net returns the steeper the 

slope of N(t). Moreover, according to the model the power that accelerates cities is the 

net returns to scale (𝛾 − 𝜌). 

 

 

5. FINAL COMMENTS 

 

The above theory emerges from two main axioms. First, all micro decisions in the 

urban system are governed by agents’ rationality that maximize satisfaction from a 

large set of activities, where each activity yields utility, activities interact among them 

in the market and agents also interact socially. The second axiom is that agents 

perceive utility from activities with stochastic variability, which reflects a 

combination of their idiosyncratic variability -on their perceptions of goods options 



and environment- and the variability caused by imperfect information and external 

shocks in the environment where they make choices.  

 

These stochastic optimization behavior is modeled using asymptotic results 

represented by extreme value distributions: Types I (Gumbel) for utilities and profits, 

and Type II (Fréchet) for bids in land markets. Although the Gumbel model of micro 

individual choices is not essential for the main results to hold -it supports that bids 

distribute independent Fréchet- it has the merit of describing, however coarsely, a 

system wide microeconomic consistency among all (households and firms) 

individuals’ choices and the diversity of the system from which emerges the power 

laws. 

 

Under plausible conditions of the economy, like non-negative economies of scale in 

production,  the main results of this paper is the emergence of  rent and welfare super-

linear power laws with population from standard microeconomic assumptions. 

Following Page (2011), I interpret this results as: ceteris paribus, total welfare and 

rents of cities increase with population and with diversity. Diversity arises from the 

bids’ Fréchet parameter 𝛽, which yields a natural explanation for the increasing 

returns to scale. Notably, this parameter emerges from the variance of all agents’ 

variability in all their Gumbel model choices, thus encapsulating a complex micro 

level variability structure of the system that emerges in the land market.  

 

This connection between bids and the scale parameter of the power law is significant 

because these parameters can be estimated from observed data of households’ and 

firms’ locations and the associated observed rents using standard maximum likelihood 

estimators. However, known estimates assume a Gumbel distribution of bids (e.g. 

Lerman and Kern, 1983; Martínez and Donoso, 2010); it remains for further research 

to apply this estimation techniques to the Fréchet model. Additionally, the transport 

literature may contribute with their standard studies to test and estimate economies of 

scale in productive and social activities of the Gumbel model. 

 

The critical role of variability in this model implies that the more the variance in the 

system’s aggregate choice process, the lager the expected total welfare and rents. This 

tells us that more diverse societies are more creative, produce higher number of 



opportunities for interaction among agents, and the creation of welfare is more likely 

to occur for a given population. In other words, a society composed by cloned humans 

with predictable (deterministic) behavior is expected to provide the least welfare 

among those of the same size, everything else (including culture and scale economies) 

being equal. 

 

The paper provides a very simple theoretical explanation to the empirical evidence 

that welfare and rent indicators scale super-linearly with size (population) in 

worldwide studies. It states that super-linear returns to scale have two sources: the 

classical economies of scale in economic theory (not clearly relevant according to the 

evidence) and the effect of diversity in creating better opportunities. From our model, 

even under non-negative economies of scale, the sole stochastic effect supports super-

linear effects.  

 

The essential metaphoric connection between organisms and humans organizations 

dynamics is simple: both share the assumption of an optimization behavior, the 

former optimize energy production and its use, humans optimize use of resources 

(material, economical and time). Nevertheless, there is also an essential difference 

between them: human systems can grow faster, accelerated not only by scale 

economies, but also by innovation and opportunities associated with population scale.  
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