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Abstract

The speci�cation of activity generation models in operational activity-based travel demand models is based

on empirical considerations and is weakly founded in a behavioral theory. Based on the theory of needs,

this paper presents an analytical random utility model to describe the choice of activity location, duration,

and frequency as one that aims to maximize human need satisfaction. Every need is associated with a

psychological inventory that re�ects the level of satisfaction of the need. When an activity that satis�es

a need is conducted, the need is satis�ed and the corresponding psychological inventory is replenished by

a quantity called the activity production. Over time, this inventory gets consumed and the need builds

up. Using a saw-toothed inventory model, an optimization problem that seeks to maximize the average

level of need satisfaction or psychological inventory subject to time and budget constraints is formulated

under steady-state conditions. The problem is solved in two stages, for discrete (location) and continuous

(duration and frequency) decision variables. The properties of the general solution are studied, and then

explored for a translog form of the activity production function. Finally, an empirical estimation method

that can be applied to single day travel diary data is proposed and validated using Monte-Carlo experiments.

Keywords: Needs, activity-based model, activity generation, psychological inventory, time use, travel

demand
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Introduction

The theory and practice of the activity-based approach to travel demand modeling are well developed. This

approach, particularly in a form known as the day activity schedule approach (Ben-Akiva et al., 1996), is

increasingly being adopted by transportation planning organizations especially in the United States. The

activity schedule approach �rst generates a set of activities an individual performs on a day (number of

activities performed on tours and stops by purpose), and then models the travel dimensions including des-

tination, mode, and time-of-travel given an activity pattern.

Several modeling developments have been incorporated into these models over the last decade or so, in-

cluding better representations of time-of-travel choices and household joint trip-making. Yet, in Abou-Zeid

and Ben-Akiva (2012), we argue that the speci�cation of the activity pattern model in operational activity-

based model systems is weakly founded in a behavioral theory, and combines a number of socio-economic,

demographic, lifestyle, and accessibility variables based on empirical considerations. We have proposed two

extensions to enhance the speci�cation of the activity pattern model. The �rst extension maintains the stan-

dard activity pattern utility speci�cation but adds information about the utility using well-being measures.

By using individuals' self-reported satisfaction levels with their chosen activity patterns as indicators of the

utility of these patterns (through measurement equations), it is anticipated that the resulting model will

be more e�cient than one without well-being measures (see Abou-Zeid (2009), for an example in a mode

choice context). The second extension aims at enhancing the behavioral richness of the activity pattern

model by explicitly modeling the drivers of activity participation. This extension is based on the premise

that individuals pursue di�erent activities to satisfy their needs. The objective of this paper is to develop

a conceptual and analytical framework of this second extension and specify an empirical estimation procedure.

Various studies in the literature have discussed the relationship between needs, activities, time use and

travel. According to the theory of needs (Maslow, 1943), human activities are motivated by a set of needs.

Most studies that explore this relationship between needs and activities are conceptual, rule-based, or gen-

erally do not develop the needs-activity relationships into an analytical model (Adler and Ben-Akiva, 1979;

Marki et al., 2011; Nijland et al., 2010; Westelius, 1972). Another approach models the relationship between

time use and activities using a utility maximizing framework that allows for substitution between activities

with a binding time constraint, but without modeling the motivation for activities (Eluru et al., 2010). Ar-

entze et al. (2009) developed an analytical model of needs and activity generation where the utility of an

activity is a�ected by the satisfaction of the need and an activity is performed if its utility exceeds a certain
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threshold (representing time pressure). The model predicts which activities are performed on a given day,

but not their sequence, location, duration, start times, and travel modes. A method to estimate the model

using one-day household travel survey data is proposed, which, however, requires knowledge of the last time

an activity was conducted before the survey day, either based on a random draw (Arentze et al., 2011) or

based on an extended travel survey (Nijland et al., 2012).

In this paper, a general framework of a needs-based approach to activity generation is presented. The

framework draws on ideas from inventory theory (as in some other studies on needs) to conceptualize the

evolution of the need. This framework allows for the formulation of needs-based utility maximizing models

of activity choices, including frequency, sequence, location, duration, expenditure, etc., for the general case

of multiple needs and activities. In this paper, an analytical formulation of a needs-based utility maximizing

model of activity location, duration, and frequency is developed for a single need, and the activity that

satis�es the need. It is formulated as a steady-state optimization model that determines the location, dura-

tion, and frequency of activity participation that maximize the level of need satisfaction subject to time and

budget constraints. A solution of the model is presented and its properties are studied. An example using

a speci�c functional form of need satisfaction (or �activity production�) is discussed. Finally, an estimation

procedure that can be applied to single day travel diary data with no knowledge about the last time an

activity was conducted is presented and tested on synthetic data.

The remainder of the paper is organized as follows. Section 1 presents the model formulation. Section

2 develops a solution procedure, analyzes its properties, and illustrates a speci�c functional form of activity

production. Section 3 presents an estimator and results of a Monte-Carlo experiment to validate the esti-

mator. Section 4 concludes the paper.

1 Theoretical Model

1.1 De�nitions

1. Needs: According to the theory of needs (Maslow, 1943), human activities are motivated by a set of

di�erent and distinct needs. There is a �nite set of needs that motivate all human activities, and these

needs coexist. A need may be satis�ed by several activities, and conversely, an activity may satisfy

several needs. Needs are unobserved or latent; only the activities that satisfy the needs are observed.
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2. Psychological inventory: We associate a need with a �psychological inventory�, denoted as I, which

can be interpreted as the level of need satisfaction at a certain point in time (see Figure 1). When

the need is low, the psychological inventory is high and vice versa. Over time, the need builds up and

so the inventory gets depleted. The inventory is replenished once the individual performs an activity

that satis�es the need. In other words, the level of psychological inventory corresponds to the level

of satisfaction of the needs. A gain in the psychological inventory of a need may be viewed as being

similar to the utility gained by performing activities that satisfy this need.

3. Activity production: The quantity of psychological inventory generated by performing an activity

is referred to as the activity production and denoted as Q (see Figure 1). It is a non-negative function

of the various inputs that are expended to perform the activity, namely, activity duration Ta, activity

expenditure Ca, and activity location attractiveness A, where a denotes an activity. The following

properties are desired for the activity production function:

(a) Monotonicity: With a monotonic production function, the extent to which an individual's psycho-

logical inventory is replenished by performing an activity is greater when more time or money is

spent performing the activity, or when it is performed at a more attractive location (e.g. shopping

at a location with larger retail space).

(b) Concavity: A concave activity production function has the property of decreasing marginal returns

with respect to inputs. Consequently, the additional bene�t (inventory) gained from utilizing

extra resources (time, money, attractiveness) to perform the activity is decreasing. This property

captures satiation in activity production.

1.2 Problem Formulation

Given an individual with known socio-economic characteristics and �xed mobility status (e.g. residential

location, vehicle ownership), the problem to be addressed is how the individual chooses the location, duration,

expenditure, and frequency of activities to be performed such that his/her need satisfaction is maximized

over time. While some activities (e.g. work, school, picking up a child from daycare) are rigid and need

to be performed at �xed locations with �xed durations, expenditures, and frequencies, other activities are

�exible (e.g. shopping, recreation). However, the choice of location, duration, expenditure, and frequency

available for performing these �exible activities is constrained by the amount of time and money available

after allocating these resources to the rigid activities.
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1.3 Assumptions

The following simplifying assumptions are employed in formulating the model.

1. Single need and single activity: The model considers one need and the activity that satis�es this need.

The need is satis�ed only by this activity, and conversely the activity satis�es only this need.

2. Constant rate of depletion: The level of psychological inventory depletes at a constant rate λ, which

may vary across individuals.

3. Steady-state conditions: The model is formulated for steady-state conditions wherein an individual

performs the activity at a �xed location i for a �xed duration Ta and spends a �xed amount of money Ca

at constant intervals of time. In Figure 1, which illustrates the evolution of the psychological inventory

of a need over time, the individual conducts the activity at regular intervals at times T1, T2, T3, etc.

with the same level of activity production Q each time the activity is conducted. Clearly, in reality

individuals do not conduct activities at regular intervals, at the same location, for the same duration

and spend �xed amounts of money. However, travel surveys usually collect data on a random weekday.

Therefore, this steady-state model does not capture the short term dynamic activity choices, but

instead describes long term stationary patterns to predict the probability of an individual conducting

an activity on a random weekday.

4. Minimum cycle time: The activity is performed at most once in a day. Consequently, the cycle time

for the activity, de�ned as the time between successive performances of the activity, is at least one day.

It can be seen from Figure 1 that the cycle time is given by Q
λ . The average frequency is the inverse

of the cycle time, i.e. λ
Q .

5. Minimum and maximum levels of psychological inventory: The individual performs the activity when

the level of the psychological inventory drops to a minimum threshold value denoted as Imin, which

can be interpreted as a safety stock for the need. The maximum level of inventory that the individual

can attain by performing an activity is limited to Isat, the satiation limit, beyond which it is not

possible for the individual to increase his/her level of inventory. It is assumed that the maximum level

of inventory is a characteristic of the individual since it re�ects satiation, while the minimum level of

inventory is a decision that the individual makes (i.e. when to �restock�).
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Figure 1: Illustration of the psychological inventory for a need

1.4 Mathematical Formulation

The individual chooses a location i, activity duration Ta, activity expenditure Ca, activity frequency, and

a minimum level of inventory to be maintained Imin for performing the activity such that the individual's

need satisfaction, measured by the average level of psychological inventory over time Iavg (see Figure 1), is

maximized over time. The maximum level of inventory attained by an individual by conducting an activity

is limited to Isat. It is clear that the variation in the inventory over time, and not just the average level over

time, also a�ects the individual's need satisfaction and activity choices (see, for example, evidence from the

psychology literature reported in Ariely and Loewenstein, 2000; Kahneman et al., 1993; Redelmeier et al.,

2003). However, under the steady state assumption, the proposed formulation is equivalent to a model that

maximizes the minimium level of inventory, since the maximum level (Isat) of inventory is �xed (and is

reached under the steady state formulation, see Section 2.1.1) and the minimum level (Imin) is a decision

variable. Therefore, this model accounts for the variation in the inventory over time by �xing the maximum

level as a characteristic, selecting the minimum level as a decision variable, and maximizing the average level

of inventory over time under steady state conditions. In addition, the individual's choices are also subject to

time and monetary budget constraints. Let TTi and TCi denote the travel time and travel cost, respectively,

associated with performing the activity at location i. The optimization model is formulated as follows for a
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given individual:

Maximize

i, Ta, Ca, Imin

Iavg = Imin +
1

2
Qi (1)

Subject to:

Qi = q(Ta − T0, Ca, Ai) (2)

Ta + TTi ≤ t(
Qi
λ
) (3)

Ca + TCi ≤ c(
Qi
λ
) (4)

Imin +Qi ≤ Isat (5)

Constraint (2) expresses the activity production Qi at a location i as a function of the inputs that are

invested in conducting the activity. These include the e�ective activity duration (Ta−T0), expenditure (Ca)

and location attractiveness (Ai). The e�ective duration that produces psychological inventory is less than

the actual amount of time spent conducting the activity by a quantity T0, referred to as the set-up time.

T0, a psychological characteristic of an individual, accounts for the ine�ciency involved with starting up the

activity each time it is conducted, and may be viewed as the minimum time an individual must invest in

conducting the activity each time before any inventory is generated. Constraints (3) and (4) ensure that

the total amount of time and money that the individual spends on performing the activity per cycle are

at most equal to the amount of time and money available for this activity, given that the individual has

made decisions about all other activities. Note that the amount of time and money available depends on

the cycle time (Qi

λ ), given the fraction of time (t) and income (c) available (per unit time) for this activity.

Therefore, if the activity is performed less frequently, the amount of time and money available per cycle is

higher (since the cycle time is higher). Conversely, if the activity is performed more frequently (with a lower

cycle time), lesser time and money are available to perform the activity per cycle. Constraint (5) ensures

that the replenished level of inventory after the activity is performed does not exceed the satiation limit for

the individual.
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2 Solution Procedure and Properties

2.1 Solution Procedure

For mathematical simplicity, we assume that the budget constraint (4) is not binding. In reality, time is

more often a binding constraint that a�ects the choice of activities and therefore the simpli�cation has

little e�ect on the behavioral realism of the model. Therefore, the decision on activity expenditure and the

corresponding budget constraint are ignored hereafter. Since the optimization problem has discrete (location)

and continuous (duration, frequency, and minimum level of inventory) decision variables, a solution may be

obtained in two stages. First, conditional upon a location i (and thus given TTi and Ai), the optimal value

T̃ai of activity duration Ta for each location i that maximizes the objective function (Iavg,i = Imin + 1
2Qi)

is computed. Thus, the optimal values of the activity production, Q̃i, and the average level of inventory at

each location, Ĩavg,i(= Imin + 1
2 Q̃i), can be computed. The optimal frequency of performing the activity at

this location is given by λ
Q̃i
. In the second stage, the location i that has the highest value of Ĩavg,i is found

to be the optimal location.

2.1.1 First Stage Optimization Model

The �rst stage optimization model at a given location i can be formulated as follows:

Max

Ta, Imin

Iavg,i = Imin +
1

2
Qi (6)

Subject to:

Qi = q(Ta − T0, Ai) (7)

Ta + TTi ≤ t(
Qi
λ
) (8)

Imin +Qi ≤ Isat (9)

The Lagrangian function can be written as follows, with Qi de�ned by Equation (7):

Li = Imin +
1

2
Qi + µ1(Ta + TTi − t(

Qi
λ
)) + µ2(Imin +Qi − Isat) (10)
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This is a continuous optimization problem that can be solved by writing the �rst order conditions of

the Lagrangian, along with the Kuhn-Tucker conditions for the constraints. The inventory constraint (9)

becomes an equality on applying the �rst order condition to the decision variable Imin. The �rst order

condition, along with the corresponding Kuhn-Tucker condition, is written as follows:

dLi
dImin

= 1 + µ2 = 0⇒ µ2 = −1 (11)

µ2(Imin +Qi − Isat) = 0 ; µ2 ≤ 0⇒ Imin = Isat −Qi (12)

We may resubstitute the value of Imin obtained in Equation (12) to formulate the optimization problem

with the objective as shown below with constraints (7) and (8):

Max

Ta

Iavg,i = Isat −
1

2
Qi (13)

This new formulation requires Qi to be minimized, in order to maximize Iavg,i. Intuitively, this new

model may be interpreted as trying to minimize the depletion from the maximum level of inventory (Isat),

thereby maximizing the average level of satisfaction, subject to a time constraint (8). The Lagrangian can

now be expressed as:

Li = Isat −
1

2
Qi + µ1(Ta + TTi − t(

Qi
λ
)) (14)

As noted earlier, the activity production at any location is a function of the duration and location

attractiveness (Qi = q(Ta − T0, Ai)). To �nd the optimal value of Ta at location i, the �rst order condition

in Ta is written as:

dLi
dTa

= −dq(Ta − T0, Ai)
dTa

(
1

2
+ µ1

t

λ
) + µ1 = 0 (15)

The Kuhn-Tucker condition for the time constraint is written as:

µ1(Ta + TTi − t(
q(Ta − T0, Ai)

λ
)) = 0 ; µ1 ≤ 0 (16)

Equation (16) may be satis�ed when either µ1 = 0 or the time constraint is an equality. Each of these

cases is considered separately, and the optimal solution to the �rst stage optimization problem is obtained.
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Case 1: Constraint is not binding and µ1 = 0

Substituting µ1 = 0 in the �rst order condition, Equation (15), the value of optimal activity duration at

location i, denoted by T̃ai, is computed by solving the following equation:

dq(Ta − T0, Ai)
dTa

|T̃ai
= 0 (17)

The value of duration obtained by solving Equation (17) is optimal if the time constraint for this value

of T̃ai is satis�ed, and the second order condition of Li is satis�ed as:

d2Li
dT 2

a

= −[d
2q(Ta − T0, Ai)

dT 2
a

(
1

2
)] |T̃ai

< 0 (18)

Equation (18) can only be satis�ed if d
2q(Ta−T0,Ai)

dT 2
a

is positive. However, the assumption of concavity of

the activity production function with respect to inputs requires the second derivative (total, not partial) to

be negative. Therefore, a solution to this case would maximize Qi, and consequently minimize Li. However,

a maximum of the objective function is obtained when Li is maximized, and hence, since the solution to this

case minimizes the objective function, it is rejected.

Case 2: Constraint is binding and µ1 < 0

In this case, the time constraint is an equality and is an equation with a single unknown variable. In other

wordes, the value of duration (T̃ai) that maximizes Li and the objective function Iavg,i at location i is found

by solving the following equation, where the slack in the time constraint for a duration Ta is referred to as

s(Ta):

s(T̃ai) = T̃ai + TTi − t(
q(T̃ai − T0, Ai)

λ
) = 0 (19)

For a general function q(Ta − T0, Ai), this equation is transcendental and does not have a closed form

solution for the duration. However, knowing that the function is non-negative, monotonic, and concave in

Ta, the generic shape of s(Ta), given the travel time, attractiveness, time availability and the function q,

is as shown in Figure 2, which also illustrates the variation of activity production as a function of activity

duration. Note that depending on the values of the parameters in the constraint equation, the s(Ta) curve

may always be increasing (i.e. if ds(Ta)
dTa

> 0 ∀ Ta ≥ 0). However, this case is not illustrated since it always

corresponds to infeasibility of the constraint equation (i.e. s(Ta = 0) > 0, ds(Ta)
dTa

> 0 ⇒ s(Ta) > 0 ∀ Ta ≥ 0).
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Figure 2: Variation of Activity Production and the Constraint Slack with respect to Activity Duration

Depending on the values of the various parameters in the constraint equation, the actual slack curve

may be either shifted upward or downward from the one shown in Figure 2. Consequently, the constraint

equation may have two solutions (as shown in the �gure, or when the slack curve shifts down), one solution

(when the slack curve shifts slightly upward), or no solution (when the slack curve shifts further upward).

In each of these cases, the following procedure is used to select the optimal solution:

1. Two Solutions: In this case, the value of the objective function Iavg,i is computed at both solutions

and the solution that maximizes Iavg,i is accepted as the optimal solution. Since maximizing Iavg,i

corresponds to minimizing Qi at a location, and since q is a monotonically increasing function of Ta, the

solution that is selected is one that has a smaller value. Behaviorally, this indicates that by performing

an activity for a shorter duration of time more frequently, an individual maintains a higher average

level of need satisfaction since the depletion from the satiation limit is minimized.

2. One Solution: In case the constraint equation is satis�ed as an equality at exactly one value of duration,

then this value is accepted as the optimal duration.

3. No Solution: When the constraint slack is always positive, the constraint equation does not have a

solution. Given limited availability of time (t) and the inventory consumption rate (λ), there are two

situations that lead to infeasibility of the time constraint. First, if a location is far o� (very high

TTi), the total time spent on conducting the activity (i.e., the sum of activity duration and travel

time) is high, and is likely to exceed the time available per cycle. Second, when a location has very
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low attractiveness (Ai), the activity production at this location (Qi) is low, and the cycle time for

conducting an activity at this location (Qi

λ ) is also low. Consequently, the time available to conduct

the activity at this location during one cycle (t(Qi

λ )) is low, and so time available to conduct the

activity at this location is likely to be lower than the time required to conduct the activity at this

location. Therefore, locations which do not have a real solution to the constraint equation are consid-

ered infeasible, and are eliminated from the choice set for the second stage location choice optimization.

Given the nature of the equation, Brouwer's �xed point theorem may be used to obtain a su�cient

condition for the existence of a solution over a range of values of Ta, say Ta ∈ (x, y). If the constraint slack

function s(Ta) has di�erent signs at values x and y, then there is at least one solution to this equation over

this range. Mathematically, this may be stated as:

s(x)s(y) ≤ 0⇒ ∃ Ta ∈ (x, y) such that (s(Ta) = 0) (20)

It must be noted, however, that this is not a necessary condition and its ability to discover a solution is

sensitive to the length of the search interval.

At the end of the �rst stage optimization, the feasibility of every location is determined. Further, for all

feasible locations, the optimal solution may be computed as:

1. Duration (T̃ai) that satis�es the constraint: T̃ai + TTi − t( q(T̃ai−T0,Ai)
λ ) = 0

2. Activity production (Q̃i) , knowing the activity duration: Q̃i = q(T̃ai − T0, Ai)

3. Frequency (f̃i) de�ned as the inverse of the cycle time: f̃i =
λ

Q̃i

4. Average level of inventory (Ĩavg,i), knowing the activity production: Ĩavg,i = Isat − 1
2 Q̃i

2.1.2 Second Stage Optimization Model

The second stage optimization model is a discrete optimization problem that �nds the optimal location.

Given a set of feasible locations, and the optimal duration, frequency, and average level of inventory to per-

form the activity at each location, the second stage optimization problem selects the solution that maximizes

the level of need satisfaction across all these locations. Mathematically, this problem may be formulated as:

Maximize

i
Ĩavg,i = Isat − 1

2 Q̃i (21)
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At the end of the second stage optimization, the set of activity dimensions that maximize an individual's

level of need satisfaction or average level of psychological inventory is given by the optimal location (i),

duration (T̃ai), and frequency (f̃i).

2.2 Solution Properties and the Activity Production Function

In this section, the behavioral properties that are supported by, and desired of this model are presented. A

translog form for the activity production function is veri�ed to support the desired properties.

2.2.1 Solution Properties

Three behavioral properties of the optimal solution are discussed in this section. While the �rst property

follows from the mathematical derivations presented in Section 2.1, the second and third properties are

desirable. The mathematical conditions desired of the optimal solution are presented here.

Property 1: Resource constraints dictate activity choices

The optimal solution is one where the peak of the psychological inventory saw-tooth reaches Isat. This

follows from Equation (12) and may be visualized as shown in Figure 3. At optimality, an individual chooses

to maintain a high level of need satisfaction by minimizing the depletion from Isat before performing the

activity each time. While theoretically this could be achieved by performing the activity continuously in

very small quantities, this is not possible due to limited availability of time. Thus, the solution is in line

with behavioral expectation that resource (time, money) constraints limit the level of need satisfaction that

can be achieved and necessitate an individual to perform activities at discrete intervals of time.
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Figure 3: Psychological inventory in the optimal solution

Property 2: Given equal travel times, a more attractive location is preferred

Given two locations with the same travel time (TT ), we expect that an individual will choose a location

with higher attractiveness. Mathematically, this requires the optimal average level of inventory at the more

attractive location to be higher. Based on Equation (13), this requires the more attractive location to have a

lower value of optimal activity production. Further, since the activity production function is monotonically

increasing in the activity duration, this property is satis�ed when the more attractive location has a lower

value of optimal activity duration (T̃a). Mathematically, this property may be stated as satisfy the property

dT̃a

dA < 0. Di�erentiating Equation (19), we obtain the following simpli�ed condition:

d

dA
(T̃a + TT − t( Q̃

λ
)) = 0⇒ dT̃a

dA
=

t
λ
dQ̃
dA

1− t
λ
dQ̃

dT̃a

< 0 (22)

Property 3: Given equal attractiveness, a closer location is preferred

Given two locations with the same attractiveness (A), we expect that an individual will choose a location

with lower travel time. Mathematically, this requires the optimal average level of inventory at the closer

location to be higher. Based on Equation (13), this requires the closer location to have a lower value of

optimal activity production. Further, since the activity production function is monotonically increasing in

the activity duration, this property is satis�ed when the closer location has a lower value of optimal activity

duration, or conversely when a location that is farther away has a higher value of optimal activity duration

(T̃a). Mathematically, this property may be stated as satisfy the property dT̃a

dTT > 0. Di�erentiating Equation
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(19), we obtain:

d

dTT
(T̃a + TT − t( Q̃

λ
)) = 0⇒ dT̃a

dTT
=

1

t
λ
dQ̃

dT̃a
− 1

> 0 (23)

Properties 2 and 3 described above are desired and satis�ed by the solution when Equations (22) and (23)

are satis�ed. However, verifying these constraints requires knowledge of the functional form of the activity

production to describe the optimal solutions T̃a and Q̃. Given the transcendental nature of this solution, a

speci�c functional form is chosen here to empirically verify these properties.

2.2.2 Translog form of the activity production function

To verify that the optimal solution satis�es the properties described in the preceding section, a translog

functional form as shown in Equation (24) is chosen for the activity production function.

Q = q(Ta − T0, A)

= exp(qo + q1ln(Ta − T0) + q2ln(A) + q3ln(Ta − T0)ln(A) + q4(ln(Ta − T0))2 + q5(ln(A))
2) (24)

This functional form allows for �exibility in the relationship between Q,Ta, and A and ensures that the

activity production function is non-negative. It may be noted that while it is possible to impose monotonicity

and concavity globally to the translog function, this greatly reduces the �exibility of the function (Terrel,

1996). Imposing monotonicity and concavity over the realistic range of values of Ta and A provides a good

trade-o� between �exibility of the function and the desired properties. The realistic range of these variables

(e.g. 1 hour to 14 hours for out of home activity durations and 1 to 100 persons per square mile for retail

employment density in the locations for shopping activity) can be scaled without loss of generality.

For this function q to be monotonically increasing, the �rst derivative of the production function with

respect to Ta and A should be positive as shown below:

dQ

dTa
=

dq(Ta − T0, A)
dTa

=
1

Ta − T0
(q1 + q3ln(A) + 2q4ln(Ta − T0))Q > 0 (25)

dQ

dA
=

dq(Ta − T0, A)
dA

=
1

A
(q2 + q3ln(Ta − T0) + 2q5ln(A))Q > 0 (26)

Similarly, for the concavity condition to hold, the second derivative of the production function with

respect to Ta and A should be negative as shown below:
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d2Q

dT 2
a

=
d2q(Ta − T0, A)

dT 2
a

(27)

=
1

(Ta − T0)2
(−q1 − q3ln(A)− 2q4ln(Ta − T0) + 2q4 + (q1 + q3ln(A) + 2q4ln(Ta − T0))2)Q < 0

d2Q

dA2
=

d2q(Ta − T0, A)
dA2

(28)

=
1

A2
(−q2 − q3ln(Ta − T0)− 2q5ln(A) + 2q5 + (q2 + q3ln(Ta − T0) + 2q5ln(A))

2)Q < 0

While it is possible to impose restrictions to attain global monotonicity and concavity of these functions,

doing so restricts the �exibility of the translog function. Instead, a simple procedure to impose these mono-

tonicity and concavity restrictions over a range of values of Ta and A as described by Terrel (1996) may be

applied.

The optimal duration at a location obtained by solving the time constraint (19) using a translog produc-

tion function does not have a closed functional form and is analytically intractable. Empirical analysis of

the optimal solution over a range of values of the parameters of the model veri�ed that Properties 2 and 3

described in Section 2.2.1 are satis�ed by the optimal solution.

3 Estimation Method

In this section, a method to estimate the model from standard travel diary data is developed. The empirical

model additionally contains stochasticity to account for the various sources of error and heterogeneity, and

accounts for the e�ect of aggregate representation of location alternatives (e.g. use of Tra�c Analysis Zones

instead of shopping malls). Finally, a maximum likelihood estimator is developed and tested on synthetic

data to verify that the estimator can recover the true model parameters from observable data.

3.1 Travel Diary Data

In a typical travel survey, respondents record details about the various trips and activities they conducted

on a given day. For the activity of interest (e.g. shopping), the following data are available for an individual

n. First, an indicator δn is available, which is de�ned as:

δn =


1 if activity was performed on observed day

0 otherwise

(29)

17



Pattabhiraman, V. Ben-Akiva, M. and Abou-Zeid, M.

For an individual who performed the activity on the observed day, his/her chosen location in and chosen

duration Tobs,n are also available.

3.2 Introducing Stochasticity and Size Variables

1. Location Choice: The choice of location is subject to optimization errors on the part of the decision

maker, and measurement errors in recording the chosen location. For an individual n with an optimal

average level of inventory Ĩavg,in at location i, an error term, εin, with an Extreme Value Type I distri-

bution (i.i.d., with scale parameter µ) is added to the location choice optimization model. The location

choice model transforms into a logit model under this assumption. Additionally, since the model aggre-

gates elemental alternatives (e.g. shopping malls) into aggregate alternatives (Tra�c Analysis Zones),

a size measure (Mi), that re�ects the size of location i, is included as a sum of non-negative measures

of size (e.g. retail employment, area of TAZ, see Ben-Akiva and Lerman (1985)). The second stage

optimization problem for location choice, described in Section 2.1.2, along with stochasticity and size

variables is written as:

Max

i
Ĩavg,in + ln(Mi) + εin, εin ∼ Extreme Value Type I (0, µ) (30)

Mi =
∑
k′

βk′xik′n; βk′ ≥ 0, xik′n ≥ 0, ∀i, k′, n; βK′ = 1 (31)

In Equation (31), k′ indexes the set of size variables, xik′n denotes the value of the k′th size variable

of alternative i for individual n, and βk′ denotes the parameter of the k′th size variable. If K ′ size

variables are included in the speci�cation, only K ′ − 1 parameters are identi�ed (i.e. normalize one

parameter, say, βK′ = 1).

2. Duration Choice: While the optimal duration at a location i is given by one that satis�es the time

constraint, Equation (19), as an equality, the observed duration may contain measurement errors. A

lognormally distributed multiplicative error term whose underlying normal distribution has a mean 0,

and variance σ2
ν is introduced into the model. Since the error term is always positive, the observed

duration is positive. The duration choice model is written as:

Tobs,n = T̃a,nexp(νn) , νn ∼ N(0, σ2
ν) (32)
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3. Heterogeneous Consumption Rate: The rate of consumption of psychological inventory λ is heteroge-

neous in the population, and assumed to be distributed with a lognormal distribution, whose underlying

normal distribution has a mean µλ and variance σ2
λ.

λ ∼ LN(µλ, σ
2
λ) (33)

4. Heterogeneous Set-up Time: The set-up time to conduct an activity, which is the minimum activity

duration required to generate psychological inventory, is heterogeneous in the population, and assumed

to be distributed with a lognormal distribution, whose underlying normal distribution has a mean µT0

and variance σ2
T0
.

T0 ∼ LN(µT0 , σ
2
T0
) (34)

The model can be further enhanced by allowing for heterogeneous availability of time.

3.3 Maximum Likelihood Estimator

The sample of respondents is divided into two groups of people, based on whether or not they performed the

activity on the observed day. The likelihood functions for these two groups are developed in this section.

3.3.1 Likelihood Function for Individuals Who Performed the Activity on the Observed Day

For the group of individuals who performed the activity on the observed day, their activity location and

duration are known. The joint likelihood for the activity location, duration and frequency for an individual

belonging to this group is written as:

l(δn = 1, in, Tobs,n) =

ˆ
T0

ˆ
λ

R(δn = 1|in, λ, T0, θ)f(Tobs,n|in, λ, T0, θ)P (in|µ, λ, T0, θ)h(λ)g(T0)dλdT0 (35)

R(δn = 1|in, λ, T0, θ) =
λ

Q̃in
(36)

f(Tobs,n|in, λ, T0, θ) =
1

Tobs,nσν
φ(
ln(Tobs,n)− ln(T̃a,n)

σν
) (37)

P (in|µ, λ, T0, θ) =
exp(µĨavg,in + ln(Mi))∑
j exp(µĨavg,jn + ln(Mj))

(38)
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The conditional probability (R) of observing the activity on a random day is given by the frequency at

which the individual performs the activity as shown in Equation (36). Note that this likelihood relies on the

steady-state formulation of the model and does not make any assumption on the last time the activity was

performed. Based on the error term distribution assumed in Equation (32), the conditional probability (f)

of observing a duration (Tobs,n) is given by Equation (37). Similarly, based on the error term distribution

assumed in Equation (30), the conditional probability (P ) of observing the activity at a location (in) is given

by Equation (38). The density function of the consumption rate λ is given by h, and the density of T0 is

given by g. In Equations (35) to (38), θ denotes a vector of unknown parameters including those in the

activity production function, and the fraction of time available t.

3.3.2 Likelihood Function for Individuals Who Did Not Perform the Activity on the Observed

Day

For the group of individuals who did not perform the activity on the observed day, no information is available

on their chosen location or duration. Therefore, the likelihood of not observing the activity is written for an

individual belonging to this group as follows, where all terms are as de�ned earlier in Section (3.3.1):

l(δn = 0) = 1−
ˆ
T0

ˆ
λ

∑
in

R(δn = 1|in, λ, T0, θ)P (in|µ, λ, T0, θ)h(λ)g(T0)dλdT0 (39)

Note that this likelihood is unconditioned on location, since this information is unknown. Moreover, since

the probability of the individual conducting the activity on the observed day depends only on the chosen

location and the optimal duration, this equation does not uncondition over the unobserved duration. In

other words, while the chosen location and the optimal duration at that location a�ect the probability of

the individual conducting the activity on the observed day, the unobserved (chosen) duration is considered

to di�er from the optimal value only due to measurement errors. Consequently, we do not uncondition over

the unobserved (chosen) duration.

3.3.3 Likelihood Function for the Entire Sample

The likelihood function over the full sample of respondents can be expressed as:

L∗ =
∏
n

(l(δn = 1, in, Tobs,n))
δn(l(δn = 0))1−δn (40)

This likelihood function may now be maximized to estimate the set of unknown parameters based on the

observed data. It may be noted that in developing this empirical model, no assumption is made about the
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last time an activity was conducted before the observed day. The model relies on the steady-state assumption

to develop the relationship between activity location, duration, and frequency choices and need satisfaction.

3.4 Monte-Carlo Experiment

The estimator developed in Section 3.3 was tested on a synthetic sample generated using Monte-Carlo

simulation. A sample of 2,000 individuals was created with a choice set consisting of 20 location alternatives

(TAZs) for shopping activity. The retail employment in these zones was randomly generated between 1 to 100

employees per zone, and the area of the TAZs randomly from 0.1 to 2 mile2. While the retail employment and

area comprise the size variables that a�ect location choice, retail employment density, de�ned as the number

of employees per unit area, was used as a measure of attractiveness in the activity production function. The

travel times between these di�erent zones were chosen to be uniformly distributed between 15 mins and 2

hours. Individuals in the sample were randomly assigned a home location from one of the 20 alternatives.

Additionally, given the distribution of the rate of consumption of psychological inventory (λ) and a set-up

time (T0) in the population, a value of λ and T0 was assigned to every individual by simulating from their

distribution. Their choice of shopping activity location, duration, and frequency was generated using the

model. The resulting activity durations were in the range of 10 mins to 2 hours, with cycle times in the

range of 3 to 7 days. Second order terms in the translog function were set to true values of zero for the

synthetic data generation process. For each individual, the data contains an indicator of whether or not the

activity was conducted on the observed day, and the location and duration if the activity was conducted.

A maximum likelihood estimation was performed to estimate 10 parameters with a log-likelihood of -

2677.77 at convergence. Two parameters, namely qo and βRetailEmp had to be �xed (arbitrary normalization,

to their true values in this case) to make the model identi�able. The estimation results shown in Table 1

indicate that the estimates are signi�cantly di�erent from 0 and are not signi�cantly di�erent from their true

values. This shows that the model can estimate true parameters from observable data.
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Table 1: Estimation Results Using Synthetic Data

Coe�cient True Value Estimate Standard Deviation t-stat (against 0) t-stat (against true value)

q0 0 0 Fixed - -
q1 5.0000E-01 4.9149E-01 1.3368E-01 3.68 -0.06
q2 5.0000E-01 4.9973E-01 8.0961E-02 6.17 0.01
t 1.0000E-01 1.0164E-02 3.0170E-04 33.69 0.54
µλ -5.0000E-00 -5.0013E+00 4.7247E-01 -10.59 0.03
σλ 1.0000E-01 8.8216E-02 1.4576E-02 6.05 -0.81
µT0

1.3863E+00 1.3534E+00 5.0066E-01 2.70 -0.06
σT0

1.0000E-01 1.0591E-01 2.1684E-01 0.49 0.03
βRetailEmp 1.0000E+00 1 Fixed - -
βArea 7.0000E-01 6.3804E-01 1.5092E-01 4.23 -0.41
µ 1.0000E+00 1.0043E+00 4.7215E-01 2.13 0.01
σν 2.0000E-01 2.1539E-01 1.7039E-02 12.64 0.90

4 Conclusion

This paper presented a framework for needs based models of activity generation and developed an analytical

model of activity location, duration, and frequency choice based on a needs-based utility maximization ap-

proach. Activity participation is driven by the desire to satisfy various needs like shopping, recreation, etc.

Every need is associated with a level of psychological inventory, which re�ects the level of need satisfaction at

any point in time. As the need builds up, the inventory gets depleted. Each time an individual conducts an

activity that satis�es the need, the inventory is replenished by a quantity called the activity production, that

is a function of the activity duration, expenditure, and location attractiveness. Individuals choose locations,

durations, and frequencies of activities so as to maximize their psychological inventory of needs subject to

time and budget constraints. A solution procedure was proposed and its properties were studied and then

tested for a translog functional form of activity production which exhibited desirable properties governing

the relationships between activity participation and satisfaction of needs. An empirical model was developed

to illustrate how the theoretical model can be estimated using standard one-day travel diary data with no

knowledge of the last time the activity was performed. A Monte-carlo experiment was conducted which

demonstrated that the model can recover true parameters from observable data.

The initial development in this paper was done for the case of a single need and a single activity that

satis�es this need under steady-state conditions. The next steps of this work include estimating the proposed

model using standard travel survey data, modeling heterogeneity in the activity production function, and

modeling the e�ect of socio-economic characteristics. Future extensions include modeling multiple needs and
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multiple activities including trip chaining behavior and developing a dynamic activity participation model.

The model can also be improved by incorporating measures of needs and satisfaction, obtained through

surveys, and using them as indicators of utility/psychological inventory in the model.
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