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ABSTRACT 

In this study, the authors propose a statistical deterioration prediction method using visual 
inspection data, targeting tunnel luminaire. In detail, the authors (1) calculates the expected 
deterioration path and expected lifespan of the luminaires based on the statistical analysis of 
deterioration factors, and (2) estimates the deterioration path considering the heterogeneity 
of the deterioration process of each luminaire or its group, with the mixed Markov 
deterioration hazard model. In addition, the hierarchical Bayesian estimation method is 
suggested as a concrete model estimation method. In order to verify the effectiveness of the 
proposed method, empirical analysis is carried out using the visual inspection data of 10,584 
luminaires set in 11 tunnels. The authors first mentioned that the deterioration process 
significantly depends on tunnel grade and the distance from the tunnel entrance, and clarified 
that the expected lifespan of the luminaires is about 13.6 years and it varies about 4.3 years 
due to the above factors. Then, it was found that the expected lifespan of the tunnel 
luminaires varies from 6.9 years to 17.5 years by considering the heterogeneity of each 
tunnel. 
 
Keywords: mixed Markov deterioration hazard model, tunnel luminaire, hierarchical Bayesian 
estimation  
 

1.    INTRODUCTION 

All types of road equipment installed in highways deteriorate over the years. They pose 
potential risks of traffic accidents and vehicle damage accidents from falling down or 
becoming detached due to deterioration. Simultaneously, if these risks actually happen they 
can lead to the loss of social credibility of road administrators. Therefore, road administrators 
carry out periodical inspections to constantly observe the state of the equipment and to 
administer maintenance such as repairing and replacing. In most cases, the decisions 
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regarding repairing or replacing equipment are based on the experience of inspectors and 
professional engineers through visual inspection. 
For example, tunnel lighting, which is one type of equipment installed on roads, include many 
different types of luminaire. Inspections target all of the luminaires, and the data obtained 
from inspections contain adequate information on the condition state of each luminaire. 
However, the data cannot be simply aggregated into a complete deterioration prediction for 
each tunnel or each route. As a result, most of the decisions regarding repairing or replacing 
are comprehensive decisions based on visual inspection data and the experience of 
inspectors and professional engineers. However, individual experience is in most cases tacit 
knowledge (Kobayashi, 2010). Therefore, it is difficult to comprehend the reason behind a 
decision from inspection data results. This may lead to a situation in which road 
administrators cannot explain their actions (accountability). In particular, in consideration of 
the recent attention on reducing public works spending and handing down personal skills and 
experience, the visualization of decision-making processes seems an important and urgent 
matter. This paper, as a basis study of this issue, focuses on the deterioration of tunnel 
luminaire used on highways (hereinafter, luminaire) and attempts to formulate a deterioration 
process using a mixed Markov deterioration hazard model. Section 2 summarizes the mixed 
Markov deterioration hazard model and Section 3 explains the estimation method. Section 4 
introduces a case study in which the methodology is applied to the visual inspection data of 
actual luminaire.  

2.    MIXED MARKOV DETERIORATION HAZARD MODEL 

2.1    Preconditions for Modelization 

Visual inspection data of luminaire are generally evaluated as multilevel discrete data, such 
as that shown in Figure 1. This figure is a deterioration process of luminaire when they are 
continuously without repair or replacements until the serviceability limit state. The vertical 
axis is the condition state of the luminaire, with condition state 1 as the sound condition. As 
deterioration proceeds, the number increases. State I is the serviceability limit state. In the 
figure, the condition state changes from i-1 to i at time τi-1, and from i to i+1 at time τi. This 
transition of states can be observed completely when using monitoring system such as 
sensors. On the other hand, times τA and τB are when visual inspections were carried out. As 
we can clearly see, the information regarding the deterioration process that can be obtained 
from visual inspections is that the condition state is i at time τA, the first inspection, and j at 
time τB, the second inspection. In other words, visual inspections merely record the condition 
state at the time of inspections—they do not accurately determine the time (τi-1 or τi) of an 
actual shift from one state to another. Therefore, when using visual inspection data to predict 
deterioration, one must consider these uncertainties.  
 
Also, when predicting deterioration based on the transition of recorded states, the interval z 
between the two visual inspections (z=τB-τA) is important. In other words, even if the state 
transitions from i to j in the same way, if the interval between inspections (z) differs, the 
deterioration process will also differ. Although inspection intervals are specified in manuals,  
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Figure 1 – Visual inspection data and its deterioration process 

 
they are not strictly consistent with all luminaires. The inspection intervals are random 
variables, therefore they are uncertainties. Visual inspections only can provide limited 
information regarding the deterioration process, and the provided information includes 
uncertainties. However, even if the information is limited and uncertain, it is still possible to 
predict the deterioration of luminaire by modelizing the deterioration process with a 
stochastic model and estimating the deterioration process using visual inspection data. 
 
A general stochastic model for expressing the transitions between discrete variables is the 
Markov chain model (Norris, 1998). In the Markov chain model, the probability of one state 
transitioning to another arbitrary state is expressed in a Markov transition probability, and the 
deterioration process is calculated based on the Markov transition probability matrix. If the 
transition between luminaire states is expressed using a Markov transition probability, then 
visual inspection data can be used to describe the deterioration process of luminaire. The 
concept of the Markov chain model is simple, generic, and flexible. However, when using 
visual inspection data to estimate the Markov chain model, it is necessary to resolve the 
problem of uncertainties mentioned above. For this reason it was extremely difficult to make 
realistic and highly accurate predictions. The development of the Markov deterioration 
hazard model (Tsuda et al., 2006), however, drastically improved practicability. This model is 
academically innovative, refines the former model, and is much more practical as it allows 
one to use the information obtainable from field inspections in the current system. 

2.2    Markov Chain Model 

The deterioration process of luminaire can be expressed with a Markov chain model using a 
transition probability matrix, with elements describing the transition probability from one state 
to another. Let us first look at the Markov transition probability, which is the basis of the 
Markov chain model.  
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Consider the transition of states between two time points. The state at time Aτ  is )( Ah τ , and 

the state at time Bτ  is )( Bh τ . If ih A =)(τ  and jh B =)(τ , the Markov transition probability is 

])(|)(Prob[ ihjh AB == ττ . The condition for this Markov transition probability is that the 

state is i at time Aτ , and the conditional transition probability that the state will be j at time Bτ  

can be defined as: 

ijAB ihjh πττ === ])(|)(Prob[  (1) 

By deriving the pair of states ),( ji  from a transition probability in this way, we can also 

obtain a Markov transition probability matrix.  
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The Markov transition probability (1) expresses the transition probability between the two 

conditional time points Aτ  and Bτ . Naturally, if the inspection intervals differ, the transition 

probability will also differ. As long as there are no repairs, deterioration proceeds constantly, 

so )(0 jiij >=π  is true. Also, from the definition of the transition probability, ∑ = =I
ij ij 1π  is 

true. In other words, regarding the Markov transition probability, the following must hold true. 
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The condition state I  is the absorbing state in the Markov chain as long as there are no 
repairs, and 1=IIπ  is true. Moreover, the Markov transition probability is defined 

independently of past deterioration records. The Markov chain model satisfies the Markov 
property that, regardless of the time at which the state transitions from 1−i  to i , the 
probability of the transition taking place between time Aτ  and time Bτ  depends only on the 

condition state at time Aτ .  

2.3    Mixed Markov Deterioration Hazard Model 

In order to estimate the Markov transition probability with consideration to visual inspection 
data and the data’s uncertainties, a mixed Markov deterioration hazard model is 
implemented. In a mixed Markov deterioration hazard model, the luminaire’s deterioration 
speed is expressed with a mixed hazard rate. Furthermore, the fluctuations in deterioration 
speed due to observable factors such as structural and environmental conditions are 
expressed with a standard hazard rate. On the other hand, the effects of unobservable 
factors that cannot be expressed with a standard hazard rate are summarized into one 
parameter that is applied to a group of multiple luminaires, and expressed as random 
variables. These parameters shall be called heterogeneity parameters. The mixed hazard 
rate that controls the deterioration speed is the product of the standard hazard rate and the 
heterogeneity parameter. How each luminaire group is set up is extremely important, and 
should incorporate the purpose of asset management. 
 



Statistical Deterioration Prediction in Consideration of Heterogeneity of Tunnel Luminaire 
MIZUTANI, Daijiro; KAITO, Kiyoyuki; HIRAKAWA, Satoshi 

 
13th WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil 

 
5 

For details regarding the mixed Markov deterioration hazard model, the reference (Obama, 
2008) should be referred to. For the reader’s convenience, the authors shall include a 
summary. First, the luminaires targeted for analysis are divided into an H number of 
luminaire groups (assessment unit).  
 
Additionally, luminaire group ),,1( Hhh K=  contains hL  luminaires. In order to establish a 

unique hazard rate to luminaire group h , an H number of heterogeneity parameters hε  are 

implemented. At this time, the state of luminaire ),,1( hhh Lll K=  of group h  is 

)1,,11( −= Ii K , and its hazard rate can be expressed as: 

),,1;,,1;1,,1(

~

hh

hl
i

l
i

LlHhIi

hh

KKK ==−=
= ελλ

 (4) 

Here, hl
iλ~  is the standard hazard rate of state i  for luminaire hl  that includes luminaire group 

h . Heterogeneity parameter hε  is a random variable that expresses the degree of deviation 

of luminaire group h  from the standard hazard rate hl
iλ~ , therefore 0≥hε  is true. The greater 

the value of heterogeneity parameter hε , the greater the deterioration speed of all luminaires 

in group h  compared to the standard hazard rate. In equation (4), it should be noted that the 

same random variable hε  is used on the hazard rate of all condition states. Therefore, when 

a certain state’s deterioration speed is great, the deterioration speed of all other states will be 

relatively greater. Now, let’s say that heterogeneity parameter hε  is a random sample 

derived from gamma distribution ),|( γαε hf . 
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The mean of the gamma distribution’s probability density function ),|( γαε hf  is αγ , and the 

variance is 2αγ . Also, )(⋅Γ  is the gamma function. Furthermore, the gamma distribution 

)|( φε hg  with a mean of 1 and variance of φ1  can be expressed as: 

( ) ( )hhhg φεε
φ

φφε φ
φ

−
Γ

= −
exp

)(
)|(

1
 (6) 

Here, the heterogeneity parameter hε  of luminaire group ),,1( Hhh K=  is fixed as hε . At 

this time, if the luminaire’s deterioration process is hypothetically expressed using an 

exponential hazard model, the probability ( )(
~

hl
ii yF ) that luminaires in group h ’s luminaire hl  

will stay in condition state i  for longer than hl
iy , can be expressed, using the hazard rate of 

equation (4), as: 

)
~

exp()(
~

hhh l
i

hl
i

l
ii yyF ελ−=  (7) 

At this time, the probability ( )( hl
ii zπ ) that the state of an arbitrary luminaire hl  of group h  will 

be state i  at inspection hl
Aτ , as well as the following inspection hhh ll

A
l
B z+=ττ  can be 

expressed as: 

)
~

exp()( hhh lhl
i

l
ii zz ελπ −=  (8) 

Also, the probability ( )( hl
ij zπ ) that the state will be i at inspection hl

Aτ  and j  at inspection 
hhh ll

A
l
B z+=ττ  can be expressed as (Tsuda et al., 2006): 
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Due to the Markov transition probability’s condition, )( hl
iI zπ  can be: 

∑
−

=

−=
1

)(1)(
I

ij

l
ij

l
iI

hh zz ππ  (10) 

By using the mixed Markov deterioration hazard model, the expected remaining duration 

iRMD  of deterioration from when the state first reaches i  to when it reaches the next 1+i  

can be expressed, considering equation (7), as: 

i
iiiiiii dyydyyFRMD

λ
λ 1

)exp()(
~

00
=−== ∫∫

∞∞
 (11) 

2.4    Visual Inspection Data and Hazard Rates 

Now, let’s say inspections are carried out on luminaire ),,1( Hhlh K=  at time hl
Aτ  (first 

inspection) and time hhh ll
A

l
B z+= ττ  (second inspection). The information that can be obtained 

from visual inspections includes inspection interval hlz , condition states )( hl
Ah τ  and )( hl

Bh τ , 

and characteristic vector ),,( 1
hhh l

M
ll xx K=x . Regarding the characteristic vector, the element 

),,1( Mmx hl
m K=  is the number m  deterioration factor (characteristic variable) that 

influences the deterioration of luminaire hl . The number one factor is a variable that is a 

constant term, therefore is identically 11 =hlx . Moreover, the symbol “ ” signifies an actual 

inspected value. Here, based on the pair of states from the two visual inspections, the 

dummy variable hl
ijδ  (i=1,…,I-1;j=1,…,I;h=1,…,H;lh=1,…,Lh) is defined as: 
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The dummy variable vector is expressed as ),,( 111
hhh l

II
ll

−= δδ Kδ . That is, the information of 

the inspection sample of luminaire kl  can be expressed as ),,( hhhh llll z xδξ = . Also, the 

standard hazard rate ),,1;,,1(
~

HhIihl
i KK ==λ  changes depending on the luminaire’s 

characteristic vector, and using the characteristic variable vector hlx  can be defined as: 

)exp(
~

i
ll

i
hh βx ′=λ  (13) 

However, ),,( ,1, Miii ββ K=β  is the row vector of unknown parameter ),,1(, Mmmi K=β , and 

the symbol “ ´ ” signifies transposition. Also, because 11 =hlx , 1,iβ  signifies a constant term.  

3.    MIXED MARKOV DETERIORATION HAZARD MODEL AND 
HIERARCHICAL BAYESIAN ESTIMATION 

3.1    Hierarchical Bayesian Estimation Method 

A luminaire’s visual inspection data are necessary in order to assess the heterogeneity of 
that specific luminaire, but in general there are usually no adequate records of visual 
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inspection data for individual luminaires. Even under this situation, the mixed Markov 
deterioration hazard model suggested in this paper can be used to analyze the average 
deterioration process of all luminaires as well as deterioration characteristics of the targeted 
luminaire or luminaire group from visual inspection data records for the same luminaire group 
(assessment unit). In particular, the mixed Markov deterioration hazard model assumes that 
the heterogeneity parameter hε  is subject to a prior distribution expressed as a gamma 
distribution with a mean of 1 and variance of φ1 . Furthermore, with hierarchical Bayesian 

estimation, we can establish a prior distribution for the heterogeneity parameter’s variance 
parameter φ  (hyper parameter). These models with hierarchical prior distributions are called 

hierarchical Bayesian models (Kaito et al., 2012). The method is studied mostly in marketing 
analysis. This paper also uses a hierarchical Bayesian model to estimate the mixed Markov 
deterioration hazard model.  
 
Bayesian estimation (Gill, 2007) is an estimation method that uses a parameter’s prior 
distribution and the likelihood function defined from observed data to estimate the 
parameter’s posterior distribution. Now, the unknown parameter vector is ),,( εβθ φ=  and 

the visual inspection data is ξ , therefore the likelihood function can be expressed as 

)|( ξθL . If θ  is the random variable and it is subject to the prior probability density function 

)(θπ , the joint posterior probability density function )|( ξθπ  when visual inspection data ξ  
is obtained, according to Bayes’ theorem (Bayes and Price, 1763), can be expressed as: 

∫Θ
=

θθπξθ

θπξθ
ξθπ

dL

L

)()|(

)()|(
)|(  (14) 

However, Θ  is the parameter space. At this time, the joint posterior probability density 

function )|( ξθπ  can be expressed as: 
)()|()|( θπξθξθπ L∝  (15) 

The symbol “∝ ” signifies proportion. Moreover, the denominator of equation (14), 

∫Θ= θθπξθξ dLm )()|()(  (16) 

is a constant of )|( ξθπ  called a normalizing constant. In general, Bayesian estimation is 

conducted in the order of: 1) Establish the parameter’s prior probability density function )(θπ  

based on prior experience information, 2) Define the likelihood function )|( θξL  using the 

obtained data, 3) Revise the prior probability density function )(θπ  based on Bayes’ theorem 

(14), and obtain the posterior probability density function )|( ξθπ  of parameter θ . The 

unknown parameter’s prior probability density function )(θπ  in the mixed Markov 

deterioration hazard model is: 
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We can see that probability distribution of heterogeneity parameter εεεε in this paper’s mixed 
Markov deterioration hazard model and the prior distribution of parameter φ  in the probability 

distribution have hierarchical structures. The hierarchical Bayesian estimation method 



Statistical Deterioration Prediction in Consideration of Heterogeneity of Tunnel Luminaire 
MIZUTANI, Daijiro; KAITO, Kiyoyuki; HIRAKAWA, Satoshi 

 
13th WCTR, July 15-18, 2013 – Rio de Janeiro, Brazil 

 
8 

establishes prior distributions for each unknown parameter ),,( εβθ φ= , and calculates 

conditional posterior probability density functions for each parameter.  

3.2    Formulation of Posterior Distributions 

Let’s say parameter ),,( εβθ φ=  is a given condition. At this time, the joint probability 

(likelihood) )|( ξθL  of the visual inspection data ξ  is: 
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Also, the prior probability density functions of unknown parameters ),,( εβθ φ=  in equation 

(17) are as follows. First, a multi-dimensional normal distribution was used for prior 

probability density function )( iβπ  of unknown parameter iβ . The probability density function 

of the M-dimensional normal distribution is derived from: 
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However, iµ  is an expected value vector and iΣ  is a variance-covariance matrix. The prior 

probability density function )|( φε hπ  of hε  is already given in gamma distribution (6). 

Furthermore, a gamma distribution ),|( 00 γαφh  is established for prior probability density 

function of equation (17)’s variance parameter φ . Therefore, the joint posterior probability 

density function )|( ξθπ  can be formulated as: 
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However, it is difficult to analytically estimate the joint probability density function (20) and 
acquire direct samples. Therefore, in this paper the unknown parameter vector θ  was 
estimated from a Markov chain Monte Carlo method (Liang et al., 2010) (MCMC method). An 
MCMC method obtains samples from posterior distributions by repeated random generation 
of parameter θ  samples from each parameter’s conditional probability density functions.  
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Table 1 – Description of condition state 

Rating  State Description of Condition 

OK 1 No damage 

B 2 
There is damage over a wide area but no 
malfunction. It is necessary to continue to 
observe the progress of the damage. 

A 3 
There is damage and malfunction. Repairs 
are required but it is not urgent. 

AA 3 
The damage is significant, and the 
malfunction requires urgent repair. 

 
Table 2 – Data specifications of inspection data. 

No. of Tunnels 19 
Start of service 1990–1991 

Total no. of Samples 15,722 

Sample 
breakdown 

  
Posterior state 

  
1 (OK) 2 (B) 3 (A, AA) 

Prior 
state 

1 (OK) 31 5,044 4,825 
2 (B) - 262 3,211 

3 (A, AA) - - 2,349 

4.    CASE STUDY 

4.1    Outline of Visual Inspection Data 

Bayesian estimation is conducted on the mixed Markov deterioration hazard model using 
actual visual inspection data from luminaire inspections. The database contained information 
on two types of luminaire—steel and stainless steel (SUS). The SUS luminaires were 
installed recently and did not have adequate inspection data records for estimation. 
Therefore, only steel luminaires were used in the analysis this time. 
 
Luminaire visual inspection results were given four classifications: OK, B, A, and AA. The 

best condition state is OK, which moves to B, A, then AA as deterioration proceeds. Specific 

valuation statdards are shown in Table 1. Classification AA requires urgent repairs and 

classification A requires repairs, and both classifications were considered equal from a 

management viewpoint. Therefore, the classifications shown in Table 1 were reclassified into 

three steps for this paper: OK as rating 1, B as rating 2, and A and AA as rating 3. When 

luminaire ratings are classified in three steps, the hazard rate of rating 1 and 2 (excluding 

rating 3) can be defined with the mixed Markov deterioration hazard model. 

 
Data specifications used in the estimation are shown in Table 2. The luminaires used in the 
study are installed in 19 tunnels that began service between 1990 and 1991. The number of 
luminaires installed is 10,584. A total of 15,722 inspection samples were available from 
multiple visual inspections carried out between 2005 and 2009. As mentioned in Section 2.4, 
each inspection sample includes information on the two visual inspection results 
( ji, ),inspection interval ( z ), and characteristic variable ( x ). Table 2 also includes the 

breakdown of samples for each pair of states. Table 3 shows information on the 19 tunnels 
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Table 3 – Data Specifications of tunnel structure and relative rates of rating 3 

Tunnel Direction Length (m) Grade 
Inspection records 

FY2005 FY2006 FY2007 FY2008 FY2009 

A 
Up 422 2.80% 50.30% 

－ － Replaced － 
Down 447 -2.80% 76.50% 

B 
Up 1,137 -2.43% 55.70% 

－ － 
97.80% 

－ 
Down 1,070 2.43% 88.80% 99.80% 

C 
Up 1,606 -0.57% 26.60% 

－ － 
100.00% 

－ 
Down 1,578 0.57% 17.90% 96.90% 

D Up 498 0.57% 53.00% － － 99.70% － 

E Down 113 -0.57% 53.30% － － 68.40% － 

F Down 278 -0.57% 72.20% － － 95.30% － 

G 
Up 1,033 2.50% 42.10% 

－ － 
79.30% 

－ 
Down 986 -2.50% 8.00% 85.60% 

H 
Up 258 -0.57% 

－ 
90.20% 

－ Replaced － 
Down 211 0.57% 76.80% 

I 
Up 258 -0.57% 

－ 
77.10% 

－ Replaced － 
Down 260 0.57% 62.40% 

J 
Up 292 0.57% 53.10% 

－ － 
91.50% 

－ 
Down 315 -0.57% 56.20% 77.20% 

K 
Up 408 1.50% 35.30% 

－ － 
98.50% 

Replaced 
Down 463 -1.50% 13.70% 96.90% 

 
 (in particular, items that may influence luminaire deterioration) and inspection results. Of the 
11 tunnels (A to K), D has only an up-line, and E and F have only a down-line, with two lanes 
in the same direction. All other tunnels have separate tunnels for the up-line and down-line, 
so there are a total of 19 tunnels. Table 3 also includes visual inspection results over the 
course of five years, from 2005 to 2009. The up-line and down-line tunnels of A, H, and I (six 
tunnels) had one inspection during this period. These cases would generally not be included 
as samples because the two inspection results cannot be obtained. Therefore, this case 
study assumes the luminaires were in rating 1 at the start of service, which gives us a 
complete sample (pair of ratings) when the one inspection result is added. For this reason, 
the number of samples with a 15-year inspection interval increased. This is the reason why 
Table 2 includes many samples that transitioned from rating 1 in the prior state to rating 2 or 
3 in the posterior state. Furthermore, it should be noted that the lack of data between start of 
service and 2005 is not because visual inspections were not carried out during this time, but 
because the results were not digitally recorded in a way that allowed analysis. The remaining 
thirteen tunnels had two inspections between 2005 and 2009, giving us two samples for each 
luminaire. The same table includes the rates of luminaires of rating 3 (classifications A or AA) 
in each tunnel, for each inspection year. In addition, because all tunnels began service at 
very similar times, it can be seen that the deterioration of luminaires in tunnel B’s down-line 
and tunnel H’s up-line is relatively fast. Luminaires that were evaluated AA after inspections 
were given emergency repairs to prevent falling, later replaced, and put under continued 
monitoring.  
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Table 4 – Estimation results for unknown parameters 

Rating i 
Posterior distribution Constant term 

Absolute value of 
Grade 

Distance from 
Entrance 

Statistic βi,0 βi,1 βi,2 

1 
Expected value -1.575 0.323 

- (min 5%, max 5%) (-1.650,-1.494) (0.222,0.429) 
Geweke test Statistic -0.064 0.109 

2 

Expected value -2.224 

- 

-0.292 

(min 5%, max 5%) (-2.298,-2.157) (-0.393,-0.187) 

Geweke test Statistic 0.002 -0.032 

Variance 
Parameter 

φ 

Expected value 11.855 

(min 5%, max 5%) (10.46,13.284) 

Geweke test Statistic 0.161 

4.2    Estimation of Standard Hazard Rate 

For the estimation of the mixed Markov deterioration hazard model, the standard hazard rate 
(equation 13) was first calculated. In the actual hierarchical Bayesian estimation method, all 
parameters including heterogeneity parameters are simultaneously estimated. Here, 
however, for convenience of explanation the authors shall focus on the standard hazard rate. 
The standard hazard rate expresses the average deterioration speed of the overall targeted 
luminaires. As shown in equation (13), it is possible to consider the impact of various factors 
that may influence the luminaires’ deterioration. These factors the authors shall call 
characteristic variables. All factors that are considered influential to deterioration based on 
empirical knowledge and are also observable can be included as characteristic variables. 
This study includes nine factors as possible characteristic variables: number of antifreeze 
sprays, distance from entrance, lane (driving lane, passing lane), direction, tunnel grade, 
tunnel continuity, damage classification (corrosion, other), etc. In particular, it was known 
from empirical knowledge and former inspections that (1) Luminaires installed at tunnel 
entrances uniformly deteriorate at a higher speed, and luminaires installed within tunnels 
deteriorate more slowly as the distance from entrance is farther, and (2) luminaires installed 
in locations with a grade absolute value of 2.0% or more (2.0% or more for up-lines and 2.0% 
or less for down-lines) deteriorate at a higher speed. Moreover, in general the traffic load of 
large-size vehicles should be considered, but because the 19 tunnels were located relatively 
close and the traffic loads were similar, this was excluded from the study. When conducting 
statistical analysis, there are such cases in which deterioration factors that are generally 
considered important but have a miniscule influence within a certain area are determined 
insignificant. 
 
The final results of the standard hazard rates estimated using actual visual inspection data 
(states) with the above conditions are shown in Table 4. In the table, hazard rate are 
estimated for ratings 1 and 2. It was confirmed that the absolute value of grade influences 
luminaire deterioration at rating 1, while the distance from entrance influences deterioration 
at rating 2. In addition, the expected values, minimum and maximum 5% values, and 
Geweke test statistics (Geweke, 1996) are given for each unknown parameter. When 
obtaining the results of Table 4, individual standard hazard rates were estimated for each 
possible characteristic variable. Those that had a Geweke test statistic higher than 1.96 in 
absolute value, which shows a low convergence to the posterior distribution of parameters 
sampled in the MCMC method, were not applied. Even if the Geweke test statistic was less 
than 1.96, those that (1) did not meet the sign conditions or (2) had 0 in either the minimum 
or maximum 5% value were also not used. A simple explanation is required. The standard 
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hazard rate of equation (13) has the characteristic of a larger hazard rate resulting in a 
greater deterioration speed. For example, in this analysis we know from prior information that 
the closer a luminaire is installed to the entrance, the faster the deterioration. Therefore, in 
order to explicitly express this relation in equation (13), the unknown parameter in question 
must have a negative value. The actual estimated value of 2,1β  is negative. On the other 

hand, if the unknown parameter in question has a positive value, it means the further the 
distance from the entrance, the faster the deterioration. This contradicts the prior information. 
It was considered that these cases do not meet the sign conditions.  
 
In addition, if either the minimum or maximum 5% value includes 0, this means there are 
both negative and positive cases, and the deterioration processes will technologically be 
opposite. Therefore, these were not included as characteristic variables. The characteristic 
variables that were selected in this way were estimated as shown in Table 4 as optimal 
models of comprehensive combinations of two or more variables. The Akaike information 
criterion (deLeeuw, 1992) (AIC) was used to select optimal models. The combinations of 
characteristic variables with the smallest AIC were selected. AIC is a measure of the relative 
fitness of a model and actual measures; therefore the smallest AIC signifies the optimal 
model. 
 
Regarding Table 4, two types of characteristic variables were selected: the tunnel grade and 

distance from tunnel entrance. For rating 2 the characteristic variable representing grade was 

excluded, and for rating 1 the characteristic variable representing the distance from entrance 

was excluded for the reasons explained above. For the grade, the dummy variable hlx1  

(hereinafter, grade dummy) with an absolute value of less than 2.0% as 0 and 2.0% or more 

as 1 was added. For the distance from the entrance, two characteristic variables were 

applied—the dummy variable hl
2δ  (hereinafter, location dummy) with the entrance area as 0 

and all other areas as 1, and the variable hlx2  representing the distance from the entrance 

minus the entrance length (hereinafter, distance dummy) (for example, if the entrance length 

is 300m and a luminaire is installed at 500m, from the entrance, the value will be 200m). At 

this time, the hazard rate hl
iλ  of state i of luminaire ),,1( hhh Lll K=  in tunnel )19,,1( K=hh  

can be expressed as: 

( ) hll
i

l
ii

l
i

hhhh xx εδβββλ 222,11,0,exp ++=  (21) 

Furthermore, considering the estimation results of Table 4, the standard hazard rate (at this 

time ε =1.0) of state 1 is: 

( )hhhh llll
i xx 221 0323.0575.1exp δλ ++−=  (22) 

Finally, by applying actual values to the grade dummy, location dummy, and distance dummy 
of the above equation, we can calculate the standard hazard rate. Regarding whether a 
luminaire is in the entrance area or not, five possible distances were set between 200m and 
400m from the entrance in 50m intervals (200m, 250m, 300m, 350m, 400m). Table 5 shows 
the AIC results of the estimated mixed Markov deterioration hazard model on each possibility. 
From the table, we can see that the AIC is smallest when the entrance area is set as 300m; 
therefore, this definition was used for this study. According to the estimation results of the 
unknown parameters, we found that the parameter regarding the absolute value of grade 1,1β  

has a positive value; therefore, luminaires with a grade absolute value of 2.0% or more 
deteriorate fast. Also, because the parameter regarding the distance from the entrance 2,2β  

has a negative value, we can see that luminaires installed in the entrance area deteriorate 
fast. Moreover, the differences in hazard rates due to characteristic variables can be 
quantitatively valuated as differences in life expectancy. 
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Table 5 – AIC for each distance from tunnel entrance 
Distance from 

tunnel entrance 
AIC 

200m 23,804 

250m 23,805 

300m 23,803 

350m 23,806 

400m 23,807 

 

    
 
 

 
Figure 2 – Comparison of expected deterioration paths 

4.3    Calculation of Expected Deterioration Processes 

Figure 2 shows the expected deterioration processes based on life expectancies calculated 
with equation (11). The processes are average deterioration processes with arbitrary 
characteristic variables. Figure 2 (a) compares the deterioration processes of luminaires with 
a grade dummy of 2.0% or more and luminaires with a grade dummy of less than 2.0%. The 
location dummy is fixed at the entrance area ( 02 =hlδ ). The life expectancy of luminaires 
with a grade absolute value of 2.0% or more (average number of years from start of service 
to transition to state 3) is 12.7 years, and with a grade absolute value of less than 2.0% is 
14.1 years. Figure 2 (b) shows four types of expected deterioration processes: luminaires 
installed in the entrance area, 500m from the entrance, 1000, from the entrance, and 1500m 
from the entrance. The grade dummy is fixed at less than 2.0%. The life expectancies are 
14.1 years, 14.5 years, 15.6 years, and 16.9 years, respectively. Figure 2 (b) uses the 
distances of 500m, 1000m, and 1500m as representative values, but the expected 
deterioration processes of arbitrary distances can also be calculated. For the deterioration 
prediction using the mixed Markov deterioration hazard model in this study, the tunnel grade 
and distance from the tunnel entrance were selected as characteristic variables.  

4.4    Estimation of the Mixed Markov Deterioration Hazard Model 

The estimation of the mixed Markov deterioration hazard model specifically involved 
estimating 26 parameters: 2*3=6 types of unknown parameters β , 19 heterogeneity 

parameters ε, and variance parameter φ . As shown in section 4.3, expected deterioration 
processes can be calculated from standard hazard rates, and differences between each 
deterioration factor selected as characteristic variables can be understood. However, there 
are generally two or three types of deterioration factors selected as characteristic variables,  

(a) Focused on the change of grade  (b) Focused on the change of distance 
from entrance 
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Table 6 – Estimated heterogeneity parameters and life expectancies 

Tunnel Direction 

Heterogeneity parameter ε 
Life 

Expectancy 
(year) 

Expected 
value 

Min 5% Max 5% 
Geweke 

test 

B Down 1.857 1.744 1.982 -0.120 6.862 
H Up 1.700 1.505 1.890 -0.008 8.277 
F Down 1.421 1.265 1.578 0.000 9.904 
A Down 1.197 1.080 1.329 -0.023 10.643 
I Up 1.259 1.128 1.402 0.007 11.181 

H Down 1.245 1.091 1.414 0.005 11.303 

B Up 1.118 1.021 1.223 -0.038 11.399 

D Up 1.217 1.089 1.335 0.038 11.562 
J Up 1.083 0.987 1.189 -0.008 12.992 
C Up 1.048 0.969 1.134 0.025 13.429 
E Down 0.995 0.852 1.142 0.041 14.146 
I Down 0.982 0.887 1.087 -0.004 14.326 
K Up 0.978 0.884 1.067 -0.016 14.383 
J Down 0.974 0.883 1.076 0.061 14.454 
C Down 0.968 0.892 1.047 0.021 14.542 
G Up 0.871 0.799 0.955 -0.064 14.622 
K Down 0.853 0.778 0.930 0.023 16.502 
A Up 0.744 0.666 0.831 -0.002 17.135 
G Down 0.728 0.654 0.812 -0.022 17.502 

 
and we cannot perfectly calculate the deterioration processes of various types of luminaires 
for each deterioration factor. There will be deviations between the estimated deterioration 
processes and the actual deterioration. On the other hand, these deviations are defined as 
heterogeneity in mixed Markov deterioration hazard models, and it is possible to express the 
deviation, which cannot be expressed with characteristic variables, by applying heterogeneity 
parameters that represent the amount of heterogeneity to each tunnel. Table 6 shows the 
heterogeneity parameter expected value, minimum and maximum 5% values, and Geweke 
test statistics of all 19 tunnels. The tunnels’ life expectancies as calculated using 
characteristic variables (actual grade and entrance area) are also shown in ascending order. 
The average value of the heterogeneity parameter is 1.0. The tunnel luminaire’s life 
expectancy relatively decreases when the value is greater than 1.0, and relatively increases 
when less than 1.0. This is because the heterogeneity parameter was defined as a random 
variable that is subject to gamma distribution. The estimated heterogeneity parameters of the 
19 tunnels vary between 1.857 and 0.728. For example, tunnel B’s down-line has the 
greatest heterogeneity parameter, which means that compared to an average tunnel with a 
heterogeneity parameter of 1.0, the luminaire deteriorates at a speed twice as fast even with 
the same tunnel grade and entrance distance. That is, the life expectancy is about half. 
 
The table also shows the life expectancies of each tunnel’s luminaires, calculated from the 
mixed hazard rates. As already mentioned, mixed hazard rates are the product of standard 
hazard rates and heterogeneity parameters. Therefore, in order to calculate the life 
expectancies of each tunnel’s luminaires, it is necessary to establish the average 
characteristic variable values to use in each tunnel’s standard hazard rate. The life 
expectancies were calculated in this way. When the life expectancies and heterogeneity 
parameters are compared, we can see that the order from smaller to greater does not always 
correspond because the characteristic variable conditions are not the same for all tunnels.  
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Figure 3 – Expected deterioration paths considering heterogeneity. 

 
Heterogeneity parameters are used merely to valuate deterioration differences in tunnels 
with the same characteristic variable conditions. Figure 3 shows the expected deterioration 
processes of luminaires of all 19 tunnels. Characteristic variables are the same as Table 6, 
with the actual grade and entrance areas. As can be seen from Table 6 and Figure 3, the 
deterioration processes of each tunnel’s luminaires can be calculated, with the shortest 
lifespan at 6.7 years and the longest at 17.5 years. 

4.5    Cautionary Points 

In this analysis, heterogeneity parameters were established for each tunnel. Of course, it is 
possible to establish heterogeneity parameters in more detail, with the smallest division 
being for each luminaire. However, heterogeneity parameters should be established in 
accordance to the purpose of calculating life expectancies or deterioration processes (for 
example, budget plans for each tunnel or setting the order of priority for luminaire repairs 
within one tunnel). Moreover, the cause of variations in heterogeneity parameters is unclear. 
However, the important thing is to make an effort to understand this cause by estimations of 
heterogeneity parameters and relative comparisons. In fact, when we investigated tunnels 
with higher heterogeneity parameters in this empirical analysis, we were able to confirm 
unique conditions surrounding the entrances such as a nearby metal plating factory or river. 
In addition, if the number of antifreeze sprays, which was not selected as a characteristic 
variable in this study, should be considered in the estimation, then it is necessary to 
accurately record the frequency of antifreeze sprays. The foremost purpose of visual 
inspections is to confirm the deterioration state of luminaires, but this merely requires 
identifying deteriorated luminaires and conducting repairs. There is no incentive to record 
inspection data and other related information. There is no reason to change methods of 
analyzing or recording inspection data if it is possible to continue maintenance in the same 
way with the same budget. However, as explained in Chapter 1, when considering the 
problem of accountability regarding infrastructure maintenance, including inspections, repairs 
and replacements, asset management becomes essential. Therefore, it is important that 
administrators are aware that the purpose of visual inspections includes collecting 
information needed for asset management. Through statistical analysis, the importance of 
accumulating inspection data and the technological meaning of recording supplemental 
inspection data will become clear.  
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5.    CONCLUSION 

This study formularizes the deterioration of luminaires, which had hitherto been handled as 
tacit knowledge (or determined through simple statistical analysis), using a mixed Markov 
deterioration hazard model, and suggests a hierarchical Bayesian method using visual 
inspection data for estimation. The mixed Markov deterioration hazard model allows the 
quantitative inclusion of observable deterioration factors as characteristic variables, as well 
as unobservable deterioration factors as heterogeneity parameters. As a result, we were able 
to calculate an average expected deterioration process for all targeted luminaires as well as 
micro deterioration processes for each heterogeneity parameter. Empirical analysis was 
conducted using visual inspection data of luminaires in 19 tunnels. The results show that (1) 
tunnel grade and (2) the distance from the tunnel entrance have a significant influence on the 
deterioration process of luminaires. Also, it was clarified that the expected lifespan of the 
target luminaires is 13.6 years, but when heterogeneity is considered, the expected lifespan 
varies from 6.9 years to 17.5 years. Some luminaires have an assumed lifespan based on 
various material experiments and laboratory tests. However, in order to accurately 
understand the life expectancy in the actual environment, it is crucial to use inspection data 
collected in the field. There were no previous case studies that estimated the lifespan of 
luminaire from actual data. This study carefully predicts deterioration using information 
collected through practical inspections, and we believe it offers basic information useful for 
asset management.  
 

On the other hand, further issues may include (1) An expansion of the target area to 

consider other environmental conditions, as this study analyzes tunnels only in a certain area, 

(2) Calculations of luminaire lifecycle expenses based on the predicted deterioration, and (3) 

Visualization of relations between various elements concerning tunnel lighting, such as 

luminaire deterioration, lighting faults, average road surface luminance, road luminance 

distribution, glare, and induction. Finally, in this study’s estimation, we were not able to 

include deterioration information on luminaires that were replaced, as their states 

immediately before replacement were not observed. By widely exposing the methodology 

proposed in this paper we hope to improve maintenance work, which is a further issue for 

administrators. 
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