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ABSTRACT

Price elasticities of demand for public transpogtaakey determinant in evaluating the impact
of changes in fares on user flows, yet in manygirateed fare transit systems, estimating these
indicators is often hampered by two realities: thee changes for different modes are
implemented simultaneously and their magnitudes taghly correlated. This strong
collinearity is particularly problematic in linear log-linear models, commonly used for
elasticity estimation, and in a case study of Saati Chile, robust results with such
specifications proved elusive. This paper presentsthod based on discrete choice models to
estimate the elasticities in an integrated fardesysthat overcomes these econometric
problems, generating results that are both robustcansistent with those reported in the
literature. The proposed models are also easydate@mnd evaluate.

Keywords: elasticities, integrated fare, publiogjgort, Transantiago, bus, Metro, collinearity,
endogeneity.



1. INTRODUCTION

The purpose of this paper is to estimate the glEsticity of demand for public transportin a
system with integrated fares by using high freqyetata on passenger flows to the system’s
various services and their respective fares (availen a daily basis for different times of the
day) in conjunction with discrete choice modelseathan the commonly used linear multiple
regression models.

The main obstacle to estimating price elasticityarhand for transit services in integrated fare
systems is their very limited variation in faresass different mode and time period

alternatives. This characteristic results in a sey@oblem of collinearity between the

principal explanatory variables in models relatpigce and demand for transport. In linear
regression models, high collinearity complicatesapeeter identification and leads to

estimates that are inaccurate and highly sensitivehanges in the sample or the model
specification (Greene, 2011).

Another difficulty in estimating price elasticity demand is fare endogeneity, which arises
because the number of trips responds to fare lewrels fares for different time periods are set
as a function of the number of trips. Thus, pealtrtiares are relatively high while off-peak
fares are relatively low. The observed correlatioe to this relationship between trips and
fares can distort the effect induced by a raised fan aggregate demand levels when
everything else is held constant (Wooldridge, 2@Bé&ene, 2011).

In view of the foregoing, the econometric challengeto develop a viable method of
estimating price elasticity of demand for transporintegrated or flat fare transit systems
using only high frequency flow and fare data wHare changes have been very infrequent
and implemented simultaneously in similar amoumtslib alternative transit services, thus
presenting serious problems of collinearity an@ 'mdogeneity. Under these conditions, a
linear regression model may generate results thaisgther robust nor statistically significant.
We therefore propose an alternative approach basedliscrete choice logit models
(multinomial, hierarchical and mixed) that is siegkt demonstrably effective. Not only does
it deliver the desired estimates using abundantylable passenger flow and fare data, but it
can also be periodically updated and its predictisdity evaluated each time fares are
changed.

The proposed methodology does not use additiof@iation on service levels such as trip
times, the reason being that such data is notablaibt the same frequency and quality level
as the data on demand and prices. In this sensegldisticities we estimate should be
interpreted as reduced forms of aggregate trip\oetafor the travel alternatives (mode and
time period) studied rather than as indicatorgtoticular user profiles.

The approach developed is applied to a case sfublg mtegrated public transport system in
Santiago, Chile, known as Transantiago. The estisnabtained are satisfactory as regards
both statistical significance and robustness, aadansistent with similar estimates reported
previously in the literature.



The remainder of this article is organized intcefisections. Section 2 is a survey of the
literature, reviewing a number of articles on estimg price elasticity of demand for public

transport. Results taken from those papers are tasedntrast and validate the estimates
obtained in the present study. Section 3 givese btatistical overview of the data used.

Section 4 reports the results of the different méthogical approaches tested (multiple linear
regression and aggregate logit models). In thealseiltiple linear regression we analyze the
effects on the parameter estimates of strong ealtity and fare endogeneity, which lead to
their invalidation. For the aggregate logit modetsreport the own-elasticity estimates by
mode (bus and Metro) and time period (peak angheflk ) as well as the cross-elasticities
between mode and time period. The results, whiehcamparable to those found in the
literature, are set out in Section 2. Section ®rsfia comparative analysis of the elasticity
estimates obtained using various types of logit@sd-inally, Section 6 presents the study’s
main conclusions and recommendations.

2. LITERATURE SURVEY

In what follows we bring together results from wais studies in the literature reporting on
how price changes affect passengers flows on pthalitsport that estimate elasticity for a
specific case. The price referred to is that pgszkby the travelling public which directly
impacts consumption, and may include costs bothetaoy (fares) and non-monetary (e.g.,
travel times, comfort).

Many different factors contribute to the effecteps have on consumption. The impact will
depend on the definitions adopted for the elasgithe type of good or service in question,
the class of consumer, the quality and quantigvailable substitute goods or services, and
any other market factor that might be relevant padicular case.

Some of the principal factors that influence tresttity of demand for public transport are the
following (Cervero, 1990; Pham and Linsalata, 19Rdplin et al., 1999; Paulley et al., 2006;
Litman, 2011):

) Type of traveller: persons who have non-public transport options,(a.grivate car)
tend to more sensitive to price than those whaaptives of a single mode (e.g., only
buses). Certain demographic groups (low-income;agaomwners, the disabled, students
and seniors) tend to be more dependent on puafisport. In some communities, those
who depend on public transport are a relatively praportion of the total population
but a high proportion of transit users.

i)  Type of trip: non-routine trips (e.g., during off-peak hours)démbe more sensitive to
price than routine trips (e.g., during peak houtdj-peak public transport elasticities
tend to be double those of peak hours (see Tabiid o the greater proportion of
routine trips in the latter periods (e.g., tripsmork).

iii)  City geography:large cities tend to have lower elasticities thianall cities, suburbs or
rural areas due to the higher proportion of trarsliwho are dependent on public
transport.



Vi)

vi)

Component and level of cost or price that change$ares, quality of service (travel
times, comfort, frequencies, coverage, etc.) ankipgcosts tend to have a high impact
on public transport users. Elasticities tend taease as fares rise, and therefore to be
higher if the starting fare level is high.

Direction of change in cost or price componenfTransport demand models generally
assume that price elasticity is the same whethee jpor cost) rises or falls, although

there is evidence suggesting that their effectsarén fact symmetric. Fare hikes tend
to produce a fall in trip numbers that are gre#ttan the rise for fare cuts of equal

magnitude.

Period: The impacts of price changes are often categoeitbdr as short term (under 2
years), medium term (2 to 5 years) or long terne(®vyears). Elasticities tend to grow
over time, suggesting that consumers make long-teake decisions based on price
such as where to live and where to work. Long-telasticities tend to be 2 or 3 times
greater than short-term ones.

Type of public transport: bus and Metro services have different elasticitiesause
they serve different markets, and the size of tfierdnces depend on specific factors.
According to Paulley et al. (2004), “Although cavreership has a negative impact on
rail demand, it is less than for bus and, althaghe are quite large variations between
market segments and across distance bands, trel@ffct of income on rail demand
is quite strongly positive. Rail income elastictere generally found to be positive, and
as high as 2 in some cases. As with the bus inetasécities, the rail elasticity can also
be expected to increase over time.” Thus, changpsgde levels may have a relatively
small impact on users of basic or primary transpervices.

Various studies have estimated the price elasti€itemand for public transport, and surveys
of the literature have also been published. Exampie¢he former include Cervero (1990),
Pham and Linsalata (1991), Oum et al. (1992), Gaod®992), Pratt (1999), Dargay and
Hanly (1999), TRACE (1999), TRL (2004), APTA (2008yardman and Shires (2003),
Taylor et al. (2009), Wallis (2004), Litman (20@Hd Wang (2011). The elasticity estimates
reported in these articles for urban public tramspce set forth in Table 1. In general terms,
they suggest that elasticity levels vary betweed add -0.5. They also demonstrate that the
absolute values of Metro elasticities are gre&ien those for buses and that the absolute value
of peak-period elasticities are less than off-peads.



Table 1
Estimates of short-term price elasticity of demandor public transport services

Author Type of elasticity Estimated elasticity
Cervero (1990) Transit, average -0.22 a-0.33
) Bus, peak hours -0.23
Pham and Linsalata (19¢
Bus, off-peak hours -0.42
) Bus, average -0.41
Goodwin (1992)
Metro, average -0.79
Bus, average -0.29
Luk and Hepburn (1993
Metro, average -0.35
Bus, average -0.20a-0.3
Jordan (1998)
Metro, average -0.10a-0.15
Kain and Liu (1999) Transit, average -0.32
Bus, peak hours -0.30
Bus, off-peak hours -0.46
Pratt (1999)
Metro, peak hours -0.10
Metro, off-peak hours -0.46
Dargay and Hanly (199¢ Bus, average -0.2a-0.3
Small and Winston (199¢ Bus, average -0.58
Transit, peak hours -0.19
Mayeres (2000) -
Transit, off-peak hours -0.29
Romilly (2001) Bus, average -0.38
Dargay and Hanly (2002 Bus, average -0.33a-0.44
Bresson et al. (2003) Transit, average -0.40 a -0.53
OXERA (2003) Bus, average -0.63
Bus, average -0.20a-0.3
TRL (2004)
Metro, average -0.3
Fearnley and Bekken Bus, average -0.44
(2005) Metro, average -0.61
Holmgren, J. (2007) Transit, average -0.59
Booz & Co (2008) Metro, average -0.48
Transit, average -0.2a-0.5
(*) Litman (2011) Transit, peak hours -0.15a-0.3
Transit, off-peak hours -0.3a-0.6

(*) Values recommended by the author for use ingpart modelling based on
an exhaustive review of the literature.



3. DATA

The data used with the proposed models to gertbeagéasticity estimates was compiled from
the records of magnetic smart card transactionmbgengers entering a bus or Metro station
in the Transantiago transit system. The informatelated to the months of March through
December 2010 and was aggregated over half-harmwvals. This period has witnessed more
fare changes than any other since Transantiaginaagurated in February 2007 and is thus
the most appropriate for the task of identifyingcerelasticities while limiting possible
complexities due to changes in variables not inetuith the models. It was also in 2010 that
the system had fully stabilized after its first fgmars of operation, which were plagued by

deficient service, operator contract modificatiamsl changes in routes and other non-fare
variables.

The evolution of the Transantiago Metro and busdawer time is shown in Figure 1. As can
be seen, the changes in fares for the two modestlwendicated time period were few in

number and highly correlated, given that they vimmemented simultaneously and were the
same in size and direction.

Figure 1
Peak hour bus and Metro fares, 2008-2010 (in currérChilean pesos).
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In estimating the elasticities, account was takénhe following characteristics of the
Transantiago fare system as it was during MarchebBéxer 2010:

I. The bus and Metro fares were integrated. Ternisig between buses was free while
transferring from bus to Metro was free during jpdéfak hours but cost 40 pesos during
peak hours (weekdays 7:30am-9am and 6pm-7:30pransiers between Metro lines
were also free. Note that 500 pesddS$1.00.



The bus fare was the same all day, 7 daysekwghe Metro fare during peak hours
(weekdays 7:30am-9am and 6pm-7:30pm) was 40 pesos timan during off-peak
hours and also 40 pesos higher than the bus fatb.Bodes charged the same fares
during off-peak hours.

The Transantiago system registered the smamd ¢ransactions for bus and Metro
boardings and centrally stored them every half heuery day of the year (some 6
million transactions were recorded every day). Farere valid for 2 hours and only the
start time of the trip was registered on the usamsart card. Transfers between Metro
lines were not recorded. Students paid approximated-third of the regular bus fare on
either mode at all times without exception. Thus, $tudents there were no fare
differences either for modes or time periods

To simplify the proposed analysis, the scope ofitita was limited to weekdays. Weekends,
legal holidays and the southern hemisphere sumroaths (January and February) when a
large proportion of city residents are on vacaivene all excluded, as were days considered by
Metro officials to be “exceptional” because of Spéevents that altered normal workday
transport user behaviour.

Our analysis focuses on trips made on the systéheimorning between 6am and 8am. Four
travel alternatives are distinguished in terms oflm(bus or Metro) and time period (peak or
off-peak) within this two-hour focus. The off-pejdriod for our purposes is 6am to 7am and
the peak period 7am to 8am. Since the Metro’s mgrpeak-fare period begins at 6:30am,
half way through the off-peak hour as we definevé,considered the fare for that hour to be
the average of the off-peak and peak fares. A numbleasic statistical descriptors for the
data employed are summarized in Table 2.

Table 2
Selected statistical descriptors (daily averages).

Variable Obs Mean Std Dev Min Max
Trip: Metro, peak hour 200 168,860 17,494 110,330 01,203
Trip: Metro, off-peak hour 200 54,949 2,915 41,763 61,119
Trip: bus, peak hour 200 206,495 12,969 165,637 425
Trip: bus, off-peak hour 200 102,463 7,024 85,972 20,921
Fare: Metro, peak hour 200 546 45 460 580
Fare: Metro, off-peak hour 200 469 41 390 500

Fare: bus 200 472 36 400 500




4. METHODOLOGY
4.1 Multiple linear regression model

The traditional method of estimating elasticitiaggwmultiple linear regression models is to
define a log-linear relationship between the vdeabf interest. In the case of price elasticities
of demand, the variables would be prices and copom For our purposes, the dependent
variable is the natural log of the number of tfipsthe transport mode and time period (peak
or off-peak) in question while the independentatles include the natural logs of the fares
for that transport mode and time period and foraternative ones, among other possible
controls. Thus, the model is formulated as follows:

YO =B+ BIKG 1)
k

wherey;" is the natural log of the number of trips in madebserved in periog x, are the
natural logs of the explanatory variables includargs, & is the statistical error and tif&'s

are the parameters to be estimated. The parafitaccompanying the natural log of the fare

for modem indicates its price elasticity of demand while fa@ameters that accompany the
alternative services are cross-elasticities. Wienaseé (1) using ordinary least squares.

4.2 Multinomial logit model

The data can also be interpreted as the resuttioffvidual discrete choice process in which
each traveller decides among different travel a#teves. In our case the alternatives are the
four options described above in Section 3. Thedi@tis made on the basis of the traveller’s
preferences and the characteristics of the aligagtone of which is the fare.

In this study the fare is the only characterisisaxiated with level of service. Since we are
using aggregate data, they relate only to bus aettdvfares and time periods and do not
capture attributes of the different zones of th @r the individual traveller.

The first discrete choice model specification wesider is a multinomial logit model, which
has the following form:

e exp( B+ By ")
L exp( B+ B KT

)

where p" is the proportion of trips in moaeduring period, 5;" is the modal constant of the
travel alternative (grouping all attributes of #egvice except the farey," is the modenfare
in periodt, and B, is the parameter associated with the fare.



To estimate (2) we interpret the aggregate tripsaich moden and period as the sum of
individual choices to be explained by the discokteice model as a function of fares. In other
words, we disaggregate the database by individwakhich level many observations will
involve the same choices and explanatory variables.

The price elasticity of mod®a in periodt is determined by
m a m m m
=P 2= g o (1) 3)

The price cross-price elasticities between tripgiodem and the fare for moden period
tis determined by

! ——,-i:n =Bl (1-p/) 4)

Note that expressions (3) and (4) refer to proposiof trips rather than absolute numbers of
trips in each mode. Since the model excludes tlsipitity that no trip is taken we assume
that the total number of trips in each periasifixed, meaning that the percentage change in
the number of trips is the same as the percenthgege in the proportion of trips. The
assumption of a fixed number of trips is reasonabtair short-term context, which focuses
strictly on the period just before the start ofwwgking day, and is used frequently in discrete
choice models whenever the no-choice alternatiexctuded.

It should also be noted that in this model the &#arice elasticities are symmetric and when
added to the own-price elasticities they sum to O.

The estimation of (2) was performed by maximumliii@d using the discrete choice model
estimation software Biogeme (Bierlaire, 2008yw.biogeme.epfl.ch

4.3. Other discrete choice models

To test the robustness of the multinomial logit elodstimates we complemented the
estimation process with two more flexible altermatmodels, the first one hierarchical logit
(Williams, 1977; Ortuzar and Willumsen, 2011) ahd second one mixed logit (Bierlaire,
2003, 2008; Bhat and Guo, 2004).

4.3.1. Hierarchical logit model

Hierarchical logit models allow more flexible spemtions to be defined with more
parameters than multinomial logit models and doimgiose the independence of irrelevant
alternatives restriction. Also, they can estakédistierarchy for a set of choice decisions. In the
present case, the various alternatives for orgagitie hierarchy of time period and mode of
transport decisions are shown in Figure 2.



Figure 2
Hierarchical logit model decision trees
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In model NL-1, the top level decision is the usetr®ice of time period while the bottom level
decision is the aggregate choice of mode withih &iate period. This specification will be the

correct one for estimation only if it is true thqt:)ll<1 and @ :/‘1<1 (Orttzar and
1 2

Willumsen, 2011). Ifg =1and g, =1, however, the model collapses to a multinomiait)og
and if g >1 or g, >1, the correct model would be NL-2.

Thus, the hierarchical specification depends orvithees of parameteg and ¢, which in
turn will determine the own-price and cross-prilstcities.

In addition to capturing correlation between al&ives, one of the advantages of hierarchical
logit models over multinomial logit ones is thagytreveal the economic importance to the
traveller of changing mode relative to changingetiperiod in response to a variation in fares
(De Cea et al., 2008). If, in the NL-1 model spieeifion, the parameterg and ¢ are less

than 1, the time period choice is more importarihtouser than the mode choice, otherwise
the mode choice is more important and the sequehtavels in the model tree must be
reversed.

4.3.2. Mixed logit model

Mixed logit models allow the estimated parametergary randomly across the population.
The distribution function chosen for the parametsrsp to the modeller and attempts to
reflect the actual distribution of values in thgplation, or some belief regarding it. The most
common choice is the normal distribution (TrainQ2) If it is desired to impose a certain sign
for a given parameter (e.g., negative values iprcst), the log-normal distribution is used
given that it takes only positive values (for teipst, the variable would then have to have a
negative sign). However, since the log-normal ysrametric with a long right tail, the mean is
difficult to interpret. In the light of various argients suggesting the cost parameters are
normally distributed (Walker, 2002), we adopted #sumption for the present study.



5. RESULTS
5.1. Multiple linear regression model

The estimates obtained for the linear model withrd&ips during the morning peak hour as
the dependent variable are shown in Table 3. Th&aratory variables are the fares for the
travel alternatives, which are off-peak by Metroegher period by bus. The model cannot
distinguish between the effects of fare changepdak versus off-peak bus trips since the two
are equal and thus perfectly collinear.

Four versions of the model were tested. In Mod#id peak and off-peak Metro fares and the
bus fare are explanatory variables. Neither ownemor the cross-price elasticities turned out
to be statistically significant in this specificati The own-price elasticity was close to -26,
differing by an order of magnitude from the resudfsorted in other studies which range from
-0.3t0 -0.5.

One way to reduce the collinearity problem is tionglate less important variables. Thus,
Model 2 excludes the off-peak Metro fare from thxplanatory variables. The resulting
elasticity estimates are significant and very défe from those generated by Model 1, but still
seem very large. Short-term peak-hour elasticittegyenerally expected to have an absolute
value of less than 1.

Models 3 and 4 are the same as Models 1 and 2atdagly, except that they include a
dummy variable for the month of the year to contmokseasonality. As can be seenin Table 3,
the change of specification produces estimatesatieatonsiderably different in size and even
in sign. This instability is a symptom of the datdiigh collinearity. Signs contrary to
expectation, such as a positive (although not ggmit) value in Model 4 for price elasticity
of demand of peak-hour Metro trips, may reflectageheity in fare-setting.

Table 3
Linear model parameter estimates, peak-hour Metrorips.
Ln(peak-hour Metro trips) Model 1 Model 2 Model 3 Model 4
Ln(peak Metro fare) -25.993 -5.174%* -108.926** 0.464
(24.635) (0.818) (49.093) (0.747)
Ln(off-peak Metro fare) 37.12 190.656**
(44.144) (86.461)
Ln(bus fare) -14.588 5.094*** -99.728** -1.183
(23.561) (0.917) (45.434) (1.058)
Constant 37.363 13.267** 139.908** 16.271%*
(28.649) (0.702) (57.344) (1.807)
No. of observations 200 200 200 200
R-Squared 0.215 0.212 0.685 0.665

Standard errors in parentheses. * indicates sagrmifie at the 10% level, ** at the 5% level and &t*the 1% level.



The estimates of the linear model with peak-hosrthps as the dependent variable are shown
in Table 4. As with the Metro estimates, Modelsn8 4 include a dummy variable for the
month of the year. Once again, the elasticitievangunstable in the face of relatively minor
changes to the specification, in some cases havegrong sign and in various others being
of an implausible order of magnitude.

Table 4
Linear model parameter estimates, peak-hour bus tps.
Ln(peak-hour bus trips) Model 1 Model 2 Model 3 Model 4
Ln(peak Metro fare) 39.841*** -3.361%* -44.869* -0.718
(13.611) (0.539) (26.009) (0.453)
Ln(off-peak Metro fare) -77.029%** 76.952*
(24.413) (45.892)
Ln(bus fare) 44.596*** 3.754*** -39.142 0.632
(13.056) (0.579) (24.185) (0.601)
Constant -39.699** 10.302%+* 62.692** 12.79%*
(15.918) (0.313) (30.551) (1.002)
No. of observations 200 200 200 200
R-Squared 0.173 0.136 0.686 0.676

Standard errors in parentheses. * indicates sagmifie at the 10% level, ** at the 5% level and &t*the 1% level.
5.2. Multinomial logit model

The parameter estimates and significance testtsefeulthe multinomial logit model are set
out in Table 5. Although all of the parametersstadistically significant, in discrete choice
models they are difficult to interpret. For thisasen, in Table 6 we show the elasticity
estimates evaluated at the sample centroid.

Table 5

Multinomial logit parameter estimates (*).
Parameter Value t test
Const.: Metro off-peak -2.26717 -3.241
Const.: Metro peak -0.57354 -3.327
Const.: bus off-peak -0.70222 -5.642
Beta: fare Metro off-peak -0.00045 -2.485
Beta: fare Metro peak -0.00144 -3.534
Beta: fare bus off-peak -0.00101 -2.865
Beta: fare bus peak -0.00119 -2.018
Log-likelihood (LL) -7,650.29
p=1- Ltﬁz‘;js)‘) 0.123

(*): The off-peak bus modal constant was set to 0.



Table 6
Aggregate multinomial logit elasticities

Travel alternative Elasticity
Metro off-peak (own) -0.193
Metro peak (own) -0.588
Bus off-peak (own) -0.34
Bus peak (own) -0.284
Metro off-peak, Metro peak (cross) 0.159
Metro off-peak, bus off-peak (cross) 0.114
Metro peak, bus peak (cross) 0.25

(1) Cross elasticities for simultaneous changesth lmode and time period are
not shown.

(2) The functional form of the model imposes thattross-elasticity between off-
peak and peak bus is the same as that betweeM@takand peak bus.

The signs of the elasticities are all consistetit wconomic theory and the values obtained are
comparable to those reported in other empiricalistuin the literature (see Table 1). The
highest elasticity (in absolute value) was obsefeethe Metro mode in the 7:00am-8:00am
period. This result, also consistent with the éitare, may be explained in part by the fact that
the Metro fare is higher than the bus fare sotti@elasticity is calculated at a point on the
demand curve that givesgteris paribus, a greater elasticity value (by definition, eleiyiis
higher at higher prices). Another reason for thaultes that between 7:00am and 8:00am,
Metro users can either switch to the bus or moverugelay their trip time more easily than
can bus users or Metro users travelling betweebabnland 7:00am.

As regards the cross-elasticities, the highesteveddor the substitution of peak Metro trips
with peak bus trips, a result that seems quitesittder The positive signs of the cross-
elasticities indicate that the four travel alteiwd in the study are substitutes at the aggregate
level, which does not, however, mean they cannatdneplementary for certain individual
users.

5.3. Hierarchical logit and mixed logit models

After various tests it was concluded that the hahi@al model which offered the best
statistical fit was the structure shown in Figure 3

The parameter estimates and significance testisdsulthe hierarchical logit and mixed logit
models are shown in Table 7. The estimates ardisamt for both specifications. Parameter
@ turned out to be less than 1 while parameteras not specified as it was statistically equal
to 1. This implies that on average, travellers gigive system between 6:00am and 7:00am
give more weight to the time period they travahan to the transport mode. Such a result was
to be expected since in that time period the gregority of trips are made by workers and
students whose required arrival times have veitg fiexibility. In the 7:00am-8:00am period,
on the other hand, this result was not observedh(peterg was statistically equal to 1),
which might mean that users in this later periagrast as obligated to travel as those in the
earlier period.



Figure 3
Estimated hierarchical logit model tree
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Table 7

Hierarchical logit and mixed logit parameter estimdes (*)

Parameter Hierarchical logit Mixed logit (**)
Value t test Value t test

Const.: Metro off-peak  -1.011870 -5.787 -2.25854  -2.533
Const.: Metro peak -0.453192 -3.547 -0.57192  -2.542

Const.: bus off-peak -1.011870 -5.787 -0.70105 -5.546
Beta: fare Metro off-peal -0.000013 -1.815 -0.00043  -1.983
Beta: fare Metro peak  -0.000226 -2.060 -0.00138 -2.436
Beta: fare bus off-peak -0.000200 -1.984 -0.00104  -1.992

Beta: fare bus peak -0.000267 -2.046 -0.00122 -2.211
a=y/A 0.73 1.784 - -
Log-likelihood (L) -7,645.58 -7648.47
A=1— LL(const)

p=1 me) 0.125 0.123

(*): The off-peak bus modal constant was set to 0.
(**): In the mixed logit model, the parameters wassumed to be normally distributed.

In practical terms, this result can be interprétethean that in response to a peak-hour Metro
fare increase, users will tend to switch to a pleailsr bus rather than take the Metro earlier. In
other words, when a specific fare is hiked, traarsllare more willing to change the mode of
their trip than the time period. This is corroberhby the cross-elasticity estimates in Table 8,
which summarizes and compares the elasticity iefotall three discrete choice models in
the study. Also evident is the similarity of théfelient models’ estimates, clearly indicating
their robustness. The confidence intervals for éautel alternative and model are set out here
in the Appendix, confirming that the three setsasiults are statistically equivalent.



Table 8
Discrete choice model elasticities

Travel alternative Multinomial logit Hierarchical logit ~ Mixed logit
Metro off-peak (own) -0.193 -0.233 -0.173
Metro peak (own) -0.588 -0.557 -0.575
Bus off-peak (own) -0.34 -0.349 -0.303
Bus peak (own) -0.284 -0.268 -0.314
Metro off-peak, Metro peak (cross) 0.159 0.141 0.19
Metro off-peak, bus off-peak (cross) 0.114 0.134 0.142
Metro peak, bus peak (cross) 0.25 0.236 0.196

(*): The method of calculating elasticity in hiechical logit models differs from that used with MNhodels (see Forinash and
Koppelman, 1993).
(**): The elasticities in mixed logit models arstienated by simulation (see Bhat and Guo, 2004).

5.4. Discussion of results

The use of discrete choice models instead of toadit log-linear regression to estimate the
price elasticity of public transport demand is mattivated by conceptual considerations so
much as practical ones. In the case of Santiagte,Ghe econometric challenge is to find a
method of identifying the magnitude of transit fatasticities given that changes in the fares
have been very few, and what changes there havedsre implemented simultaneously and
in similar amounts, thereby creating a seriousireedirity problem. In our study, the linear
regression models were unable to identify elagti@lues that are reasonably robust. This is
more than evident in one of the results given inl@&, which suggests that a 1% Metro fare
increase would trigger a clearly overestimated 2@%rease in Metro trips.

Although there is no established benchmark fori&gatwith which to compare our elasticity
estimates, the fact that they are similar to tmeperted in the literature is a good sign. If there
had been no changes in Transantiago fares it watlthave been possible to estimate the
elasticities with the system data. Perhaps thedstishates available to the transit authorities
would be based on those found in previous studiesities similar to Santiago, on data from
the pre-Transantiago system, or on stated prefemsaita. But any of these alternatives would
result in seriously biased estimates.

A shortcoming of the proposed discrete choice ndlogy is that the fares are the only

explanatory variables, thus excluding other factbas may be significant. This exposes the
estimates to bias due to the omission of relevanahles, although the risk involved can be
limited by restricting the period of the analysishould also be noted that that the elasticities
could not be estimated from a database built byestimg individual users as such data would

be cross-sectional and therefore unable to cafdueechanges over time. In any case, using
stated preferences would be very unreliable.

The elasticities we have estimated should be iretgd as reduced forms of aggregate
traveller behaviour for the travel alternativesdetd. Thus, although the signs of the cross-
elasticities tell us that the transport modes atesstutes, for some travellers whose trips
combined different modes the alternatives weraghdomplementary. The elasticity estimates
are for aggregate behaviour, not for any particusar profile.



Different levels of aggregation could be definedthe various travel alternatives by including
more time periods or the total number of dailygripr distinguishing between types of users
(adults and students), different routes or diffelmrs operators. In each case, however, care
must be taken when interpreting the parameterstlaid relevance in the design of fare
policies.

As regards distinguishing between different busesusome of them complement the Metro
(feeder lines), others are substitutes for it, e/ktill others are simply unrelated. Since every
operator has lines falling into each of these aaieg, the size and sign of the cross-elasticities
between them will behave erratically. Many opemtgimultaneously run services in very
distant areas within the city that obviously canm®tonsidered as travel alternatives for the
individual user located in any one of them, makirgjfficult for aggregate discrete choice
models to properly represent the travel alternatisers really face. Whereas the originating
station of each Metro trip is indicated by Metraaahe origin of bus trips cannot be
determined directly. This problem could be solvealyever, if by some form of geographic
positioning the starting location of each busdopld be estimated. Such information could be
used in our models to group bus and Metro tripgistain each city zone and estimate the
local elasticity for each one. This would be a ipatarly attractive option given that
elasticities are known to depend significantly ociseconomic characteristics that would vary
greatly across the city.

6. CONCLUSIONS

A methodology was proposed for estimating aggreg#dsticities of demand for public
transport in a system with integrated fares usirsgrdte choice models. The approach
developed was able to overcome the serious prold¢cdlinearity and endogeneity in the
data supplied by Transantiago, the integratedtfansit system in Santiago, Chile. Linear (or
log-linear) regression models, the traditional tlmolestimating aggregate elasticities, were
unable to identify reliable values for the estindgbarameters.

The study focussed on trips made in the morningvfoch it was possible to define different
aggregation levels. Estimates were obtained for-prge elasticity of demand by transport
mode and time period as well as cross-elastidigdseen different modes and periods. These
results were similar in magnitude to those repoindtie literature, suggesting the proposed
methodology is sound.

Three alternative discrete choice models weredestaltinomial logit, hierarchical logit and
mixed logit. The estimates they generated werefdlie same order of magnitude.

The principal limitation of the suggested appro&that fares are the only explanatory
variables. To reduce the risk of bias, only complerdays in stable periods where fare hikes
were the most significant changes for transit usetgd be included in the data. Even if a
disaggregated database with characteristics foridwhl travellers were constructed, the data
would be cross-sectional and therefore uselesséasuring changes in trips due to fare
changes. Geographical location could be used lectdfavellers’ socioeconomic attributes,

but such information is not currently available lbars trips in the Transantiago system.



REFERENCES

APTA (2008), Rising Fuel Costs: Impacts on TraRsdership and Agency Operations:
Survey Results, American Public Transportation Asdmn (www.apta.com); at
www.apta.com/resources/reportsandpublications/Decusifuel _survey 0809.pdf

Bhat, C. R. and Guo, J. (2004). A mixed spatiatigrelated logit model: formulation and
application to residential choice modeling, Tramtgon Research, 38B, 147-168.

Bierlaire, M. (2003). BIOGEME: A free package fbetestimation of discrete choice
models , Proceedings of the 3rd Swiss Transpon&iesearch Conference, Ascona,
Switzerland.

Bierlaire, M. (2008). An introduction to BIOGEME Y¥&on 1.6, biogeme.epfl.ch

Booz & Co (Booz Allen Hamilton, 2008). CityRail FeaElasticities, Independent Pricing
and Regulatory TribunalMww.ipart.nsw.gov.au

Bresson, G., Dargay, J.; Madre, J. L. and Pirétt¢2003). The main determinants of the
demand for public transport: a comparative analysEngland and France using shrinkage
estimators. Transportation Research, 37A, 605-627.

Cervero, R. (1990). Transit pricing research. Tpamntion, 17, 117-139.

Dargay, J. and Hanly, M. (1999). Bus Fare ElaggsitESRC Transport Studies Unit,
University College Londonwww.ucl.ac.ul.

Dargay, J. M. and M. Hanly (2002). The Demand focal Bus Services in England.
Journal of Transport Economics and Policy 36, 73-91

De Cea, J.; Fernandez, J.E., and De Grange, L8J20@mbined Models with
Hierarchical Demand Choices : a Multi-Objective fieply Optimization Approach.
Transport Reviews, 28, 415-438.

Fearnley, N. and Bekken, J. T. (2005). Long-Run BrednEffects in Transport: A
Literature Review, Institute of Transport Econon{i€&ll) of the Norwegian Centre for
Transport Research.

Forinash C.V. and Koppelman F.S. (1993). Applicatimd interpretation of nested logit
models of intercity mode choice. Transportationdesh Record, 1413, 98-106.

Goodwin, P. (1992). Review of New Demand Elasgsitiith Special Reference to Short
and Long Run Effects of Price Changes, Journakan3port Economics, 26, 155-171.

Greene, W. (2011). Econometric Analysis, 7th Editierentice Hall.

Holmgren, J. (2007), Meta-analysis of Public Trab&mand, Transportation Research,
41A, 1021-1035.



Jordan, D. (1998). Office of Management and Budgety York City Transit Authority.
Telephone interview.

Kain, J. F. and Liu, Z. (1999). Secrets of Succassessing the large increases in transit
ridership achieved by Houston and San Diego trgmsitiders. Transportation Research,
33A, 601-624.

Litman, T. (2004). Transit price elasticities antbss-elasticities. Journal of Public
Transportation, 7, 37-58.

Litman, T. (2011). Transportation Elasticities: H&wices and Other Factors Affect Travel
Behavior. Victoria Transport Policy Institutettp://www.vtpi.org/elasticities.pdf

Luk, J. and Hepburn, S. (1993). New Review of Aalgn Travel Demand Elasticities,
Australian Road Research Board (Victoria).

Mayeres, |. (2000). Efficiency Effects of TranspBudilicies in the Presence of Externalities
and Distortionary Taxes, Journal of Transport Ecoies and Policy, 34, 233-260.

Ortuzar, J. de D. and Willumsen, L.G. (2011). MdidglTransport. 4th Edition, John Wiley
and Sons, Chichester, England.

Oum, T. H.; Waters, W.G. and Yong, J. S. (1992nh¢apts of Price Elasticities of Transport
Demand and Recent Empirical Estimates, Journatarigport Economics, 26, 139-154.

OXERA (2003). The demand fopr public transport:itiBn bus market elastcities. Oxford,
Mimeo OXERA.

Paulley, N.; Mackett, R.; Wardman, M.; Titheridde¢, and White, P. (2004). Factors
Affecting the Demand for Public Transport, Assdoiatfor European Transport; at
www.etcproceedings.org/paper/download/1179

Paulley, N., Balcombe, R., Mackett, R., Titheridge,Preston, J.M., Wardman, M.R., Shires,
J.D. and White, P. (2006). The demand for publagport: The effects of fares, quality of
service, income and car ownership. Transport Poli8y 295-306.

Pham, L and Linsalata, J. (1991). Effects of Fdrarges on Bus Ridership, American Public
Transit Association (www.apta.com).

Pratt, R. H. (1999). Traveler Response to Tranagiort System Changes, Interim
Handbook, TCRP Web Document 12, DOT-FH-11-9579iddat Academy of Science.

Romilly, P. (2001). Subsidy and Local Bus Serviedyulation in Britain: A Re-
evaluation.” Journal of Transport Economics anddyp85, 161-193.

Small, K. A. and Winston, C. (1999). The Demand Tfaransportation: Models and
Applications, in Essays in Transportation Economérsl Policy, Brookings Institute
(www.brooking.ed




Taplin, J. H. E.; Hensher, D. A. and Smith, B. (Qp%reserving the Symmetry of Estimated
Commuter Travel Elasticities. Transportation ReseaB3B, 215-232

Taylor, B. D.; Miller, D.; Iseki, H. and Fink, C2009). Nature and/or Nurture? Analyzing the
Determinants of Transit Ridership Across US Urbadi&reas, Transportation Research, 43A,
60-77.

TRACE (1999), Elasticity Handbook: Elasticities ferototypical Contexts, Prepared for the
European Commission, Directorate-General for TrarisgContract No: RO-97-SC.2035,
(www.hcg.nl/projects/trace/tracel.htm

Train, K. (2003). Discrete Choice Methods with Slation, Cambridge University Press.

TRL (2004), The Demand for Public Transit: A PreatiGuide, Transportation Research
Laboratory, Report TRL 593uvw.trl.co.ul).

Walker, J. (2002). The Mixed Logit (or Logit Kerpd&llodel: Dispelling Misconceptions of
Identification, Transportation Research Record 5] 8&-98.

Wallis, I. (2004). Review of Passenger TransporninBed Elasticities, Report 248,
Transfund New Zealandvivw.nzta.govt.ny.

Wang, J. (2011). Appraisal Of Factors Influencindplt Transport Patronage, Research
Report 434, NZ Transport Agenoyww.nzta.govt.ny

Wardman, M. and Shires, J. (2003). Review Of Faiasticities In Great Britain, Working
Paper 573, Institute for Transport Studies, Univxeis Leeds.

Williams, H.C.W.L. (1977). On the formation of tel\demand models and economic
evaluation measures of user benefit. EnvironmeatRianning 9A, 285-344.

Wooldridge, J. (2002). Econometric Analysis of Gr8gction and Panel Data. The MIT Press.

APPENDIX
Calculation of confidence intervals
The confidence intervals for the various elasesitestimated by the three discrete choice

models discussed in this study for the time pefiath to 8am were calculated using the
following formula:

x ita/z,n—ls /\/E (Al)

wheren is the number of sample observatiorss the average of the elasticity estimates and
S is the standard deviation. The confidence intsrealculated with a 95% significance level
are summarized in Table A.1.



Table A.1

Elasticity confidence intervals for discrete choicenodels

Trip alternative Multinomial logit Hierarchical logit ~ Mixed logit
Metro off-peak (own) [-0.216;-0.17] [-0.204;-0.142] [-0.268;-0.198]
Metro peak (own) [-0.639;-0.537] [-0.648;-0.502] [-0.599;-0.515]
Bus off-peak (own) [-0.377;-0.303] [-0.346;-0.260] [-0.375;-0.323]
Bus peak (own) [-0.332;-0.236] [-0.369;-0.259] [-0.301;-0.236]
Metro off-peak, Metro peak (cross) [0.152;0.166] [0.184;0.210] [0.129;0.153]
Metro off-peak, bus off-peak (cross) [0.105;0.123] [0.132;0.152] [0.111;0.157]
Metro peak, bus peak (cross) [0.221;0.279] [0.170;0.222] [0.208;0.264]

The differences between these intervals are noifignt, as can be confirmed by estimating
the intervals for the elasticity differences betwége models using the following formula:

(A.2)

wherev =

] (A.3)

The intervals derived by the formula are shownabl€& A.2 for the differences between the
multinomial logit and hierarchical logit models dmetween the multinomial logit and mixed
logit models. All of the estimated intervals (%26 significance level) include 0, meaning
there is no statistical evidence the elasticitistimed by the 3 models are different.

Table A.2
Elasticity confidence intervals between the discretchoice models.

Multinomial logit -  Multinomial logit —
hierarchical logit mixed logit

Trip alternative

Metro off-peak (own) [-0.142;0.102] [-0.087;0.167]
Metro peak (own) [-0.199;0.173] [-0.192;0.130]
Bus off-peak (own) [-0.186;0.112] [-0.123;0.141]
Bus peak (own) [-0.139;0.199] [-0.165;0.133]
Metro off-peak, Metro peak (cross) [-0.111;0.035] [-0.055;0.091]

Metro off-peak, bus off-peak (cross) [-0.101;0.044]
Metro peak, bus peak (cross) [-0.069;0.177]

[-0.114;0.074]
[-0.112;0.140]




