
A MICROECONOMIC INTERPRETATION FOR THE SYSTEM OPTIM AL 
TRAFFIC ASSIGNMENT PROBLEM WITH NONADDITIVE PATH CO ST 

 
 

Louis de Grange 
Department of Industrial Engineering, Diego Portales University, Santiago, Chile.  

Telephone: (56-2) 676-2400; e-mail: louis.degrange@udp.cl 
 

Juan Carlos Muñoz 
Department of Transport Engineering and Logistics, Pontificia Universidad Católica de 

Chile, Telephone: (56-2) 354 4270; e-mail: jcm@ing.puc.cl 
 

Rodrigo Troncoso 
Facultad de Gobierno, Universidad del Desarrollo, Santiago de Chile 

Telephone: (56-2 ) 377-4817; e-mail: rtroncoso@lyd.org 
 
 
 

ABSTRACT 
 
 
 
Using a Bergson-Samuelson welfare function we outline a microeconomic interpretation of the 
effects of the nonlinearity in the time/cost relationship for travelers in a congested transport 
network. It is demonstrated that a marginal cost traffic flow assignment following Wardrop’s 
second principle, although it minimizes the total cost of a transport network, may reduce social 
welfare compared to the market equilibrium assignment based on Wardrop’s first principle. A 
welfare-maximizing assignment model is presented and used to show that if the travellers’ 
utility functions are linear, the assignment that maximizes social welfare will be the same as 
the assignment that minimizes total network cost, but if users’ utility functions are non-linear 
(reflecting the traditional non-satiation and diminishing marginal utility axioms), the two 
assignments will be different. It is further shown that the effects of this non-linearity are such 
that a welfare-maximizing assignment will meet with less user resistance than a minimum total 
network cost assignment.  
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1. INTRODUCTION 
 
For decades, Wardrop’s second principle (Wardrop, 1952) has been considered the paradigm 
that should govern vehicle flow patterns in a congested road network whenever the goal is an 
efficient solution in terms of network users’ total aggregate cost or trip time. Since this 
approach assigns vehicles in a such a way as to minimize total network cost, it is to be 
preferred to the market or user equilibrium approach, expressed as Wardrop’s first principle 
(Wardrop, 1952), in which each user chooses a route independently of the others in order to 
minimize his or her individual cost. In traffic assignments following the second principle, 
regarded as socially optimal, drivers cooperate with one other and in certain cases sacrifice 
individual benefit in order to reduce total network cost or trip time. Note that under both 
approaches, assignment is based on the costs network users face rather than the welfare they 
obtain. 
 
In Bell and Iida (1997) it was demonstrated that if each traveller unilaterally chooses the route 
that maximizes his or her individual utility function independently of all other users, the result 
will be a market equilibrium based on Wardrop’s first principle. In other words, maximizing 
individual utility produces the same market equilibrium as minimizing individual cost. 
However, this equivalence is not necessarily satisfied in a centrally planned assignment that 
minimizes total network cost as opposed to one that maximizes social welfare.  
 
In this paper, we use a microeconomic framework to describe situations where a marginal cost 
assignment may reduce social welfare compared to a market equilibrium assignment. It will be 
demonstrated that if travellers have standard utility functions (increasing and concave in 
consumption), an assignment based on Wardrop’s second principle may generate a reduction 
in social welfare even though total network costs are lower. The basis for the proof is that 
moving from a market equilibrium to a minimum total cost assignment implies a reassignment 
of resources that will make some travellers better off but others worse off. If we define social 
welfare as the sum of the individual utilities (Bergson, 1938; Samuelson, 1956; Boadway and 
Bruce, 1984), the non-linearity of the latter due to the non-satiation and diminishing marginal 
utility axioms may result in a welfare loss to those made worse off that is greater than the 
welfare gain to those made better off. In other words, although total travel time is shorter under 
Wardrop’s second principle, total welfare for the travellers as a whole might be reduced. 
 
Non-additivity between costs and routes in arcs has been studied previously. Gabriel and 
Bernstein (1997) formulated a traffic equilibrium model relaxing the assumption that the cost 
of the routes is the linear sum of the costs of the arcs that compose it, i.e. arches and costs are 
non additive within a route, generating different traffic equilibrium. This approach is extended 
to the optimal system problem, but it omits a microeconomic interpretation based on welfare 
economics. A similar approach was developed by Larsson et al. (2002). However, unlike 
Gabriel and Bernstein (1997), where the route cost function is based on “money”, in the 
formulation of Larsson et al. (2002), the route cost is expressed in terms of time. Lo and Chen 
(2000), Han and Lo (2004) and Agdeppa et al. (2007) have developed algorithms to solve this 
problem. 
 
We use a similar framework as in Gabriel and Bernstein (1997), but we develop and interpret 
the model from a microeconomic perspective, using tools from the consumer and welfare 
theories. 
 



As defined by Easa (1991), traffic assignment is “the process of allocating a set of present or 
future trip interchanges, known as origin-destination (OD) demands, to a specified 
transportation network.” The results of traffic assignments are an essential consideration in 
many planning and transport system design processes such as infrastructure project scenario 
evaluation, environmental impact analysis and highway design and pricing. The criteria for 
making these assignments will influence the decisions of the transport authorities and planners 
and in turn impact the system users’ welfare, which should be the ultimate objective of the 
central planning exercise.  
 
Due to its simplicity, traffic assignment based on Wardrop’s second principle has been the 
principal aim of many methodologies for the analysis of issues such as road pricing (Arnott  
and Small, 1994; Button and Verhoef, 1998; Yang and Meng, 2002; Verhoef, 2002; Shepherd 
and Sumalee, 2004; Santos, 2004; Yanga et al., 2010), transport network design and bi-level 
optimization problems (Marcotte, 1983; Newbery, 1989; Yang and Bell, 1998; Brotcorne et 
al., 2001; Mun et al., 2003; Koh et al., 2009), transport market regulation (Smith, 1979; Small, 
1992; Small and Gómez-Ibáñez, 1998; Parry, 2002). 
 
The remainder of this paper is organized as follows. Section 2 introduces a simple model of a 
small road network that provides a graphical explanation of the social welfare loss incurred by 
changing from a market equilibrium to a marginal cost or minimum total cost assignment. 
Section 3 formulates an equivalent optimization problem for traffic assignment based on 
maximizing social welfare à la Bergson-Samuelson instead of minimizing total cost, analyses 
the problem’s optimality conditions and compares them to those for Wardrop’s second 
principle. Section 4 we present some properties for the linear cost functions. Section 5 
summarizes the study’s findings and presents the conclusions. 
 
 
2. A SIMPLE ROAD NETWORK MODEL 
 
2.1 Description of network and its equilibrium 
  
Consider the simple example in Figure 1, in which homogeneous (i.e., identical) travellers 
with linear cost functions are assigned to a road network with a single origin-destination (OD) 
pair and just two alternative routes or arcs. 
 

Figure 1 
Simple road network 
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As can be seen in the figure, the total flow of travellers between origin O and destination D is 
F, where fa + fb = F. The average cost of each arc is linear in own flow. The parameters αa and 
αb are the free-flow costs of their respective arcs while βa and βb are the marginal effects of the 
arcs’ respective flows on individual arc cost.  
 
Network equilibrium according to Wardrop’s first principle (or the traffic equilibrium) is 
obtained by equating the average costs of the two arcs and adding the flow conservation 
constraint as follows (Beckmann et al., 1956):  
 

( ) ( )a a b b a a a b b bc f c f f fα β α β= → + = +                 (1) 

 

a bf f F+ =                           (2) 

 
Assuming that in equilibrium, both routes have traffic flow (i.e., excluding border solutions), 
the solution to problem (1)-(2) is 
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b af F f= −                (3) 

 
By contrast, a traffic assignment following Wardrop’s second principle, based on minimization 
of cost over the entire network, is derived by equating marginal costs of the arcs subject to the 
flow conservation constraint: 
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a bf f F+ =                           (5) 

 
Assuming positive flows, the solution of problem (4)-(5) is  
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Solution (6) generates total network costs below those of solution (3), and is therefore the 
optimal network assignment. 
 
2.2 Travellers’ utility functions and the social welfare function 
 
Assume that each traveller i on the network has a utility function ( )iU g , where gi is the 

amount of a good consumed. The functions are increasing (non-satiation axiom) at a 
decreasing rate in consumption of the good (diminishing marginal utility axiom). Thus, 
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For the study of flow assignment we also assume that time is the only good. We therefore 
define i i ig t c= − , where ti is the total time available to individual i (e.g., 24 hours per day) and 

ci is the individual’s travel time. This implies that gi is the individual’s free time. 
 
The social welfare for all travellers collectively as a function of the free time a ag t c= −  and 

b bg t c= −  of the individuals using arcs a  and b respectively in Figure 1 can be represented 

graphically in terms of iso-welfare curves (Samuelson, 1956). Since the network model 
assumes homogeneous individuals, the utility of travellers on arc a will be ( )a aU U g=  and 

that of travellers on arc b will be ( )b bU U g= . 

 
As explained in the Introduction, if each traveller unilaterally chooses a network route so as to 
maximize individual utility, then together they will generate the same market equilibrium as 
would the minimization of individual cost, but this equivalence will not necessarily be 
maintained by a centrally planned traffic assignment. In other words, minimization of total 
network costs may lead to different results than those obtained by maximizing social welfare 
based on individual utilities. 
 
To analyze this point in greater depth, consider the following social welfare function of the 
type described by Bergson (1938), Samuelson (1956) and Boadway and Bruce (1984): 
 

( )1 2
1

, ,...,
n

n i i
i

W U U U Uλ
=

=∑                     (7) 

 
where W is social welfare, Ui is the utility of individual i and λi is the relative importance of 
each individual.  
 
If we assume that all individuals are equally important ( )1,i iλ = ∀ , then, still using Figure 1 as 

our example, we define the following social welfare function: 
 

( ) ( )m m a a b b a a b b
m

W f U f U g f U g f U f U= = ⋅ + ⋅ = ⋅ + ⋅∑            (8) 

 
This function can be plotted as iso-welfare curves in a coordinate space whose axes are the 
variables ga and gb. Since traffic flows fa and fb depend on costs ca and cb, respectively, and 

i ig t c= − , flows fa and fb can be expressed as functions of ga and gb, that is, a a
a

a

t g
f

α
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We can therefore rewrite (8) as 
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The social iso-welfare curve for a given value of W satisfies the condition 
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2.3 Comparative statics of equilibria 
 
In traffic equilibrium (Wardrop’s first principle), ca = cb  and therefore 
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The set of feasible solutions for the two route flows is determined by fa + fb = F. Since 
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The traffic equilibrium is thus given by the intersection of the straight lines defined by (11) and 
¡Error! No se encuentra el origen de la referencia.. In Figure 2 this equilibrium is shown as 
point A on iso-welfare curve WA.  
  
The optimal assignment that minimizes total network costs (Wardrop’s second principle) is 

obtained when 
( )( ) ( )( )a a a b b b

a b

c f f c f f

f f

∂ ⋅ ∂ ⋅
=

∂ ∂
, that is, when the marginal costs of the two 

routes as defined in (4) are equal. We then get the following relationship between the 
individual users’ free time: 
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                       (14) 

 
It follows, therefore, that the intersection of lines (14) and 
¡Error! No se encuentra el origen de la referencia. gives the socially optimal assignment for 
the network (Wardrop’s second principle).  
 
Note that line (14) is just a parallel shift of line (11). If a bα α> , the shift is rightwards from 

(11); if, on the other hand, a bα α< , the shift would be leftwards. Furthermore, if a bα α= , the 

market equilibrium would coincide with the socially optimal assignment. 
 



Assuming that a bα α> , consider a small shift of straight line (14). In other words, αa is just 

slightly greater than αb. This generates the assignment shown in Figure 2 as point B and 
travellers’ social welfare has increased (WB > WA). 
 
If, however, a bα α< , the shift moves the minimum-cost assignment to point C and social 

welfare decreases (WC < WA). And if we again assumea bα α>  but that αa is much greater than 

αb, the minimum-cost assignment at point D as shown in Figure 3 is once more at a lower 
social welfare level (WD < WA). 
 

Figure 2 
Social welfare in a marginal cost assignment (Wardrop’s second principle) 
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Figure 3 

Social welfare in a marginal cost assignment (Wardrop’s second principle) 
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2.4 Assignment maximizing social welfare 
  
From (10) we have 
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Since the condition expressed by ¡Error! No se encuentra el origen de la referencia. must be 
satisfied, the optimality condition for obtaining the flows that maximize social welfare is  
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From (16) and ¡Error! No se encuentra el origen de la referencia. we obtain the solutions 

*
ag  and *

bg  that maximize social welfare and from which we can directly derive the 

corresponding welfare-maximizing traffic flows *af  and *
bf . This solution is shown as point E 

in Figure 4 (not to be confused with point B in Figure 2). 
 

Figure 4 
Assignment maximizing social welfare 
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In order that a traffic equilibrium in this example be the same as a social-welfare maximizing 
assignment (that is, point E in Figure 4 coinciding with point A), the optimality condition (16) 
and a bg g= must hold simultaneously. A numerical example for the network in in Figure 1 

comparing the assignment that minimizes total time with the one maximizing total welfare is 
set out in Appendix A. 



 
If the individual travellers have linear utility functions, such as one taking the form 

i iU gη ρ= +  (ρ > 0), the optimality condition (16) becomes 
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As can be observed, (19) is the same as (14), the marginal cost assignment that minimizes the 
total network cost. Therefore, if travellers have linear utility functions, the minimum cost 
network assignment is equivalent to the assignment that maximizes social welfare. 
 
 
3. COMPARISON OF COST MINIMIZING AND WELFARE MAXIMI ZING 
ASSIGNMENT  
 
In this section, we formulate traffic assignment problems based on the minimization of total 
cost and on maximization of welfare and compare their respective optimality conditions. 
 
3.1 Total cost minimization problem 
  
The formulation of the minimum total cost problem uses the nomenclature set out in Nagurney 
(2000). Assuming the cost of an arc ca is positive, increases with flow and is a function only of 
its own flow (fa), the problem is specified as follows: 
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ca: cost of arc a. 
fa: flow in arc a. 

apδ : parameter equal to 1 if arc a belongs to route p , otherwise 0. 
w
ph : flow on route p between origin-destination pair w. 

Tw: number of trips (fixed demand) between origin-destination pair w. 



Pw: set of routes between origin-destination pair w. 
W: set of origin-destination pairs in network.  
A: set of arcs in network.  
 
The total cost of route p is defined as ( )p a a ap

a A

C c f δ
∈

=∑ . The objective function of 

problem (20) can then be written as a function of route costs (Nagurney, 2000): 
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Expression (24) explicitly assumes that the value of time is constant (and obviously positive), 
allowing equivalence between the objective of minimizing the total network time and the 
objective of minimizing the total monetary cost of the network. This assumption is not present 
when using the criterion of maximizing social welfare as outlined in section 3.2 
 
The first-order optimality condition of (24) is  
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 denotes the marginal cost of an additional unit of flow on route p 

between OD pair w. The parameters µw are the Lagrange multipliers for constraints (21), and 
represent the increase in total system cost C if demand between OD pair w increases by a unit. 

Thus, 0w
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T
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The left-hand side of optimality condition (25) can be rewritten as 
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∑  represents the cost externality generated on route p when route flow 

increases. The assignment defined by (25) and (27) thus equalizes the marginal costs 
(including the associated externalities) of all routes used for each OD pair. 
 



3.2 Social welfare maximization problem  
  
The formulation of the problem based on generating maximum social welfare follows the 
criteria developed by Bergson (1938), Samuelson (1956) and Boadway and Bruce (1984). The 
problem is specified as follows: 
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where pU  is the utility perceived by users of route p between OD pair w, and ˆ w w
p p pU U h=   is 

the total utility or welfare of travellers on route p between OD pair w. Since users are assumed 

to be homogeneous, the individual utility functions can be written as ( )p pU U g= . 

 
The optimality condition for problem (28) is 
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 denotes the marginal utility of the social welfare of travellers on 

route p between OD pair w. The parameter γw measures the reduction in total social welfare of 
system W if demand on pair w increases by one unit. The sign of γw depends on the level of 
route congestion. 
 
The optimality conditions for (29) and (25) will in general produce different flow assignments 
along the routes (see example in Section 2). 
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Applying the chain rule to (30), we obtain 
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can be interpreted as the negative of the marginal utility of income. The presence of the term 
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The economic interpretation of the optimality condition (30)-(31) is different from that of (25)-
(27). Whereas the latter simply includes the externalities of the arcs constituting the routes 
taken (independently of the free-flow cost), the former weights the externalities by the 
marginal utility of income. Since we have assumed traditional utility functions subject to the 

non-satiation and diminishing marginal utility axioms, that is, 0p
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2
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routes with higher individual cost in the optimal system assignment will be multiplied by a 
higher marginal utility of free time than routes demanding lower individual times. 
 
We therefore expect that the maximum welfare assignment will reduce flow on the higher 
individual cost routes and increase it on the lower cost ones. In this sense, we may argue that 
assignments based on social welfare maximization à la Bergson-Samuelson will meet less 
resistance on the part of users than those based on Wardrop’s second principle. 
 
As explained in section 3.1, this difference occurs because the problem (24) of minimum total 
cost (criterion that is based on Wardrop's second principle) assumes that the value of time is 
constant, which does not occur in problem (28), since the marginal utility of travel time may 
vary between different origin-destination pairs in the network. 
 
3.3 Weighted total cost minimization problem 
  
It is possible to modify problem (24) such that it considers a varying value of time that 
depends on the cost of route p for different pairs w. Considering a value of time wpφ , we can 

pose the following optimization problem: 
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where w
pφ  is a weight for the value of time and satisfies 0, ,

w
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p
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∂
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condition is a consequence of the axiom of decreasing marginal utility of consumption of 

goods (leisure in this case). Then, it follows that 0
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p p p

w w
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C
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The first order condition of problema (33) is: 
 



( )ˆ ˆ , 0
ˆ

, 0

w w ww w
p p w pp pw w

p pw w w w
p p p w p

C hC
C

h h h h

φ µφ
φ

µ

∂   = ∀ >∂ ∂ = +    ∂ ∂ ∂ ≤ ∀ =  

ɶ

ɶ
              (34) 

 
where: 
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Replacing w

p p pU Cφ=  we obtain directly: 
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From expressions (31), (34) and (36) it is possible to conclude that it exists a vector of weights 

w
pφ  that allows us to transform the problem of minimizing total costs in and equivalent 

problem of maximizing total welfare. 
 
 
4. SOME PROPERTIES OF THE LINEAR COST FUNCTIONS 
  
4.1 Simple road network with linear costs 
  
For the simple network of Section 2, optimality condition (25) would be expressed as follows: 
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these into (37) we obtain  
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Given that in market equilibrium a bc c= , it will also be true that a bα α= . Therefore, if the 

fixed costs of the alternative routes are equal, the market equilibrium assignment will 
minimize total network time. 
  
4.2 General network with linear costs 
 
The result in 4.1 can be easily generalized to networks with linear costs and the same free-flow 
route times from optimality condition (25), which states that 
 



( )
ˆ ˆ

,   , , 0, 0
w w
p q w w

w p qw w
p q

C C
p q P h h

h h

∂ ∂
= ∀ ∈ > >

∂ ∂
                (39) 

 

Since 
( )ˆ w

p a a
apw

a Ap a

C c f

h f
δ

∈

∂ ∂ ⋅
=

∂ ∂∑  we get 

 

( )
ˆ w

p a a
a a ap a ap a apw

a A a A a Ap a a

C c c
c f c f

h f f
δ δ δ

∈ ∈ ∈

∂    ∂ ∂= + = +   ∂ ∂ ∂   
∑ ∑ ∑            (40) 

 

Given that a
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−= , (40) reduces to 
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Now imposing optimality condition (39), we obtain 
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Thus, if the free-flow costs of the routes used between OD pair w are the same 
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We have thus demonstrated that if the arc cost functions are linear, the market equilibrium 
assignment (Wardrop’s first principle) is consistent with a marginal cost assignment that 
minimizes total system cost (Wardrop’s second principle) as long as the free-flow costs of the 
routes used are all the same. The optimality conditions (29) and (25) will be equivalent 
regardless of the type of arc cost functions as long as the users have linear utility functions. 
Indeed, if p pU gη ρ= +  (ρ > 0) and all users are equal with the same amount of free time, it is 

easily demonstrated that  
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5. CONCLUSIONS 
 
Many urban transport planning processes have developed methodologies for optimizing 
resource use based on criteria such as Wardrop’s second principle, according to which 
transport networks are designed or traffic flows assigned so as to minimize travellers’ total 
cost. However, the results thus obtained may differ if instead of minimizing cost, the objective 
is to maximize social welfare. 
 
Following a framework similar to that of Gabriel and Bernstein (1997), this paper 
demonstrated that if we define a social welfare function based on the sum of individual 
traveller utilities à la Bergson-Samuelson, market equilibrium in a transport network as 
defined by Wardrop’s first principle may generate a social welfare level higher than that 
achieved by a traffic assignment based on Wardrop’s second principle. In other words, 
minimizing total network costs may result in lower social welfare. 
 
The minimization of total costs for a given trip can lead to users being assigned to routes 
whose cost to them individually is higher than alternative routes due to the former routes’ 
relatively lower marginal cost for the network as a whole. Because of declining marginal 
utility, the impact on these users’ utility per unit of time is greater than that experienced by 
those assigned to routes with shorter trip times. Since marginal utility is key to the maximum 
welfare assignment, this assignment reduces the cost (and welfare) difference between users 
made better off and those made worse off. Thus, a Bergson-Samuelson welfare-maximizing 
assignment should meet with less resistance from users than one following Wardrop’s second 
principle that minimizes total system cost. If, however, the individual travellers’ utility 
functions are linear, the second Wardrop principle assignment will coincide with the social-
welfare maximizing assignment for any route arc cost function. 
 
Finally, it was demonstrated that if the route arcs have linear cost functions that depend on 
own flow, and if the alternative routes all have the same free-flow costs, the market 
equilibrium assignment will be the same as the one that minimizes total system cost. In these 
cases, the market will assign resources optimally even under congestion. 
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APPENDIX 
  
An analytical example for a simple network 
 
Assume that in the simple network in Figure 1, total fixed demand 100a bf f+ =  and the cost 

functions for each arc are  
 



( ) 50a a ac f f= +   ,  ( ) 120 5b b bc f f= +               (48) 

 
The market equilibrium point (Wardrop’s first principle) is then 
      

* 95af =  ,  
* 5bf =  , ( ) ( )* * 145a a b bc f c f= =              (49) 

 
The total cost of the network is ( ) ( )* * * * 14.500a a a b b bc f f c f f⋅ + ⋅ = . If the utility function is 

given by 
( ) ( )1 1

1 1
i i

i

g t c
U

θ θ

θ θ

− −−
= =

− −
where t = 200 and θ = 0.7, the value of the social welfare 

function is ( ) ( )* * * * 1,109.1a a b bU c f U c f⋅ + ⋅ = . 

 
The minimum total cost assignment (Wardrop’s second principle) is 
 

* 89.17af =  ,  
* 10.83bf =  , ( )* 139.17a ac f =  , ( )* 174.17b bc f =       (50) 

 
The total network cost is ( ) ( )* * * * 14,295.8a a a b b bc f f c f f⋅ + ⋅ =  and the value of the welfare 

function is ( ) ( )* * * * 1,115.1a a b bU c f U c f⋅ + ⋅ = . Comparing (49) with (50), we find that in the 

latter case total cost falls by 204.2 units while social welfare rises by 6 units. Thus, in this 
example, moving to a minimum cost assignment also increases social welfare. 
 
If, however, the cost for arc a is ( ) 100a a ac f f= + , the market equilibrium point is then 

 
* 86.7af =  ,  

* 13.3bf =  , ( ) ( )* * 186.7a a b bc f c f= =           (51) 

 
Total network cost is ( ) ( )* * * * 18,666.7a a a b b bc f f c f f⋅ + ⋅ =  and the value of the social welfare 

function is ( ) ( )* * * * 725a a b bU c f U c f⋅ + ⋅ = . 

 
The minimum cost assignment is 
 

* 85af =  ,  
* 15bf =  , ( )* 185a ac f =  , ( )* 195b bc f =           (52) 

 
The total network cost is ( ) ( )* * * * 18,650a a a b b bc f f c f f⋅ + ⋅ =  and the value of the social welfare 

function is ( ) ( )* * * * 719.5a a b bU c f U c f⋅ + ⋅ = . 

 
Comparing (51) and (52) we see that in the latter case, total cost fell by 16.7 units but this time 
social welfare also fell, by 5.5 units. Thus, in this example the minimum total cost assignment 
reduces social welfare. 
 


