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ABSTRACT

Using a Bergson-Samuelson welfare function we rmeiti microeconomic interpretation of the
effects of the nonlinearity in the time/cost redaship for travelers in a congested transport
network. It is demonstrated that a marginal cadtitrflow assignment following Wardrop’s
second principle, although it minimizes the totatof a transport network, may reduce social
welfare compared to the market equilibrium assigmrbased on Wardrop’s first principle. A
welfare-maximizing assignment model is presentatissed to show that if the travellers’
utility functions are linear, the assignment thatxmizes social welfare will be the same as
the assignment that minimizes total network cadgtjftusers’ utility functions are non-linear
(reflecting the traditional non-satiation and dimimng marginal utility axioms), the two
assignments will be different. It is further shothiat the effects of this non-linearity are such
that a welfare-maximizing assignment will meet viés user resistance than a minimum total
network cost assignment.
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1. INTRODUCTION

For decades, Wardrop’s second principle (Wardrep2) has been considered the paradigm
that should govern vehicle flow patterns in a catge road network whenever the goal is an
efficient solution in terms of network users’ totjgregate cost or trip time. Since this
approach assigns vehicles in a such a way as tonma total network cost, it is to be
preferred to the market or user equilibrium apphnoaspressed as Wardrop’s first principle
(Wardrop, 1952), in which each user chooses a iadependently of the others in order to
minimize his or her individual cost. In traffic &gsments following the second principle,
regarded as socially optimal, drivers cooperaté wite other and in certain cases sacrifice
individual benefit in order to reduce total netwast or trip time. Note that under both
approaches, assignment is based on the costs katgens face rather than the welfare they
obtain.

In Bell and lida (1997) it was demonstrated thagith traveller unilaterally chooses the route
that maximizes his or her individual utility funati independently of all other users, the result
will be a market equilibrium based on Wardrop’sffiprinciple. In other words, maximizing
individual utility produces the same market equilim as minimizing individual cost.
However, this equivalence is not necessarily satish a centrally planned assignment that
minimizes total network cost as opposed to onerttatimizes social welfare.

In this paper, we use a microeconomic framewodegzxribe situations where a marginal cost
assignment may reduce social welfare comparediarket equilibrium assignment. It will be
demonstrated that if travellers have standardtyfilinctions (increasing and concave in
consumption), an assignment based on Wardrop’sidgminciple may generate a reduction
in social welfare even though total network coseslawer. The basis for the proof is that
moving from a market equilibrium to a minimum tatakt assignment implies a reassignment
of resources that will make some travellers bettigbut others worse off. If we define social
welfare as the sum of the individual utilities (Beon, 1938; Samuelson, 1956; Boadway and
Bruce, 1984), the non-linearity of the latter doighte non-satiation and diminishing marginal
utility axioms may result in a welfare loss to taarade worse off that is greater than the
welfare gain to those made better off. In otherdspalthough total travel time is shorter under
Wardrop’s second principle, total welfare for thevellers as a whole might be reduced.

Non-additivity between costs and routes in arcsbeen studied previously. Gabriel and
Bernstein (1997) formulated a traffic equilibriunodel relaxing the assumption that the cost
of the routes is the linear sum of the costs ofties that compose it, i.e. arches and costs are
non additive within a route, generating differeaffic equilibrium. This approach is extended
to the optimal system problem, but it omits a méo@nomic interpretation based on welfare
economics. A similar approach was developed bydoarset al. (2002). However, unlike
Gabriel and Bernstein (1997), where the route @asttion is based on “money”, in the
formulation of Larsson et al. (2002), the routeté®@expressed in terms of time. Lo and Chen
(2000), Han and Lo (2004) and Agdeppa et al. (26avg developed algorithms to solve this
problem.

We use a similar framework as in Gabriel and BeingtLl997), but we develop and interpret
the model from a microeconomic perspective, usaajstfrom the consumer and welfare
theories.



As defined by Easa (1991), traffic assignmenthe ‘process of allocating a set of present or
future trip interchanges, known as origin-destimatiOD) demands, to a specified
transportation network.” The results of traffic igssnents are an essential consideration in
many planning and transport system design processésas infrastructure project scenario
evaluation, environmental impact analysis and hmhadesign and pricing. The criteria for
making these assignments will influence the deossad the transport authorities and planners
and in turn impact the system users’ welfare, wisicbuld be the ultimate objective of the
central planning exercise.

Due to its simplicity, traffic assignment basedWardrop’s second principle has been the
principal aim of many methodologies for the anaysiissues such as road pricing (Arnott
and Small, 1994; Button and Verhoef, 1998; YangMedg, 2002; Verhoef, 2002; Shepherd
and Sumalee, 2004; Santos, 2004; Yaagh, 2010), transport network design and bi-level
optimization problems (Marcotte, 1983; Newbery, 998ang and Bell, 1998; Brotcorme
al., 2001; Muretal., 2003; Kohet al., 2009), transport market regulation (Smith, 1i8all,
1992; Small and Gomez-Ibafnez, 1998; Parry, 2002).

The remainder of this paper is organized as foll@&estion 2 introduces a simple model of a
small road network that provides a graphical exaismm of the social welfare loss incurred by
changing from a market equilibrium to a marginastcor minimum total cost assignment.
Section 3 formulates an equivalent optimizationbpem for traffic assignment based on
maximizing social welfare a la Bergson-Samuelsstead of minimizing total cost, analyses
the problem’s optimality conditions and comparesnthto those for Wardrop’s second
principle. Section 4 we present some propertiesttier linear cost functions. Section 5
summarizes the study’s findings and presents thelgsions.

2. A SIMPLE ROAD NETWORK MODEL
2.1 Description of network and its equilibrium

Consider the simple example in Figure 1, in whioimbgeneous (i.e., identical) travellers
with linear cost functions are assigned to a ragdark with a single origin-destination (OD)
pair and just two alternative routes or arcs.

Figure 1
Simple road network

Calfa) = aa + ﬂafa
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colfy) = ay + Bofs




As can be seen in the figure, the total flow ovétéers between origin O and destination D is
F, wheref, +f, =F. The average cost of each arc is linear in own.flthe parameters, and

ay are the free-flow costs of their respective arbgens, andf, are the marginal effects of the
arcs’ respective flows on individual arc cost.

Network equilibrium according to Wardrop’s firstipeiple (or the traffic equilibrium) is

obtained by equating the average costs of the te® @and adding the flow conservation
constraint as follows (Beckmamtal., 1956):

Ca(fa):Cb(fb)_’aa+18afa:ab+18bfb (1)
fo+f,=F (2)

Assuming that in equilibrium, both routes haveficdfow (i.e., excluding border solutions),
the solution to problem (1)-(2) is

Fr = (ab_aa)+,3b|:

a , f =F-f 3)
ﬁa+ﬁb ’

By contrast, a traffic assignment following Wardexgecond principle, based on minimization
of cost over the entire network, is derived by emgemarginal costs of the arcs subject to the
flow conservation constraint:

LA g

f+f =F ®)
Assuming positive flows, the solution of problen)-(8) is

. _(a,-a,)+2BF
f, =
Z(ﬁa +ﬁb)

. f=F-f (6)

Solution (6) generates total network costs belowsé¢hof solution (3), and is therefore the
optimal network assignment.

2.2 Travellers’ utility functions and the social wédfare function

Assume that each travelleon the network has a utility functiod (gi), whereg; is the

amount of a good consumed. The functions are isgrga(non-satiation axiom) at a
decreasing rate in consumption of the good (dirhingg marginal utility axiom). Thus,

2]
6—U>0 andag

ag; ag;

<0.




For the study of flow assignment we also assumktitine is the only good. We therefore
defineg, =t —c, wherg; is the total time available to individugk.g., 24 hours per day) and

G is the individual's travel time. This implies tigtis the individual’s free time.

The social welfare for all travellers collectively a function of the free timg, =t -c, and

g, =t —¢, of the individuals using are@s andb respectively in Figure 1 can be represented
graphically in terms of iso-welfare curves (Samae|s1956). Since the network model
assumes homogeneous individuals, the utility ofeitars on ar@ will be U, =U (g,) and

that of travellers on afdzwill be U, =U (g,) .

As explained in the Introduction, if each travellerlaterally chooses a network route so as to
maximize individual utility, then together they gienerate the same market equilibrium as
would the minimization of individual cost, but thegjuivalence will not necessarily be
maintained by a centrally planned traffic assigninenother words, minimization of total
network costs may lead to different results thas¢hobtained by maximizing social welfare
based on individual utilities.

To analyze this point in greater depth, considerfthlowing social welfare function of the
type described by Bergson (1938), Samuelson (1&%@Boadway and Bruce (1984):

W(ul,uz,...,un)zZn‘/tui (7)

whereW s social welfarelJ; is the utility of individuall and/; is the relative importance of
each individual.

If we assume that all individuals are equally impnt()li = 1,Di) , then, still using Figure 1 as
our example, we define the following social welféraction:

wW=>fU =fl(g,)+fW(g)=f L, +f L, (8)

This function can be plotted as iso-welfare cuives coordinate space whose axes are the
variablesg, andgy. Since traffic flows, andf, depend on costs andc, respectively, and

g =t-c, flowsf, andf, can be expressed as functiong.gindgs, that is, f, _170,7a,

B.
t-9,-a, .

By

and f, =

We can therefore rewrite (8) as

W:(t_ga_aajua+£t_gb_abjub (9)
B, B

The social iso-welfare curve for a given valud\$atisfies the condition



dw = afaU +%fa dg, + a—fbub+an f, |dg, =0 (10)
0g, 0g, og 0

: b b
2.3 Comparative statics of equilibria

In traffic equilibrium (Wardrop’s first principle}, = ¢, and therefore

9oy (11)

The set of feasible solutions for the two routenvBois determined bfs + f, = F. Since

f,= 178,78, 4pq f, = 176, -a, , the set of feasible solutions can be expressiedrirs of
a b
0. andg, as
B +ﬁbj B B
ga:t(a— _Fﬂa_aa_a == -9 —= (12)
By &) T8
K
B ] dg. __A
g,=K-g,| =2 |, and therefore=2 = -~=2 (13)
b(ﬂb dg, A

The traffic equilibrium is thus given by the intecsion of the straight lines defined by (11) and
iError! No se encuentra el origen de la referencialn Figure 2 this equilibrium is shown as
point A on iso-welfare curveV*.

The optimal assignment that minimizes total netwao&ts (Wardrop’s second principle) is

0(c,(f.) ) _ 0(c, (f,) )

obtained when
of, of,

routes as defined in (4) are equal. We then getfdliewing relationship between the
individual users’ free time:

g, = (uj +g, (14)

, that is, when the marginal costs of the two

It follows, therefore, that the intersection of dm (14) and
iError! No se encuentra el origen de la referenciagives the socially optimal assignment for
the network (Wardrop’s second principle).

Note that line (14) is just a parallel shift ofdif11). If a, > a,, the shift is rightwards from
(11); if, on the other handy, < a,, the shift would be leftwards. Furthermoregif=a, , the
market equilibrium would coincide with the sociatlptimal assignment.



Assuming thatr, > a,, consider a small shift of straight line (14).oftner words g is just

slightly greater tharm,. This generates the assignment shown in Figure oatB and
travellers’ social welfare has increas®#df & W?).

If, however, a, <a,, the shift moves the minimum-cost assignment totpd and social
welfare decrease®\f < W"). And if we again assuneg > a, but thata, is much greater than

ap, the minimum-cost assignment at pdiheas shown in Figure 3 is once more at a lower
social welfare levelP < WH).

Figure 2
Social welfare in a marginal cost assignment (Wardap’s second principle)
9a
K =~ ~
Figure 3
Social welfare in a marginal cost assignment (Wardap’s second principle)
A
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2.4 Assignment maximizing social welfare

From (10) we have

(afbub LU, be
dga - agb agb (15)
dg, of, U+ ou, ;.

09, 09,

Since the condition expressedjByror! No se encuentra el origen de la referencianust be
satisfied, the optimality condition for obtainirtgetflows that maximize social welfare is

[afbubwb fb]
&: agb agb (16)
B, afaua+aua 3

09, 09,

From (16) andError! No se encuentra el origen de la referenciave obtain the solutions
g, and g, that maximize social welfare and from which we ddirectly derive the

corresponding welfare-maximizing traffic flowfs and f, . This solution is shown as pol&t
in Figure 4 (not to be confused with poitn Figure 2).

Figure 4
Assignment maximizing social welfare
9a
K.
I
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In order that a traffic equilibrium in this examfile the same as a social-welfare maximizing
assignment (that is, poiktin Figure 4 coinciding with poirk), the optimality condition (16)
and g, = g, must hold simultaneously. A numerical example far hetwork in in Figure 1
comparing the assignment that minimizes total tvite the one maximizing total welfare is
set out in AppendiA.



If the individual travellers have linear utility fiations, such as one taking the form
U, =n+pg, (0> 0), the optimality condition (16) becomes

(_1(0+pgb)+p(t_gb_”b]]
&: B, B, :&(p(t_gb_ab)_(n"'pgb)) (17)
A (_1(/7+p9a)+p(w‘j] A (p(t-g.-a.)=(7+pg,))

B, B,
p(t-g,-a,)=(7+pg)=p(t-9.—-a.)=(7+p9.) (18)
g, = (%j +0, (19)

As can be observed, (19) is the same as (14), éingimal cost assignment that minimizes the
total network cost. Therefore, if travellers haweér utility functions, the minimum cost
network assignment is equivalent to the assignnmattmaximizes social welfare.

3. COMPARISON OF COST MINIMIZING AND WELFARE MAXIMI  ZING
ASSIGNMENT

In this section, we formulate traffic assignmertdipgems based on the minimization of total
cost and on maximization of welfare and compare tlespective optimality conditions.

3.1 Total cost minimization problem
The formulation of the minimum total cost probleses the nomenclature set out in Nagurney

(2000). Assuming the cost of an agds positive, increases with flow and is a functory of
its own flow {,), the problem is specified as follows:

min C=>c,(f.)f. (20)
{hg} alA
st.:
Sh=T, (4,) OwOwW (21)
pUR,
f,=> > o.hy DaOA (22)
woW pOR,
hy'=0 OpOP,, OwOW (23)

C,. cost of ara.
fa: flow in arca.

9,,: parameter equal to 1 if aacbelongs to routp , otherwise 0.

h;“: flow on routep between origin-destination pau
Tw: number of trips (fixed demand) between origintohedion pairw.



P.: set of routes between origin-destination pair
W: set of origin-destination pairs in network.
A: set of arcs in network.

The total cost of routp is defined a<C Zc 5 . The objective function of

problem (20) can then be written as a functlomute costs (Nagurney, 2000):

m|n c=> > ch ZZ@;V (24)

{ wW pOR, wWoW pOR,

Expression (24) explicitly assumes that the vafua is constant (and obviously positive),
allowing equivalence between the objective of miming the total network time and the
objective of minimizing the total monetary costloé network. This assumption is not present
when using the criterion of maximizing social wedfas outlined in section 3.2

The first-order optimality condition of (24) is

aC" (= u,, OhY >0
: { e 5)
ohy |2 u,, Ohy'=0
Sv o C . "
where ahv‘; = 6hVF”) hy+C, denotes the marginal cost of an additional unftaf on routep

p
between OD paw. The parameters, are the Lagrange multipliers for constraints (2hyg
represent the increase in total system Costlemand between OD pairincreases by a unit.

Thus, u, =§TC>O.

w

The left-hand side of optimality condition (25) da@ rewritten as

oC" aC ac, of

P — T Tppwy a h" +C 26
oY ohv P ahW(Z j <, Lmaf oh" a"J PP (26)
ac ac
P = a hW 27
oh" (a.ZAaf a"j 27)

The term(z g?a apj h; represents the cost externality generated on pouteen route flow

alJA

increases. The assignment defined by (25) and #2179 equalizes the marginal costs
(including the associated externalities) of alltesuused for each OD pair.



3.2 Social welfare maximization problem

The formulation of the problem based on generatimagimum social welfare follows the
criteria developed by Bergson (1938), SamuelsobgLland Boadway and Bruce (1984). The
problem is specified as follows:

max W= Sum=3 S0 8)

ho wWOW pOR, WOW paR,

whereU | is the utility perceived by users of rogteetween OD paiv, andU ' =U h7 is

the total utility or welfare of travellers on roggéetween OD paiv. Since users are assumed
to be homogeneous, the individual utility functi@mas be written abl , =U (gp).

The optimality condition for problem (28) is

U |=y,,0hy >0
{ Yoo T (29)

ohy |<y,.0n'=0

where—2-=—2h¥+U  denotes the marginal utility of the social welfaféravellers on

p
ohy oh}
routep between OD paiwv. The parameter, measures the reduction in total social welfare of

systemW if demand on paiw increases by one unit. The signypfdepends on the level of
route congestion.

The optimality conditions for (29) and (25) will general produce different flow assignments
along the routes (see example in Section 2).

SlnceU Y=U _hY, from (29) we have

p'p?
ou =y,,0n'>0
URTUR (30)
oh) <y,,0hy =0
Applying the chain rule to (30), we obtain
oU, oC =¥,»,0hy >0
—Phv+ YT (31)
ac ohy ° <y,,0hy=0

aupag(@p) =250 o, 0, | s 5+( 5 36, )
oc, om ®af, onv ) * " ac, | S\ o, )|

p



oC U,
The expressior—2h’ = z - oc, h; is the same as (27). The express«a# =-

oh) s f C, agp
can be interpreted as the negative of the margiildy of income. The presence of the term

a

The economic interpretation of the optimality caiaci (30)-(31) is different from that of (25)-
(27). Whereas the latter simply includes the ex#ias of the arcs constituting the routes
taken (independently of the free-flow cost), thenfer weights the externalities by the

marginal utility of income. Since we have assunmaditional utility functions subject to the
2

ouU U
non-satiation and diminishing marginal utility arie, that is,a £>0 and 3 £ <0, the
9p g
routes with higher individual cost in the optimgstem assignment will be multiplied by a
higher marginal utility of free time than routesytending lower individual times.

We therefore expect that the maximum welfare asseym will reduce flow on the higher
individual cost routes and increase it on the loggest ones. In this sense, we may argue that
assignments based on social welfare maximizatianBergson-Samuelson will meet less
resistance on the part of users than those baséhoarop’s second principle.

As explained in section 3.1, this difference octigsause the problem (24) of minimum total
cost (criterion that is based on Wardrop's secoimtiple) assumes that the value of time is
constant, which does not occur in problem (28)esthe marginal utility of travel time may
vary between different origin-destination pairghe network.

3.3 Weighted total cost minimization problem

It is possible to modify problem (24) such thatdansiders a varying value of time that
depends on the cost of roytéor different pairsv. Considering a value of timg’, we can

pose the following optimization problem:

m|n C=> Y gch=>3 gc" (33)

{ WOW pOR, WOW pOR,

9]
where ¢ is a weight for the value of time and satisfgeg”— >0,0w, pdP". This last
p
condition is a consequence of the axiom of deangasiarginal utility of consumption of

aC,
goods (leisure in this case). Then, it follows tlcr.atqfvi?L qlw >0.
oh; GC ahW

The first order condition of problema (33) is:



o(@Cy) . a oC" = f,,0n >0
ke B B et (34)
oh; oh) ohy J|<4,,0hy =0
where:
o(¢S3) og  (ac og )ac
=(Cohy )=+ *h"+C, |=|C,—~+¢’ | —=h'+¢@'C 35
oty (Gt 7 | G VG |7 Cooe, Y fom e+ A (39)
Replacingu , =¢'C we obtain directly:
a|lg'C
ou, _o(¢c,) 0u, C, _ . 94 C, , Cs 6)

p
oh' ~ oh¥ T ac, oh” ~ Pac, oh¥ P ohY

From expressions (31), (34) and (36) it is possimonclude that it exists a vector of weights
@’ that allows us to transform the problem of minimggtotal costs in and equivalent

problem of maximizing total welfare.

4. SOME PROPERTIES OF THE LINEAR COST FUNCTIONS
4.1 Simple road network with linear costs
For the simple network of Section 2, optimality diion (25) would be expressed as follows:

o, a,

af +c.=—2f + 37
of, = % of " & (37)
Sinceﬂzﬁa andg—C°=,6’b and alsof, =%~ %2 and f, =% "% i we then substitute
a b a b
these into (37) we obtain
2c, —a 2c, —a,
| Eita] - B o) (a,-a) 8)
:Ba le

Given that in market equilibriuna, = ¢, it will also be true thatr, = a,. Therefore, if the

fixed costs of the alternative routes are equad, riarket equilibrium assignment will
minimize total network time.

4.2 General network with linear costs

The resultin 4.1 can be easily generalized to aeswvith linear costs and the same free-flow
route times from optimality condition (25), whictates that



_% O(p,q)OR, ,hY >0h' > C (39)
ah;\, - ahqwi plq w1 p )hq
_acy f
Since—2 =Za(ca "")Jap we get
on’ & of,
ac" ac ac
E=%|c,+—=2f |0, =) (cO, )+ afo 40
SR “
: oc, _ c,—a
Given thatafa =p, and f, =—=—2,(40) reduces to

ac _
W:Z(Cadap)+2(ﬁa(caﬂaan5ap] (41)

lo
onY

=2C,-Y (a.0,) (42)

Now imposing optimality condition (39), we obtain

ah;" = ahq\c,]v nd 2Cp _g(aaa-ap) = 2Cq —;(a’ab'aq) (43)

Thus, if the free-flow costs of the routes usedweenh OD pairw are the same

(Z(aa%) = Z(aadaq)j , then from (43) we arrive at

alA alA
C,=C,, O(p,q)dR, ,hy>0h'>C (44)

We have thus demonstrated that if the arc costifume are linear, the market equilibrium
assignment (Wardrop’s first principle) is consistenth a marginal cost assignment that
minimizes total system cost (Wardrop’s second fpieg as long as the free-flow costs of the
routes used are all the same. The optimality camdit(29) and (25) will be equivalent
regardless of the type of arc cost functions ag Emthe users have linear utility functions.

Indeed, ifU, =17+ pg, (0> 0) and all users are equal with the same amdureetime, it is
easily demonstrated that

YU =YY+ pg, )by =0y Yk +pY Y g hy (45)
> YU =Y T, +py > (T-C,)hy (46)



22U =(n+pT) > T, -0 > Chy (47)

Since(7+0T) D T, is constant ang> 0, max>_ > U h¥=minY > C_hy .
w w p w p

5. CONCLUSIONS

Many urban transport planning processes have deseélonethodologies for optimizing
resource use based on criteria such as Wardropandeprinciple, according to which
transport networks are designed or traffic flowsigrsed so as to minimize travellers’ total
cost. However, the results thus obtained may diffastead of minimizing cost, the objective
Is to maximize social welfare.

Following a framework similar to that of Gabriel darBernstein (1997), this paper
demonstrated that if we define a social welfareciom based on the sum of individual
traveller utilities & la Bergson-Samuelson, marmgtilibrium in a transport network as
defined by Wardrop’s first principle may generatsazial welfare level higher than that
achieved by a traffic assignment based on Wardreptond principle. In other words,
minimizing total network costs may result in lovgercial welfare.

The minimization of total costs for a given tripnciead to users being assigned to routes
whose cost to them individually is higher than raétive routes due to the former routes’
relatively lower marginal cost for the network asvhole. Because of declining marginal
utility, the impact on these users’ utility per uof time is greater than that experienced by
those assigned to routes with shorter trip timexeSmarginal utility is key to the maximum
welfare assignment, this assignment reduces thdamd welfare) difference between users
made better off and those made worse off. Thugrgdn-Samuelson welfare-maximizing
assignment should meet with less resistance fr@arsulsan one following Wardrop’s second
principle that minimizes total system cost. If, lewsr, the individual travellers’ utility
functions are linear, the second Wardrop princggdsignment will coincide with the social-
welfare maximizing assignment for any route ard éasction.

Finally, it was demonstrated that if the route drase linear cost functions that depend on
own flow, and if the alternative routes all haves tbame free-flow costs, the market
equilibrium assignment will be the same as thetbaeminimizes total system cost. In these
cases, the market will assign resources optimatyeinder congestion.
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APPENDIX

An analytical example for a simple network

Assume that in the simple network in Figure 1,Ithx@d demandf, + f, =100 and the cost
functions for each arc are



C

a

(f,)=50+f, c, ( f,) =120+ 5f, (48)
The market equilibrium point (Wardrop’s first pripte) is then

fi =95, f, =5 , c(f.)=c(f)=145 (49)

a

The total cost of the network isd( f;)Ef; +cb(f; )Efb =14.50C. If the utility function is

(gi)l—é’ _(t_cl)l—é’
1-6  1-6
function isU (c;)[f* +U (cb)[fb =1,109.1.

a

given byU, = wheret = 200 andd= 0.7, the value of the social welfare

The minimum total cost assignment (Wardrop’s sequnttiple) is

f’ =89.17, fy =10.83, ¢, (f,)=139.17 , ¢(f,)=174.17 (50)

a

The total network cost isa( fa*)[f; +cb( f, )D‘; =14,295.¢ and the value of the welfare
function isU (c;)[f; +U (cb)[fb =1,115.1. Comparing (49) with (50), we find that in the
latter case total cost falls by 204.2 units whieial welfare rises by 6 units. Thus, in this
example, moving to a minimum cost assignment alsceases social welfare.

If, however, the cost for amis c, ( f,) =100+ f,, the market equilibrium point is then

f=86.7 , fy =133 , «¢,(f.)=c(f;)=186.7 (51)

a

Total network cost isa( fa*)Ef; +c, ( f, )D‘; =18,666.7 and the value of the social welfare

function isU (c;)[f; +U (cb)[fb =725.
The minimum cost assignment is

f =85, fy =15, c,(f.)=185 , ¢,(f,)=195 (52)

a

The total network cost isa( f, ) F, + cb( f, ) [f, =18,65C and the value of the social welfare
function isU (c;)[f; +U (cb)[fb =719.5.
Comparing (51) and (52) we see that in the latisectotal cost fell by 16.7 units but this time

social welfare also fell, by 5.5 units. Thus, istixample the minimum total cost assignment
reduces social welfare.



