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ABSTRACT 
Road safety for many decades lies at the centre of the transportation research interest. One 
of the important aspects of the relevant research concerns the prediction of future crash 
propensity and in particular the location and severity of accidents in urban and inter-urban 
road networks. Such information is of significant importance since could support decisions on 
planning and scheduling of road safety resources. While the majority of the existing models 
are aiming either on correlating traffic variables with crash occurrence or modelling crash 
frequencies both in highways as well in urban network links and intersections, in the current 
paper, results from an exploratory analysis are presenting, based on spatially distributed time 
series prediction modelling. The current analysis is based on auto-regressive time-series 
models and in particular in models of Artificial Neural Networks (ANNs). Such models are 
belonging to the Artificial Intelligent class of modelling approaches, which have not widely 
presented in the literature although can be regarded as useful in cases where detailed and 
reliable information of traffic characteristics is not available. Alternative structures of auto-
regressive ANNs have been calibrated and used on a suitable -for such analysis- detailed 
and realistic database, composed of daily records covering almost 6 years from Riyadh, 
capital of the Kingdom of Saudi Arabia. The results are providing evidence on the 
performance of such approaches in predicting spatially distributed time series car crashes. 
 
Keywords: Car Accidents Prediction, Spatially Distributed Time Series, Dynamic 

Autoregressive Artificial Neural Networks 

1. INTRODUCTION 
In developing countries, one of the common indicators stands for the increment of the car 
ownership index and the car usage, due to the amelioration of the private economics and the 
lag of public transportation infrastructure expansions. Additionally to the transport 
infrastructure development delays, problems with driver training have not been avoided. In 
brief, these phenomenon are closely related to road safety issues as have been repeatedly 
reported, leading road safety to be highlighted as among the most significant public safety 
issues for the years to come (UN 2010).  
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For addressing the complex issue of road safety, the available means of contemporary 
technology are expected to contribute significantly and in particular those under the general 
framework of Intelligent Transport Systems (ITSs) and the Smart Infrastructure. Such ‘tools’ 
and methods that have been developed tested and proved in the last decades, providing 
encouraging results. As so, the current paper aims on providing some evidence on the ability 
of “computational intelligent” methods previously tested for other road-traffic paradigms to 
support decisions related to road safety and in particular here some computational 
experience will be offered on the important matter of crash predictions. 

Among the large ‘palette’ of the advanced prediction methods and frameworks available for 
decades now, here some applications of crash predictions based on spatially distributed 
time-series will be presented. Time series can be regarded as a class of models that are 
evidential-based rather than the explanatory-based modeling approaches typically used for 
crash risk prediction purposes, relating operational conditions with risk. Despite that fact, time 
series analysis, if suitably conducted, could be regarded that utilizes all important information 
of parameters affecting crash risk. For example, urban road networks are typically servicing 
commuting trips (both in weekdays as well as in weekends) and as so the potential of such 
models applications can be regarded as a worthwhile prediction practice. Here, an 
exploratory analysis of dynamic prediction mechanisms based on autoregressive models is 
conducted, since auto-regressive models possesses the characteristic that can ‘transmit’ 
augmented past information (as such information is depicted in time-series) into the future. 
The results here come from the analysis of Auto-Regressive Dynamic Neural Networks, 
cardinally due to the fact that these models can handle cases of non-linear and non-
stationary dynamic processes. The application of the proposed prediction mechanism is 
tested over a dataset of weekly crash records from the Riyadh, capital of the Kingdom of 
Saudi Arabia, an area experiencing severe road safety issues for years now accompanying 
the rapid development of the urban space.  

The paper structure starts with a parsimonious review of previous studies and models used 
for predicting car crashes as long as predictors of other road traffic-related characteristics. 
Then, the characteristics of the available dataset are presented, exposing the particularities 
involved in crash data. The selection of the set of dynamic auto-regressive ANNs models that 
could be regarded as possible relevant candidates for time-series analysis of such database 
is presented next, followed by the discussion of these models performance. The final section 
concludes and gives some points of possible further developments in the time series 
predictions of car crashes. 

 

2. CRASH DATA AND PRELIMINARY ANALYSIS 
The prediction of traffic conditions is one the important elements in the deployment of ITSs 
and especially in management and control of road networks. Related to the prediction of car 
crashes the reader may refer to Abdel-Aty and Abdelwahab (2004) and Abdelwahab and 
Abdel-Aty (2004 a&b), where in these studies the value of historical information has been 
highlighted. ITSs technologies have also been used for predicting car crashes (Abdel-Aty et 
al. 2004, Abdel-Aty and Pande, 2005, Abdel-Aty et al. 2008 and Christoforou et al., 2011) 
introducing and augmenting advanced information technologies for predicting crash 
type/severity and location. Focusing in studies in the Kingdom of Saudi Arabia, Al-Gamdi 
(2002 a&b) and Al-Gamdi and Al-Gadhi (2004) utilized advanced computational methods for 
purposes of predicting crash risk in alternative circumstances.  
Despite the fact that in time-series models have not yet used in crash prediction, a large body 
of literature exists on the time-series traffic prediction mechanisms (for a brief review see 
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Stathopoulos et al. 2008, Dimitriou et al. 2008). In this line of research, a major distinction 
exists between the statistical models and those belonging to the Artificial Intelligent class of 
models (for a comprehensive review see Karlaftis and Vlahogianni, 2010). As mentioned in 
the introductory section, for addressing issues of non-stationarity and non-linearity here the 
analytical framework will be based on hybrid Dynamic Artificial Neural Networks (DANNs). 
Before getting into details on the structure of the DANNs used here, the first step will be the 
statistical examination of the crash time series.  
The database of the crash reports used for the current analysis correspond to location-
specific detailed records of all serious crashes (crashes with at least one fatality or injury but 
excluding crashes with property damages only) occurred within the period of March 2004-
December 2011. A depiction of the location and frequency/density of crashes is provided in 
Figure 1, providing a typical picture of the distribution of crashes in urban networks. It can be 
observed in Figure 1 that crashes are mainly concentrated in the city centre and major 
highways and arterials and more sparsely distributed in the city surroundings.  
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Figure 1: Colour coding of the Riyadh’s city area division in three distinctive sectors: two for 

the city's centre (blue and green dots) and one for the surroundings (red dots). 

For the purposes of the current study, the Riyadh city is divided into three distinctive regions: 
two dividing the city’s centre and one covering the surrondings. This division can be broadly 
correspond to the city’s division in patrolling sectors and thus predicted information of future 
crashes is extremely valuable for allocating traffic enforcement units, abulances etc. This 
division (and the relevant colour coding) holds for the rest of the paper. It is noted that the 
simultaneous prediction of the number of crashes per distinctive area leads to a multivariate 
(spatialy distributed) prediction case which can be regarded as challenging from an analytic 
percpective. 
The dataset used for the curent analysis is composed of daily location-specific records of 
each individual crash, augmented in weekly subsets. As expected, the evolution of the all 
variable of car crashes are in this case ‘smoother’, both in the total city’s nombers as well as 
distributed in regions. Those elements can be identified in Figure 2a, where total city’s 
weekly number of accidents (variable name: ‘WeekNo#’) and in Figure 2b where total cars 
involved in crashes per region (variables name: ‘WeekCar#’) for the three distincive regions 
are depicted.  
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Figure 2: Weekly time series of the number of accidents and cars involved (Fig. 7a) and 
weekly spatially distributed (Fig. 2b&c). 

On the overall, it can be observed that car crashes tend to concentrate to the city’s centre 
where the most of heavy traffic is observed, while in the latest months the distribution of all 
crash variables tends to ‘spread’ evenly along the Riyadh area (more-or-less the variables’ 
values for all regions are of the same magnitude). 
The next ster is to identify possible correlations among the datasets composed by the 
alternative time-series. An initial picture can be drawn by the the matrix of correlation 
diagrams. In Figure 3 the correlation diagrams matrix is presented, exposing some 
correlations among variables, an element of value for multivariate analysis and in particular 
for identifying valuable relationships among datasets. The matrix of correlation diagrams are 
followed by a standard variance-covariance and correlation analysis. In Table 1a the 
variance-covariance matrix among variables are further investigated from which can be 
identified the –possibly expeted- covariance between the number of crashes and number of 
cars involved weekly per region, but also some covariances of these variables between 
regions. This is further justified for specific pairs of variables in the correlation table (Table 
1b). 
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Figure 3: Correlation diagram of the spatially distributed time series. 

Table 1: Variance-Covariance and Correlation tables of the weekly crash records. 

156.5323 95.2857 16.9274 84.2496 54.6470 11.2655
95.2857 151.7034 0.3571 55.8090 81.6814 2.6736
16.9274 0.3571 50.8353 8.5287 -0.8847 25.4378
84.2496 55.8090 8.5287 48.7795 32.5921 5.9864
54.6470 81.6814 -0.8847 32.5921 47.0253 1.0085
11.2655 2.6736 25.4378 5.9864 1.0085 13.7437

1.00000 0.61834 0.18976 0.96416 0.63694 0.24288
0.61834 1.00000 0.00407 0.64877 0.96707 0.05855
0.18976 0.00407 1.00000 0.17127 -0.01810 0.96238
0.96416 0.64877 0.17127 1.00000 0.68050 0.23120
0.63694 0.96707 -0.01810 0.68050 1.00000 0.03967
0.24288 0.05855 0.96238 0.23120 0.03967 1.00000

Correlation

Variance-Covariance

 
 
The above evidence among variables is encouraging for justifying spatial correlation of crash 
occurrence. The next step of the analysis correspond to the identification of temporal 
evolution and correlation in the dataset and thus to the crash occurrence phenomenon. For 
investigating this, at first a linear correlation of each variable is estimated, by means of 
calculating the autocorrelation and partial autocorrelation of all variables (Figure 4&5).  
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Figure 4: Autocorrelation and Partial Autocorrelation of weekly time series for the number of 

cars involved in car crashes per region. 
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Figure 5: Autocorrelation and Partial Autocorrelation of weekly time series for the number of 

crashes occurred per region. 

 
In order to investigate cross-correlations among the variables and especially not only linear 
but also possible higher order correlations, here the analysis will be based on examining the 
resulting Andrews plot (Andrews 1972) of the dataset. Andrews plots provide a 
comprehensive mean to depict relevance (if not correlation) in multivariate datasets.  
It is explicitly noted here that cross-correlations are also estimated, exhibiting significant 
temporal cross-correlations but introducing 15 more diagrams are omitted here for brevity. 
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Moreover, the Andrews plots are providing evidence on possible correlations in multivariate 
datasets and since the current datasets corresponds to time series, if Andrews plots are 
revealing possible correlations this spans both to the time as well as to the spatial domain. 
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Figure 6: Andrews plot for the mean values of the spatially distributed time series for 4 

consecutive years (2008-2011). 

In Figure 6, the Andrews plot of the mean value of the each set of the weekly observations 
are plotted for 4 consecutive years (2008-2011), accompanied with the plots of the quartile of 
the mean. As can be observed all lines are following the same pattern and especially those 
of the three last years are closely placed in the diagram. This observation provide evidence 
on the correlation of the multivariate dataset and since the dataset is composed of spatial 
and temporal observations this is an evidence on the correlation of the crash occurrence 
phenomenon, encouraging for performing time series analysis for predicting future crash risk 
in the urban context. 
In the current paper a special paradigm of time series prediction mechanism will be 
developed and tested, namely that of the DANNs following an auto-regressive form with and 
without exogenous stimulus. In the following section, the description and performance of the 
proposed DANN predictor is presented, along with results from test-runs. 
 

3. METHODS 
Artificial Neural Networks have been used extensively in mapping complex input-output 
interrelations, based in their capability to identify patterns within datasets. Since the 
monitoring of traffic networks involves the analysis of extensive datasets (typically time series 
of traffic variables, like volume, occupancy, speed, etc) which are subject to fluctuations 
(especially those coming from urban arterials), ANN have been tested for modeling and 
prediction purposes (for a comprehensive review see Karlaftis and Vlahogianni, 2010).  

Especially when dealing with dynamic and fluctuating datasets suggesting alterations in the 
operational characteristics of the underline system, I suitable model setup refers to regularly 
updated dynamic ANNs. An approach of autoregressive DANNs with error feedback has 
recently proposed by Dimitriou and Hassan (2013) for predicting crashes times series, 
providing interesting insights on the time series-based prediction of such highly stochastic 
datasets. Extending such approaches, in the current paper alternative dynamic network 
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architectures are deployed for predicting the earlier described spatially distributed crash 
dataset, featuring autoregression and moving average characteristics with feedback loops. In 
brief, at Figure 5 the two general classes of the proposed DANNs are presented, where the 
input layer is composed of records from historical time, with a feedback loop without 
exogenous inputs (Figure 7a) and with exogenous inputs (Figure 7b). 
 

 

 

 
 

Figure 7. The Structure of the Proposed Dynamic Autoregressive Artificial Neural Networks 
without exogenous inputs (a) and with exogenous inputs (b). 

For the case of the DAAN without exogenous inputs, the input-output mapping that is 
endeavored is based on the calibration of an ANN, in which the inputs corresponds to d (d is 
termed as time-lag) prior observations of the variables that are subject to projection in order 
to predict the next observation. Here available dataset correspond to three variables, namely, 
the weekly number of crashes in each of the earlier described three regions of Riyadh, while 
the expected output is of order 3 (3 outputs: the number of cars involved in serious accident 
in each region). For the available dataset and configuration, when selecting a lag operator of 
order d, the number of inputs of the DANN results to (d+1)×3. Then at each time t the inputs 
are composed from the triplet observations at t-1 plus the d number of triples (of the selected 
time lag) that will provide prediction information. This class of models is solely 
autoregressive, in the sense that the predictions are based only on the historical information 
that can be identified and propagated ‘inside’ the variables set under projection (i.e. the time 
evolution of each variable and the correlation among variables). For brevity, this class of 
DANN for now on will be termed as NAR-d, where d stands for the lag operator, N for the 
order of variables’ vector under projection and AR for the autoregressive feature of the DAAN 
calibrated. 

For comparative purposes, an enhanced model architecture has been developed, 
where a set of additional -but correlated in some sense- variables is augmented to the inputs 
set aiming on contributing additional information possibly valuable for the prediction and 
termed as exogenous variables. The general architecture is depicted on Figure 7b. Here, the 
‘exogenous dataset’ are the number of car crashes per region, also introduced by the lag 
operator d, while the exogenous variables corresponds to the d×3 inputs. At this DANN the 
total number of inputs equals 2×(d+1)×3, a significantly larger ANN configuration. This class 
of DANN accordingly is termed as NARX-d, adding symbol X which stands for the 
introduction of exogenous variables. All the above-proposed architectures of the DAAN can 
be calibrated/trained by the optimization routines typically used in dynamic ANNs.  

(a) 

(b) 
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4. COMPUTATIONAL EXPERIENCE 
In order to test the performance of the earlier presented configurations of the DANNs, a 
highly nonlinear neural network configuration has been selected. In detail, for all types of 
DANNs, a network of one hidden layer has been used with 50 neurons, each of which use a 
log-sigmoid transfer function, able to be calibrated by a non-linear optimization routine 
(details on the calibration of ANNs are omitted here, since can be found in relevant textbooks 
widely available). Here, the Levenberg–Marquardt algorithm has been used for training the 
specific type of DANNs. The calibration process utilizes 3 parts of the available dataset. In 
particular this is divided in three sections, namely, the training set (in which the optimization 
algorithm is using for updating the direction of the ANN calibration), the validation set (which 
is used for stopping the training process by avoiding biased fitting or over-fitting) and the test 
set (which corresponds to a randomly selected subset used for performance evaluation of all 
calibrated ANNs architectures). The scheme used here for distributing the available dataset 
(of 414 weekly records) into the three above-mentioned parts is 70%-training, 15%-validating 
and 15%-testing.  

The first attempt to investigate the performance of the earlier introduced DANNs to the 
available dataset stands for a parsimonious autoregressive model with a lag operator d=2 
(NAR-2). This model of ‘short memory’, at time t utilizes information of the current and the 
past two observations of the weekly number of cars involved in serious accidents (in total at 
time t, t-1 and t-2) in each on the 3 regions (see Section 2) in order to predict the number of 
cars involved in crashes per region at time t+1.  

The training convergence diagram and characteristics are presented in Figure 8a&b. 
As it can be observed in Figure 8a the training process selects the network’s configuration 
resulted from the 9th epoch of training, since after that the network begins to ‘drift’ toward the 
values of the training set (the error metric of the training set is reduced) with negative effects 
on its generalization (the error on the validation set increases). A ‘picture’ on quality of the 
resulted NAR-2 can be deduced by the errors distribution depicted in Figure 8b, where the 
these are concentred around zero, an indication of unbiased prediction properties of the 
trained network. 
 

0 5 10 15
100

101

102

103

104
Best Validation Performance is 81.3182 at epoch 9

M
ea

n 
Sq

ua
re

d 
Er

ro
r  

(m
se

)

15 Epochs

 

 
Train
Validation
Test
Best

 
0

100

200

300

400

500

600

700

800

Error Histogram with 20 Bins

In
st

an
ce

s

Errors = Targets - Outputs

 

 

-3
4.

26

-2
9.

77

-2
5.

27

-2
0.

77

-1
6.

28

-1
1.

78

-7
.2

84

-2
.7

87

1.
70

9

6.
20

6

10
.7

15
.2

19
.7

24
.1

9

28
.6

9

33
.1

9

37
.6

8

42
.1

8

46
.6

7

51
.1

7

Training
Validation
Test
Zero Error

 
Figure 8. Typical training results for a NAR-2 model: convergence diagram (a) and histogram 

of errors (b). 
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Figure 9. Predictions vs. Observations time series for region #3 (a) and correlation diagram 

(b) for a typical NAR-2 model. 

Quantitative evidence about the performance of the trained network can be drawn from the 
predictions accuracy. In particular, in Figure 9a the time series of observations vs. predictions 
are depicted (by distinguishing training, validation and testing points for checking the 
randomness of each point selection) from where it can be observed that this network 
configurations can follow and predict –with sufficient accuracy- the evolution of regional car 
crashes. This is further supported by the correlation diagrams (distinguished per set used in 
the calibration process) and R values (Figure 9b). It is noted, that although the R value of the 
training set quite large (R=0.88), in the test set the R is significantly reduced (R=0.53). The 
results of this model highlight two issues: first the dataset represents a highly stochastic 
phenomenon (even for the case of weekly data), and, additionally the specific model has 
reduced prediction abilities (a model with R=0.53 is considered low for practical use). 
Although several performance metrics and model configurations could be tested, here the R-
value will be used for the rest of the paper for comparative purposes. 
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Figure 10. Correlation diagrams of Predictions vs. Observations for the Training set (a), 
Validation set (b), Test set (c) and for all dataset (d) for NAR-5 and NAR-10 models. 
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have reduced prediction accuracy (R=0.50 and R=0.43 respectively). It is noted that for both 
networks their performance on the training set are comparable to the NAR-2 (suggesting that 
the optimization algorithm fully exploit the information available in the training set). On the 
overall, it can be observed that the network size is not the determinant factor in the model’s 
generalization and that parsimonious models can perform better than larger and more 
complicated ones. Also, the results suggest that additional sources of information should be 
investigated in order to come up with results of practical use. 

The next step of the experiments correspond the investigation of the role of additional 
information on the autoregressive models performance. Thus NARX-2 and NARX-10 models 
are tested while the results are presented in Figure 11a&b.  
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Figure 11. Correlation diagrams of Predictions vs. Observations for the Training set (a), 
Validation set (b), Test set (c) and for all dataset (d) for NARX-2 and NARX-10 models. 
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(and car crash risk), the necessary information that these should be provided is a 
determinant factor in their performance and usefulness. 
 

5. CONCLUSIONS AND RECOMMENDATIONS 
In the current paper a prediction model of car crashes has been presented, belonging to the 
Artificial Intelligent class of models, namely in Dynamic Artificial Neural Networks. In 
particular, alternative hybrid forms of Dynamic Artificial Neural Networks (DANN) have been 
developed and tested for the case of time series predictions of crashes, in a spatially 
distributed format useful for surveillance and operational management of large-scale urban 
networks. The application of the proposed prediction mechanisms are tested over a dataset 
of weekly crash records from the Riyadh, capital of the Kingdom of Saudi Arabia, an area 
experiencing severe road safety issues for years now accompanying the rapid development 
of the urban space.  

A number of future extensions can be regarded in this line of research, ranging from 
testing alternative statistical and AI models to the application and use of such analytical 
methods for operational purposes (e.g. daily datasets, exact location of crashes etc). Also, it 
is regarded that the augmentation of other traffic characteristics (traffic volume, occupancy), 
environmental information (visibility, whether, etc) and time-depended variables (time of day, 
seasonal events, etc) will enhance the models predicting power. Such experiments have 
been already scheduled for the near future. 
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