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Abstract

The design of multicast networks constitute an important problem in
phone networks, the public Internet, ad-hoc wireless networks, transporta-
tion and sensor networks.

We consider the problem of designing a multicast network by modeling
it as a two-level clustering problem, that is, to find the location of multiple
hubs and the location of one main hub (super hub), connected in a tree. The
location of hubs is defined in continuous bi-dimensional space.

The optimum design is defined as the one that minimizes the cost function
as the sum of distances of the observations to its nearest hub. There is a
transportation problem with similar formulation.

The specification of the problem corresponds to a strongly non differen-
tiable min-sum-min formulation. This is a NP-hard problem to be solved
[6, 8]. We propose a method to overcome this difficulty by using hyperbolic
smoothing strategy. The solution is ultimately obtained by solving a sequence
of differentiable unconstrained low dimension optimization sub-problems.

The proposed method is tested with some computational experiments.
The results confirm the robustness and accuracy of the proposed method.

Keywords: Two-level clustering problem, continuous space, Multicast
Hub Location, Min-Sum-Min, Hyperbolic Smoothing
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1 Introduction

The design of multicast networks constitute an important problem in var-
ious communication contexts such as phone networks, the public Internet,
ad-hoc wireless networks, sensor networks and transportation.

In this work it is considered the problem of designing a multicast network
by modeling it as a two-level clustering problem, that is, to find the location
of multiple hubs and the location of one main hub, connected in a tree. The
location of hubs is defined in continuous bi-dimensional space. The optimum
design is defined as the one that minimizes the cost function as the sum of
distances of the observations to its nearest hub. There is a transportation
problem with similar formulation. The specification of the problem corre-
sponds to a strongly non differentiable min-sum-min formulation. This is a
NP-hard problem to be solved [6, 8].

In recent years, several studies concerning the hub location problem, being
the hubs connected in hierarchical tree, have been published [1].

In [13] it is addressed the problem of determining the routes and the
hubs to be used in order to send, at minimum cost, a set of commodities
from sources to destinations in a network of given given capacity. In [4] it
is presented the tree of hubs location problem. It is a network hub location
problem with single assignment where a fixed number of hubs have to be
located, with the particularity that it is required that the hubs are connected
by means of a tree. In [10] it is discussed the hub location problem for
weighted links, which is a variant of the classical hub problem. In [16] it
is discussed the techniques for organizing hierarchies using clustering, which
could be applied to design a multicast network. In [18] it is proposed the
use of clustering algorithms to help in determining hierarchical multicast
trees, considering mainly the proximity, by apply the k-means clustering
algorithms iteratively to construct successive hierarchical levels. In [17] it
is introduced a flexible new method of constructing hierarchical multicast
structures suitable for supporting large-scale GRID applications. In [2] it is
shown how to construct a class of hierarchical multicast trees and analyze
their performances.

In this work it is proposes a method to solve the hierarchical two-level
clustering problem, that is to find the location of hubs with one main super
hub to that minimizes the cost of sum of links. The formulation adopted in
this work is the same as [3, 14, 7, 4], where it is shown that the multicast
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network design problem is mapped to the same model of the hierarchical
two-level clustering problem. This model is a NP-hard problem to be solved
[6, 8]. There are other optimization problems that can also be mapped to
the two-level clustering model.

The proposed solution uses hyperbolic smoothing approach. It assumes
that it is a possibility to position the hubs continuous space, that is, minor
adjustments can be made to the position of centroids in any position in R2.

This work is organized in the following way. The specification of the con-
tinuous hub location multicast problem is presented in the next section. The
hyperbolic smoothing methodology is described in section 3. The illustra-
tive computational results are presented in section 4, and some concluding
remarks are drawn in a final section.

2 The Continuous Hubs Location Problem

The continuous hubs location problem consists in calculating the location
of p hubs in a planar region, in order to define a multicast network that
connects m places, also known as “consumer points” or “cities”, while
minimizing the network’s cost. One of the hubs is known as a “super-hub”,
because all other hubs are connected to it.

To formulate this problem, we proceed as follows. Let S = {s1, . . . , sm}
denote a set of m cities in a planar region, si ∈ R2 . Let xi, i = 1, . . . , p
be the hubs, where each xi ∈ R2. The set of these hubs is represented by
X ∈ R2p . Each city si must be connected to one hub (might be the super-
hub). Each hub must be connected to the one super-hub. The cost to be
minimized is the sum of the distances of the cities to hubs plus the distances
among hubs.

A simple configuration of this network is depicted in figure 1. The dis-
tances from cities (circles) to hubs (diamonds) are in blue. The distances
from hubs to super-hub (pentagon) are in red.

The unitary cost associated to city sj and hub xi is equal to the
Euclidean distance between them:

zij = ‖sj − xi‖2 (1)
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Figure 1: Super-hub (pentagon), hubs (diamonds) and cities (circles)

The unitary cost that actually is considered (added) to the cost function
to be minimized is the distance of a city j to the nearest hub i , that is,

zj = min
i=1,...,p

zij, (2)

The problem is to calculate the hub locations xi to minimize the total
cost of the network, that is, the sum of all costs of each city to its nearest
hub, plus the cost of connecting the hubs.

minimize

(
m∑
j=1

zj

)
+ v (3)

subject to zj = min
i=1,...,p

zij, j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

The v component of the cost function represent the cost produced by the
connecting the hubs. For each hub i it is calculated the sum of distances of
the all hubs to it. The min operator makes v the minimum of all possible
sums. This formulation implicitly produces the concept of super-hub.

The super-hub is the hub to which all other hubs will be connected to. It
is also allowed to cities to connect directly to the super-hub. The formulation
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of the problem will make one of the hubs xi to be the super-hub. The index
that identifies which of the hubs is the super-hub shall be defined as ῑ , that
is xῑ is the super-hub.

Whatever the index ῑ be, the minimization process will produce the
position of the hubs that minimizes the global cost, taking into account the
portion of the cost of the interconnections among hubs.

After the minimization calculation is done, it can be determined the index
of the super-hub using the equation (4).

ῑ = argmin
i

(
p∑

l=1

||xl − xi||2

)
(4)

3 Smoothing the Problem

This problem has a min-sum-min structure with non-differentiable and
non-convex characteristics, having a very large number of local minima. A
series of transformations will be performed in order to obtain a continuous
formulation. First, considering its definition, each zij must necessarily
satisfy the following set of inequalities:

zj − zij ≤ 0, i = 1, . . . , p. (5)

Substituting these inequalities for the equality constraints of problem (3),
we perform a relaxation and the following problem is obtained:

minimize

(
m∑
j=1

zj

)
+ v (6)

subject to zj − zij ≤ 0, i = 1, . . . , p; j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

The variables zij, from equation (2), must be non-negative. However, in
the last formulation, the variables zj are no longer bound from below. So,
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in order to obtain the desired equivalence with the original problem, we must
modify problem (6) to create an adequate lower bound for variables zj . We
define function ψ(y) as in equation (7).

ψ(y) = max (0, y) (7)

Applying (7) to (6), it follows that

p∑
i=1

ψ(zj − zij ) = 0, j = 1, . . . ,m. (8)

For any point j assuming a strictly increasing sequence of the p
distances zij denoted by d1 < d2 < · · · < dp, Figure 2 illustrates the first
three summands of (8) as a function of zj.

Figure 2: Summands in (8), ψ(zj − di)

Using (8) in place of the set of inequality constraints in (6), we would
obtain an equivalent problem maintaining the undesirable property that zj
still has no lower bound. Considering, however, that the objective function
of problem (6) will force downward each zj, j = 1, . . . ,m, we can think of
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bounding the latter variables from below by including an ε > 0 perturbation
in (8). So, the following modified problem is obtained:

minimize

(
m∑
j=1

zj

)
+ v (9)

subject to

p∑
i=1

ψ(zj − zij ) ≥ ε , j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

Since the feasible set of problem (3) is the limit of that of (9) when
ε → 0+, we can consider solving (3) by solving a sequence of problems
like (9) for a sequence of decreasing values of ε that approaches zero.
However, the definition of function ψ endows problem (9) with an extremely
rigid nondifferentiable structure, which makes its computational solution very
hard. In view of this, the numerical method we adopt for solving problem
takes a smoothing approach. From this perspective, let us define the function:

φ(y, τ) =
(
y +

√
y2 + τ 2

)
/ 2 , (10)

for y ∈ R and τ > 0.

Function φ has the following properties:

(a) φ(y, τ) > ψ(y), ∀ τ > 0;

(b) lim
τ→0

φ(y, τ) = ψ(y);

(c) φ(y, τ) is an increasing convex C∞ function in variable y.

Therefore, function φ constitutes an approximation of function ψ.
Adopting the same assumptions used in figure 2, the first three summands
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Figure 3: Original [ψ(zj − di)], smoothed [φ(zj − di, τ)] summands in (8)

of (8) and their corresponding smoothed approximations, given by (10), are
depicted by the curves in figure 3.

By using function φ in place of function ψ in (9), we get to the problem:

minimize

(
m∑
j=1

zj

)
+ v (11)

subject to

p∑
i=1

φ(zj − zij, τ) ≥ ε, j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

To obtain a differentiable problem, it is necessary further to smooth the
Euclidean distances zij. For this purpose, let us define the function

θ( c , d , γ ) =
√

(c1 − d1)2 + (c2 − d2)2 + γ2 , (12)
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where c, d ∈ R2 and γ > 0.

Function θ has the following properties:

(a) lim
γ→0

θ( c , d , γ ) = ‖c− d‖2 ;

(b) θ is a C∞ function.

By using function θ in place of the Euclidian distances, we obtain the
completely differentiable problem:

minimize

(
m∑
j=1

zj

)
+ v (13)

subject to

p∑
i=1

φ(zj − θ(sj, xi, γ), τ ) ≥ ε, j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

Now, the properties of functions φ and θ allow us to seek a solution to
problem (9) by solving a sequence of subproblems like problem (13), produced
by decreasing the parameters γ → 0 , τ → 0, and ε→ 0.

The objective function minimization process will work towards reducing
to the utmost the zj, j = 1, . . . ,m, values. On the other hand, given any
set of hubs xi, i = 1, . . . , p, due to property (c) of the hyperbolic smoothing
function φ, the constraints of problem (13) are monotonically increasing
functions in zj. So, these constraints will certainly be active and problem
(13) will ultimately be equivalent to the following problem:
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minimize

(
m∑
j=1

zj

)
+ v (14)

subject to hj(zj, x) =

p∑
i=1

φ(zj − θ(sj, xi, γ), τ )− ε = 0, j = 1, . . . ,m.

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

The dimension of the variable domain space of problem (14) is (2p+m).
Since, in general, the value of parameter m, the cardinality of the set S of
the cities sj, is large, problem (14) has a large number of variables. However,
it has a separable structure, because each variable zj appears only in one
equality constraint. Therefore, as the partial derivative of hj(zj, x) with
respect to zj, j = 1, . . . ,m is not equal to zero, it is possible to use the
Implicit Function Theorem to calculate each component zj, j = 1, . . . ,m
as a function of the hub location variables xi, i = 1, . . . , p. This way, the
unconstrained problem:

minimize f(x) =

(
m∑
j=1

zj(x)

)
+ v(x) (15)

v = min
i=1,...,p

p∑
l=1

‖xl − xi‖2

is obtained, where each zj(x) results from the calculation of a zero of each
equation

hj(zj, x) =

p∑
i=1

φ(zj − θ(sj, xi, γ), τ )− ε = 0, j = 1, . . . ,m (16)

Due to property (c) of the hyperbolic smoothing function, each term φ
above is strictly increasing with variable zj and therefore the equation has
a single zero.
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Again, due to the Implicit Function Theorem, the functions zj(x) have
all derivatives with respect to the variables xi, i = 1, . . . , p, and therefore it
is possible to calculate the gradient of the objective function of problem (15),

∇ f(x) =

(
m∑
j=1

∇zj(x)

)
+∇v(x), (17)

where

∇zj(x) = − ∇hj(zj, x) /
∂ hj(zj, x)

∂ zj
, (18)

while ∇hj(zj, x) and ∂ hj(zj, x)/∂ zj are directly obtained from equations
(10), (12) and (16).

In the equation (17), the term∇v(x) is indeed non-differentiable, however
the super-hub index ῑ rarely changes during the optimization procedure.
In this condition, ∇v(x) is continuous and can be easily calculated by equa-
tion (19).

∇v(x) =
p∑

l=1

xl − xῑ
||xl − xῑ||2

(19)

This way, it is easy to solve problem (15) by making use of any method
based on first order derivative information. Finally, it must be emphasized
that problem (15) is defined on a (2p)−dimensional space, so it is a small
problem, since the number of hubs, p, is small, in general, for real world
applications.

Simplified HSHS Algorithm

The solution of the original problem can thus be obtained by using what we
call “Hyperbolic Smoothing Hub-and-Spoke Algorithm (HSHS)”, described
below in a simplified way.

Initialization Step: Choose initial values: x0, γ1 , τ 1 , ε1.

Choose values 0 < ρ1 < 1, 0 < ρ2 < 1, 0 < ρ3 < 1; let k = 1.

Main Step: Repeat until a stopping rule is attained
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Solve problem (15) with γ = γk, τ = τ k and ε = εk, starting at the
initial point xk−1 and let xk be the solution obtained.

Let γk+1 = ρ1 γ
k , τ k+1 = ρ2 τ

k , εk+1 = ρ3 ε
k , k := k + 1.

Notice that the algorithm causes τ and γ to approach 0, so the
constraints of the subproblems it solves, given as in (15), tend to those of (9).
In addition, the algorithm causes ε to approach 0, so, in a simultaneous
movement, the problem (9) gradually approaches problem (3).

4 Computational Results

The numerical experiments have been carried out on a computer SGI-
model C1104-2TY9, with 24G RAM, 2T of disk, CPU 24 cores (but only
one core was actually used). The operating system was linux open Suse
v 12.2. The compiler used was GNU’s gfortran v 4.5.2. The unconstrained
minimization tasks were carried out by means of a Quasi-Newton algorithm,
employing the BFGS updating formula from the Harwell Library [11].

The computational results presented below were obtained from a first
implementation of the algorithm, without any sort of pruning procedure and
where the initial starting hubs x0i , i = 1, · · · , p were arranged, in a very
simple manner, around the center of gravity of the set of cities, by making
random perturbations proportional to the standard deviation of this set,
following the formulae: s̄ =

∑m
j=1 sj /m, σ = (

∑m
j=1 ‖ sj − s̄‖22 /m )1/2,

xi = s̄ + a σ, where the components of the vector a are uniform random
variables in the interval [−0.5 , +0.5 ].

The value of τ 1 was taken as 1/100 of this standard deviation. The
following choices were made for the other parameters:
ε1 = 4 τ 1, γ1 = τ 1/100, ρ1 = 1/4, ρ2 = 1/4 and ρ3 = 1/4.

In order to illustrate the performance of the proposed algorithm, we show
below the results obtained by processing 2 data-sets - one with 76 cities,
and other with 1002 cities, both from [12]. For each data-set, we solve the
problem for the range of 2 to 10 hubs. The obtained computational results
are presented in tables 1 and 2. The images of the results for 5 to 10 hubs
(only 6 images per data-set to save space) for each problem is depicted in
figures 4 and 5.
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As this is a global optimization problem, we use a multistart strategy
with T = 100 different tentative randomly chosen starting points for each
instance.

In tables 1 and 2 the first column presents the specified number of hubs
(p). The second column presents the best objective function value (fHSHS)
produced by the HSHS algorithm. The next three columns present the num-
ber of occurrences of the best solution (Occur.), the average percentage
error of the T solutions (EMean) in relation to the best solution obtained
(fHSHS) and the CPU mean time given in seconds (TMean). By defining f t

as the optimum value of the objective function obtained from the tentative
starting point t, the percentage error EMean observed in all T attempts
is calculated by the expression:

EMean =
100

∑T
t=1 (f

t − fHSHS)

T fHSHS

. (20)

The necessary effort for the resolution of (15) depends first on the dimen-
sion of the problem, equal to 2p. However, each evaluation of the objective
function involves the calculation of m distances. One at a time, each dis-
tance zj is obtained through the calculation of a zero of equation (16),
which has p terms. So, the resultant function evaluation complexity is
O(mp). By assuming that the number of iterations taken in the main step of
the HSHS algorithm is proportional to the dimension of the variable domain
space, the bulk problem resolution complexity would be O(mp2).

Table 1 presents the computational results obtained for the German
Towns instance with 76 cities. For the cases of small p, the occurrences
of the best solution, given by column Occur. are relatively more common.
The average errors presented by the 10 solutions, given by column EMean,
have small values, which indicate a consistent performance of the algorithm.

From the results presented in tables 1 and 2 one sees that the first imple-
mentation of the HSHS Algorithm for solving large continuous hub-and-spoke
instances confirms the consistency of the proposed methodology. The expres-
sive number of occurrences of the best solution for small cases (p ≤ 4) shows
the algorithm’s consistent performance. The low values of the average error
of the 10 solutions (EMean), in relation to the best solution obtained, show
the consistency and the numerical stability of the algorithm.
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p fHSHS Occur. EMean TMean

2 0.300797D+06 82 2.87 0.04
3 0.266465D+06 1 4.49 0.02
4 0.237632D+06 49 0.47 0.09
5 0.213695D+06 15 0.23 0.12
6 0.199957D+06 11 1.14 0.15
7 0.188349D+06 4 1.13 0.25
8 0.179200D+06 44 1.34 0.30
9 0.173214D+06 25 1.61 0.37
10 0.168442D+06 9 2.27 0.46

Table 1: Results for the 76-city problem (Padberg/Rinaldi)

p fHSHS Occur. EMean TMean

2 0.340215D+07 100 0.00 0.25
3 0.281685D+07 24 0.13 0.43
4 0.232770D+07 90 0.37 0.61
5 0.194299D+07 81 1.10 0.94
6 0.170837D+07 50 0.80 1.32
7 0.158897D+07 31 0.23 1.66
8 0.147249D+07 38 0.90 2.23
9 0.136153D+07 70 1.56 2.67
10 0.130772D+07 40 1.19 3.34

Table 2: Results for the 1002-city problem (Padberg/Rinaldi)
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Finally, the Hub Location Multicast Problem were suitably solved in ad-
equate CPU times, as a consequence of both the low dimension of the non-
linear problem (15), defined on a (2p)−dimensional space, and of the use
of a minimization algorithm that takes advantage of its C∞ differentiability
property.

5 Conclusions

This work analyzed and proposed an algorithm to solve the two-level clus-
tering problem, that is, to find the location of multiple hubs and the location
of one main hub (super hub), connected in a tree. The location of hubs is de-
fined in continuous bi-dimensional space. The designing of multicast network
can be mapped to the considered problem.

The optimum design is defined as the one that minimizes the cost function
as the sum of distances of the observations to its nearest hub. There is a
transportation problem with similar formulation.

The specification of the problem corresponds to a strongly non differen-
tiable min-sum-min formulation. This is a NP-hard problem to be solved
[6, 8]. It was proposed a method to overcome this difficulty by using hy-
perbolic smoothing strategy. The original problem is altered by exogeneous
variables that when tend to zero, make the altered problem tend to the
original one. The solution is ultimately obtained by solving a sequence of
differentiable unconstrained low dimension optimization sub-problems.

The proposed method does not guarantee that the solution is the global
minimum. But due to the smooth effect of the method, it produces convex-
ification that in turn produces a deep solution. The larger is the value of
exogeneous variables introduced by the proposed method, the more smooth
the problem becomes. By gradually reducing the exogeneous variables to
zero, the altered problem tends to the original one. The final convergence
of the algorithm is guaranteed, because by making the exogeneous variables
enough close to zero, the altered problem can be as close the original one as
it is desired. The final solution can be obtained with 8 significant digits or
more.

The proposed method is tested with some computational experiments.
The results confirm the robustness and accuracy of the proposed method.
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(a) 5 hubs (b) 6 hubs

(c) 7 hubs (d) 8 hubs

(e) 9 hubs (f) 10 hubs

Figure 4: Results for 76 cities and 5 to 10 hubs
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(a) 5 hubs (b) 6 hubs

(c) 7 hubs (d) 8 hubs

(e) 9 hubs (f) 10 hubs

Figure 5: Results for 1002 cities and 5 to 10 hubs
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