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1. Introduction 
 

In various empirical applications it is necessary to estimate choice models with substantial 

numbers of alternatives. In mode and destination choice models, for example, individuals 

face a wide range of spatially distributed destinations and a set of modes by which they can 

travel to the respective destination. Since the calculation of choice probabilities requires 

consideration of all the alternatives in the choice set, tens of thousands or more, such models 

can make heavy demand on computer resources, particularly run time, but also potentially 

storage requirement. This problem increases substantially when making use of more 

advanced types of models, such as random coefficients models, or systems of models, as in 

activity-based (AB) modelling. Independently of the specific model structure used, an option 

to reduce these demands is to use sampling to restrict the number of alternatives actually used 

in the estimation. In AB models, we model numerous activities for the same person, often 

involving a destination component with a very large number of alternatives, and interactions 

between these spatial choices and the activity scheduling component. Given the reliance on 

standard software, practical solutions to sampling are needed.  

 

McFadden (1978) set out the Positive Conditioning (PC) property under which consistent 

estimates of a Multinomial Logit (MNL) can be obtained using sampling of alternatives. 

Estimation under sampling of alternatives with PC sampling procedures requires 

maximisation of a modified likelihood function with an added correction term in the utility 

function. Much more recently, Guevara and Ben-Akiva (2010) extend the work of McFadden 

(1978) to the GEV framework, so that consistent estimates can be obtained for two-level 

nested logit models, being either tree-nested or cross-nested. Since the denominator of the 

logit formula and the additional GEV term introduced by Guevara and Ben-Akiva in these 

nested logit models both contain a logsum calculated over a set of alternatives, sampling 

needs to be done at two points in the model. It is important to note that the sampling 

procedure need not be the same at the two points. In this paper, we further explore the 

research programme started by Guevara and Ben-Akiva (2010) for GEV models, but 

addressing the issues for obtaining consistent parameter estimates for random coefficients 

models falls beyond the scope of this paper. It seems from recent work by Guevara (2012) 

that a definitive resolution of the mixed logit issue will be difficult, although the results of a 

simple approach are promising. 

 

Sampling of alternatives inevitably leads to increased error in parameter estimation, but it is 

not completely straightforward to calculate the magnitude of this additional error. Nerella and 

Bhat (2004) give an indication of the magnitude of the error, both for MNL and for more 

complicated models, such as mixed logit. For MNL, they give some guidelines on minimum 

sample size to achieve stability, but that is with a simple sampling strategy in simulated data 
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and so not likely to be transferable to real data and more efficient sampling procedures. In 

particular, the efficiency of sampling can vary substantially between contexts and sampling 

procedures. For mixed logit models, Nerella and Bhat (2004) show that the results are less 

accurate, but in this case the estimates are not necessarily (proven to be) consistent and would 

not usually be used in practice for that reason. Summarising the current state of the literature, 

we have to conclude that sampling alternatives in MNL or GEV inevitably causes noise, but 

we would not be able to state in advance what that noise would be in a specific situation; 

sampling alternatives in mixed logit causes more noise and bias may also be present, but we 

are not able to say how much of either. 

 

In this paper, we extend the current state of knowledge on the impact of alternative PC 

sampling procedures and the resulting sampling error in MNL and GEV models. We 

particularly focus on travel demand modelling, based on mode and destination choice models. 

Typically, in these types of models individuals are faced with various modes and destination 

choices of which the choice probability is heavily affected by the travel accessibility from a 

specific origin. We investigate the way in which different distributions of choice probability 

over the alternatives, as would occur with variations in mode choice and trip length for 

different travel purposes, affects the effectiveness of different PC sampling schemes and 

estimation procedures. Like Nerella and Bhat (2004) we use simulated data, but with a clear 

focus on applicability. Hence, the aim is to provide more transferable results on the arising 

sampling error. 

 

Our focus differs from Guevara and Ben-Akiva (2010), who apply their framework in a 

residential location choice model. The properties of mode and destination choice models are 

different from residential choices, because the choice probability is much more strongly 

linked to the travel accessibility from a specific origin. This is in clear contrast to residential 

choice models, where accessibility is of less importance as individuals move home on an 

infrequent basis. A clear aim of the paper is therefore to test the impact of alternative PC 

sampling in such a setting on the resulting sampling error in the Guevara and Ben-Akiva 

(2010) framework. In short, using simulated data we evaluate the efficiency and effectiveness 

of the Guevara-Ben-Akiva approach by exploring various PC sampling schemes in an attempt 

to minimise the estimation error for a given computational burden.  

 

A further contribution of this paper is to simplify the approach of Guevara and Ben-Akiva to 

make it practical for large-scale modelling using existing efficient software. The 

simplification is achieved by reparametrising the nested logit model. Tests of the approach 

are made indicating the efficiency of the approach and how the errors vary as a function of 

model parameters and the level of sampling adopted. 

 

In the following section of the paper, we discuss sampling strategies and how these may be 

expected to affect both the computation time and the accuracy of the modelling. This topic 

does not seem to have been discussed at any length in the literature and, as an initial 

contribution, we give some results on sampling procedures and then on sampling error in 

multinomial logit models (MNL), which in turn give indications for methods and errors in 

more complex models. The following section looks at the issues of sampling in GEV models, 

drawing on the work of Guevara and Ben-Akiva but taking a more practical and simpler 

approach intended for large-scale applications. Section 4 presents the results of tests based on 

simulated mode and destination choice models. The final section presents conclusions and 

recommendations for applications and future research. 
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2. Sampling strategies and error in MNL 
 

In his 1978 paper, McFadden set out the PC property under which consistent estimates of a 

MNL can be obtained with alternative sampling. Specifically, he showed that asymptotically 

consistent estimates of model parameters can be obtained if we maximise a modified log 

likelihood function, with a contribution for each individual of 

 

      
   (       (   ) )

∑    (       (   ) )   
      (1) 

 

where    is the systematic part of utility for alternative  ; 

   is the chosen alternative; 

  is the sampled set of alternatives, which is a subset of the set of all available 

alternatives  ; and 

  (   ) is the probability of sampling  , if   is the chosen alternative. 

 

The PC property, i.e. positive conditioning, is exactly the condition that  (   )         , 

which is clearly necessary to evaluate (1). Note that it is also essential that the chosen 

alternative   is included in  . For estimation purposes, equation (1) implies working as if   

was the complete choice set, not  . 

 

Clearly, if  (   ) is the same for all    , then it will cancel out in equation (1). The system 

then conforms with the Uniform Conditioning (UC) property also defined in McFadden 

(1978). The simplicity of UC is attractive, but in many practical cases some alternatives are 

much more important than others, in the sense of being much more likely to be chosen, so 

that the general PC approach with unequal   values is more efficient and will be used in this 

note. In particular, in modelling destination choice it is clear that nearer alternatives are each 

very much more likely to be chosen than distant alternatives and common sense suggests they 

are therefore more relevant for modelling. Some intuition on how ‘important’ alternatives 

should be identified is given in Section 2.2. 

 

An important point in practice is that McFadden’s PC theorem requires the assumption that 

the true choice model is multinomial logit. In practice, this will often not be the case and the 

consequence is then that estimation using the amended likelihood function may not give 

consistent estimates of the parameters that would be obtained when using the full model.
1
 

However, in this case, neither the base MNL nor the sampled version is correct. The theorem 

also requires that each choice observation be treated as independent, an assumption we shall 

maintain in this paper, though in some important practical cases the assumption may not be 

appropriate. 

 

2.1 Practical strategies for PC sampling 

 

A simple practical approach for PC is to use independent sampling, where each unchosen 

alternative   is included in the sample with probability   , making a separate draw for each 

alternative. Another approach is to sample a fixed number of times from  , with replacement, 

                                                 
1
 That is, the validity of McFadden’s theorem depends on behaviour being truly in accordance with the 

MNL formula. It should also be noted that the theorem applies only to large samples. 
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giving each alternative a probability    of being sampled at each draw, then deleting the 

duplicate sampled alternatives. In each case these strategies yield 

 

  (   )  
 

  
 ( )        (2) 

 

with  ( ) independent of   (Ben-Akiva and Lerman, 1985, equations 9.22 and 9.23). 

Examining the log likelihood equation (1), we see that  ( ) cancels out and we are left with 

 

      (
   (         )

∑    (         )   
)    

     ∑      
 

     (3) 

 

where   
           is an amended utility function for alternative  . 

 

With independent sampling the expected set size is ∑       but there is quite likely to be 

some variation around this number. When sampling with replacement the probabilities    
must sum to 1, of course, but the advantage claimed in Ben-Akiva and Lerman for this 

method is that the size of the set   varies less than with independent sampling. However, the 

expected set size is more complicated to determine. In each case we can adjust the sampling 

rate to obtain a suitable balance between sampling error and computational cost. 

 

Another sampling strategy, stratified sampling, involves division of the choice set into a 

number of strata and sampling a fixed number of alternatives in each stratum. For efficiency, 

the relative frequencies of selection would relate approximately to the choice probabilities. 

Ben-Akiva and Lerman show how to calculate the values of  (   ) when the sample rate is 

constant in each stratum and indicate that the main advantage of this approach is that fixed set 

sizes are obtained for  . However, a fixed set size does not necessarily give an important 

advantage in practical estimation. A special case of stratified sampling is to treat the whole 

set of alternatives as one stratum and to sample uniformly from this set without replacement; 

this leads to the sampling satisfying UC and therefore not requiring correction. 

 

Some aspects of the sampling issues can be tested quite readily by simulation, as illustrated in 

the graphs below. Details of the simulations we have made are given in the Appendix. The 

simulations are set in the context of destination choice among zones in a hypothetical study 

area. The advantage of different approaches may vary with the size of the study area relative 

to mean trip lengths and this is represented in the simulations by varying the deterrence 

parameter: a larger negative deterrence parameter implies shorter trip lengths or, 

equivalently, a larger study area relative to a given trip length. Two levels of sampling are 

tested, the first corresponding to approximately 1 in 6 alternatives, the second to about 1 in 

12. The appropriate sampling rate for a particular study will depend on the computational 

cost and the estimation accuracy required. These issues are considered in the following 

section, but here we include two levels of sampling to illustrate how the choice of sampling 

rate affects the choice of sampling protocol. 
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The five upper lines in the first graph show the relative computation effort required for each 

of these protocols, shown as the ratio of the expected percentage of alternatives sampled over 

the expected cumulative choice probability (i.e. the coverage of expected choices) covered by 

the sampled alternatives. We see that the differences between several of the sampling 

approaches in this respect are very small and that all the procedures become more efficient as 

the deterrence parameter becomes more strongly negative. However, stratified sampling 

seems to perform generally worse than the other sampling methods. This is not surprising, 

because stratified sampling usually reduces the correlation of the sample with the predicted 

probabilities, i.e. the alternatives sampled within a stratum are not necessarily those with the 

highest choice probabilities. The first stratified sampling approach, in which the sampling is 

more closely connected to the choice probabilities (see the Appendix), is less inefficient. 

Independent sampling performs a little better than with-replacement or without-replacement 

sampling, but these differences are small. 

 

The lower lines in the first graph show the coefficient of variation of the sampled set size in 

these runs, for those strategies where the sample size varies. Although for small values of the 

deterrence parameter replacement sampling gives less variation than independent sampling, 

as expected, but the difference decreases substantially as the parameter increases and for the 

largest value independent sampling gives a less variable set size, contrary to the expectation 

of Ben-Akiva and Lerman (1985). 

 

As indicated in the Appendix, with the approximate 1/6 sampling rate of these runs, the 

coverage of expected choices runs from about 30% with a deterrence factor of –0.03 to about 

90% with a deterrence parameter of –0.11.  Clearly, it is not possible for the analyst to control 

the deterrence parameter, which is a function of the behaviour and study area, but it is 

possible to control the sampling rate. To see the effect of changing this rate, simulated 

samples were made with a sampling rate of about 1/12, i.e. a little over 8%. In this case, the 

coverage of expected choices runs from about 20% to 80% as the deterrence parameter 

varies. The relative performance of the various sampling protocols is shown in the graph 

below. Stratified sampling was not tested at this level, because of its poor performance in the 

previous tests. 
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In these tests, we see again that the difference in relative effort for the three candidate 

sampling protocols is very slight
2
, with independent sampling again the best by a small 

margin, and the relative effort is substantially less than in the previous tests across all values 

of the deterrence parameter, i.e. more than half of the coverage is achieved when we sample 

half as many alternatives with these protocols. However, the relative variation in set size is 

nearly doubled for both independent and with-replacement sampling, while the advantage in 

this respect of with-replacement sampling is retained for the full range of deterrence 

parameter values tested. 

 

It is also important to note that the efficiency of PC sampling, relating sampling probabilities 

to the importance (i.e. approximate choice probability) of each alternative, is greater when the 

link to travel accessibility is stronger. The increase of efficiency as the deterrence parameter 

increases shows that for large study areas and/or short trips the gain from PC sampling also 

increases. 

 

These tests show that there is little to choose in efficiency between the three main sampling 

strategies that might be considered. The impact of varying set sizes is not believed to be very 

important, while the simplicity of calculation for independent sampling is very helpful in the 

calculations we need to make in the remainder of the paper. For this reason we use 

independent sampling in the rest of the work described here. 

 

2.2 Sampling error in PC sampling 

 

The work of Guevara and Ben-Akiva (2010), discussed in more detail in the following 

section, indicates that the ‘sandwich’ matrix can be used to obtain the error in the parameter 

estimates for a GEV model. It does not seem to have been noted previously in the literature 

that this result can be applied to an MNL model, which of course is a particular GEV model. 

This finding is important and implies that sandwich error estimators should be used in all 

cases when alternatives are sampled. However, the sandwich matrix includes both the error 

induced by sampling alternatives and the ‘ordinary’ error that would be present if the full 

sample of alternatives were used. To determine how sampling error varies with the size of the 

                                                 
2
 With-replacement and without-replacement sampling give indistinguishable results. 
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sample of alternatives and therefore what a suitable sample size might be in any given 

context requires more specific analysis. 

 

A simple approach to assessing sampling error is to calculate the coverage or the fraction of 

expected choices that are captured by  : 

 

    
∑    (  )   

∑    (  )   
        (4) 

 

This approach is taken by Miller et al. (2007) in the context of sampling alternatives for 

application. It is intuitively clear that as the fraction increases then the approximation will 

generally improve. After all, when the fraction reaches 1 there is no approximation. But this 

is a rough measure of sampling error.  

 

The standard MNL gives the log probability of the observed choice   for a single individual 

by 

 

               ∑    (  )        (5) 

 

The basic objective of sampling alternatives is to save time by not evaluating the logsum in 

(5) in full. That is, writing    (  )     for economy of notation, we want to estimate 

  ∑       by  ̃  ∑
  

  
   , where   is the set of   that have been sampled and    is the 

expansion factor for each  . That is, we approximate 

 

          ̃        ∑
   (  )

  
       (6) 

 

If we apply independent sampling, so that    is simply the sampling probability for  , the 

variance of  ̃ over different samples is given by 

 

 var( ̃)  ∑ (
  

  
)
 

     (    )  ∑   
 (

 

  
  )     (7) 

 

The variance can obviously be reduced by increasing    and clearly becomes zero when 

     for all  . However, the calculation cost is proportional to the number of alternatives 

sampled and the expectation of this number is given by ∑      . Holding this expected 

calculation cost fixed, it is quite easy to see that the variance (7) is minimised when    

     for a constant   (see also Hammersley and Handscomb, 1964). This result gives a 

strong indication that the intuitive attribution of sampling probability as approximately 

proportional to ‘importance’, measured by         , i.e. roughly proportional to choice 

probability, is reasonable
3
.  

 

                                                 
3
 Of course, we cannot calculate the true       in advance of estimating the model, so importance 

sampling has to be performed with an approximate proxy used for   . This will usually be done using 

information from previous studies and therefore does not introduce endogeneity with the estimates to be made 

on the basis of the sample drawn. 
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The calculations above apply for independent sampling. For replacement sampling we might 

expect that an equation like (7) could be developed, though it would not necessarily be so 

simple. For other sampling protocols the formulae are likely to be even more complicated. 

 

The error in the likelihood-contribution calculation (5), to which  ̃ contributes the sampling 

error, can be estimated as  

 

 var( )  (
  

  ̃
)
 

var( ̃)  
var( ̃)

 ̃ 
 

var( ̃)

  
    (8) 

 

The final approximation follows because  ̃ is an estimate of   and, using (7) to obtain 

var( ̃), we are then able to make a calculation of the expected error variance (8) in terms of 

quantities that are known before any sampling is done. 

 

Thus, for MNL, the error in the log likelihood is equal to the square of the coefficient of 

variation of  ̃, which in turn is a function of simple statistics of the set  . It may be noted 

that the calculations needed to derive the expected value of var( ), i.e. equations (7) and (8), 

can be made in advance, so that a sample size can be set to obtain an appropriate balance 

between likelihood error and sample effort. 

 

In order to check that equations (7) and (8) give a good expectation of the likelihood variation 

to be found in practice with models estimated on samples, a series of simulation runs was 

made. These runs used the same independent sampling approach described in the previous 

section, but adding the chosen alternative where necessary to make estimation possible.  The 

results are shown in the following graphs. 
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In the first graph we see that the prediction exceeds the output likelihood substantially for 

low values of  , but this is corrected for higher values, whereas in the second series of 

simulations, with lower overall samples, the difference is more moderate but is consistent 

across the range. While some noise is to be expected from these runs involving random 

sampling, the pattern observed here is difficult to explain. 

 

Further work is also needed to determine how the error in likelihood calculation (7) carries 

through to error in parameter estimation. It seems likely that there would be a proportionality 

relationship. Meanwhile we can use the approximate error indicators    and var( ), the latter 

calculated using equations (7) and (8), to obtain some insight into error. 

 

 

3. Sampling in GEV models 
 

Our investigation takes the work of Guevara and Ben-Akiva (2010) as a starting point but 

first we discuss briefly other papers in this area. 

 

3.1 Previous research  

 

It is important to distinguish between the sampling of alternatives, which is the focus of the 

current work, and the sampling of observations, an important issue but one which is not 

directly related to the sampling of alternatives. The distinction is not always made clear in 

literature reviews, which often mention papers on sampling observations. For example, 

Koppelman and Garrow (2005) do not discuss sampling alternatives at all. Another paper that 

is mentioned in reviews is Mabit and Fosgerau (2006), but again this does not mention the 

sampling of alternatives.  

 

Bierlaire et al. (2008) is also aimed chiefly at the issue of sampling observations. However, 

“for the sake of completeness”, they give some attention to sampling alternatives, deriving 

results that foreshadow somewhat the work of Guevara and Ben-Akiva (2010). However, the 

latter work is more complete and more directly focussed on our topic of interest and we shall 

base our discussion on those publications. 
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Frejinger et al. (2009) do not deal with models beyond MNL except through the ‘path size’ 

correction and that the PC correction is therefore sufficient for their work. Similarly, Train 

(2009) does not go beyond the results given in McFadden (1978).  

 

Lee and Waddell (2010) claim to provide the first consistent estimator for tree-nested logit 

with sampling of alternatives. The formula (their equation 5) is simple, the logsum used in 

the higher (unsampled) level is 

 

    (
 

 
)    (∑ (

 

 
)    (   )   )     (8) 

 

where   is the sampling rate “which only applies to the sampled non-chosen alternatives”, so 

they apply a rate of 1 to the chosen alternative. The estimate of the logsum is therefore a 

function of the chosen alternative. When    , i.e. the model is MNL, this is different from 

McFadden’s PC, so that it appears that the Lee and Waddell procedure is incorrect. Simple 

simulations confirm that a bias is introduced. 

 

3.2 Guevara and Ben-Akiva work 

 

Guevara and Ben-Akiva (2010, abbreviated as GBA) give the theorem that consistent 

estimation of a GEV
4
 model based on a sample of alternatives   can be achieved by a 

correction of the logit utility function 

 

   
          ( 

 )      (   )     (9) 

 

where  (   ) is the probability of selecting the reduced choice set  , given that   is the 

chosen alternative; we note that this is reassuringly the standard McFadden PC 

correction; 

    is the derivative with respect to its  th argument of the GEV generating function  ; 

here we note that it is calculated over a restricted choice set   . This set has to be 

chosen to give an unbiased estimate of the true    calculated over   and exactly how 

this is to be done is discussed further below. 
 

The theorem also gives the error in the parameter estimates as asymptotically normal, with 

covariance equal to the well-known ‘sandwich’ matrix, subject to technical conditions.  

 

In an MNL model,      for all the alternatives, so that this term disappears from the 

function and we return to the standard McFadden MNL PC formulation. However, in more 

general GEV, such as nested logit, this term does not disappear. Ben-Akiva and Lerman 

(1985) show that equation (10) can be used (without sampling, i.e. without the   term) to 

represent any GEV model, so that the GBA theorem using (10) represents an intuitive 

extension of both McFadden sampling and the Ben-Akiva/Lerman finding. 

 

For two-level tree-nested logit (i.e. excluding the possibility of cross-nesting), GBA obtain 

the formula: 

 

                                                 
4
 GBA use the term MEV to describe the models introduced by McFadden as GEV (also in the 

remarkable 1978 paper).  
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       (
 

  ( )
  )       ( ( ))       ( 

 ( )
  )   (10) 

 

where   ( ) is the nesting coefficient for the nest  ( ) that contains alternative  . 

 

In this formula, the logsum has to be estimated as otherwise we need to make calculations for 

all the alternatives, defeating the objective of saving calculation time. The estimator GBA 

propose is, for the logsum for nest  : 

 

       ( )     ∑
 ̃ 

 ( )    ( )    (    )    (11) 

 

where   ( ) is the set of sampled alternatives within nest  ; 

    is the number of times alternative   is actually sampled and 

  ( ) is the expectation of this number. 

 

It is shown by GBA that the term  ̃  ( )⁄  is exactly the expansion factor required to obtain 

an unbiased estimate of the logsum. It is important to note that the sampling procedure used 

to obtain    to estimate the logsum need not be the same as the procedure used to sample the 

set  . A key consideration is that the set   must contain the chosen alternative, so that the 

probability that it is selected depends on the choice probabilities and hence on the parameters 

of the model. GBA recommend two alternative procedures
5
. 

1. Using separate sampling procedures, such that the sampling for    for the logsum 

approximation does not depend on the chosen alternative, works well in the GBA 

simulations and does not require iterative estimation. 

2. The same sampling can be used, i.e.     , but in this case, because of the 

dependence of   on the chosen alternative, the expansion factors depend on the model 

parameters and the model must be estimated iteratively. This iterative procedure also 

works well in the GBA simulations. 

Clearly, procedure 1 without iteration is more convenient in practice. Further, it appears that 

in existing software procedure 1 is also easier to implement. Finally, GBA give no guarantee 

that the iterative process 2 converges, although no problems are reported from their tests.  

 

If we apply independent sampling for   ,  ̃           
 ( ) and  ( )    , so that 

equation (11) can be written 

 

       ( )     ∑    (          )    ( )    (12) 
 

The GBA equations (11) and (12) are written for a tree logit specification that is normalised 

at the top, as used in Ben-Akiva & Lerman (1985) and implemented in BIOGEME (Bierlaire, 

2005). This is the specification also sometimes referred to as RU2 – see Hensher et al. 

(2005). For practical implementation it is easier to use the version which uses normalisation 

at the bottom, as in Train (2009), referred to as RU1 by Hensher et al., (2005). For ease of 

estimation in large scale models, a non-normalised version of this model can be used, as 

implemented in ALOGIT, where consistency with utility maximisation is ensured through an 

equality constraint between structural parameters on a given level. We have: 

 

                                                 
5
 We are grateful to Angelo Guevara for clarifying these points. 
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                 and, to simplify further,           (13) 

 

which gives the much simpler equation, replacing (10): 

 

               ( )     (   )    (14) 

 

Moreover, the term    (   ) is constant across the alternatives and can therefore be 

omitted from the practical calculations. Thus, if we are using independent or with-

replacement sampling for  6, and using the brief notation   
           introduced in 

equation (3), noting that    is a constant in the estimation process, we can implement 

equation (9) as  

 

   
    

       ∑      
 

    ( ( ))      (15) 
 

This is the form we use in our practical tests. Note that        to be consistent with the 

usual constraints on structural parameters in nested logit. 

 

As mentioned above, the constraint that    is constant across the nests   is necessary to 

apply this specification consistently with Random Utility theory without introducing multiple 

levels of nesting. In mode-destination choice modelling this constraint would usually be 

applied. 

 

3.3 Set up for practical testing  

 

The practical tests reported in the following section of the paper relate to modelling the 

choice of mode and destination, an important practical issue arising in travel demand 

forecasting studies. A simple approach to sampling alternatives in these studies is to make a 

sample of destinations, including in the sampled choice set all of the modes that are relevant 

for the sampled destinations. 

 

An interesting feature of the GBA result is that, if sampling is such that no logsums require 

approximation, then no correction is required. For example, if we have a mode-destination 

choice model with destinations ‘above’ modes (i.e. the destination utility contains a logsum 

over modes) and we sample destinations but not modes, then there is no approximation of 

logsums. That is, in equation (16),    is always the complete set of alternatives (modes) in 

each nest corresponding to a destination that is sampled. But if modes are ‘above’ 

destinations (the mode utility includes a logsum over destinations) then a sampling correction 

is required. A proper investigation of mode and destination choice should investigate both 

these possibilities. The practical testing in this paper, however, investigates only the case of 

modes above destinations, where the correction is required. 

 

For the implementation of equation (16), two approaches can be considered. 

1. The logsum term    (∑    (        )    ( ) ) can be pre-calculated using 

preliminary estimates of the model parameters inside  . These logsums can then be 

used in a simple MNL to obtain an estimate of   and new estimates of the parameters 

inside  , which then permit an updated calculation of the logsums. This begins an 

iterative procedure which, perhaps with luck, will converge.  

                                                 
6
 adding the chosen alternative if it is not already selected by the sampling procedure. 
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2. A notional tree structure can be set up, with each of the alternatives in    appearing in 

a nest feeding into each of the alternatives in  . This formulation is of course more 

complicated than approach 1, but does not require iteration and does not require an 

appeal to luck to converge.  

In the practical tests we focus on the second approach. 
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Appendix: Details of Simulations 

 
A1: Independent and with and without-replacement sampling 

 

These simulations are based on 10000 draws of sets of destinations from a total set of 100. 

Destinations are located at a ‘distance’ from the origin of      √ , with   the destination 

number, the square root function giving a representation of roughly uniform distribution of 

destinations in space. Each destination is attributed a utility function of  

 

              

 

where    indicates an ‘intrazonal’ trip, i.e. with destination in zone 1; 

     are the assumed parameters of the model. 

 

In these models we set     and   is set to scale the impact of distance. In effect the 

variation of   models the variation of the average trip length relative to the size of the study 

area. Two sets of samples were drawn, each with varying values of  , one sampling 

approximately 1 in 6 destinations, the other sampling approximately 1 in 12. 

 

Independent sampling is undertaken with           ∑     ⁄  and   set to achieve a 

roughly uniform sample size. 

 

Replacement sampling is undertaken  ̃ times, with         ∑     ⁄  and  ̃ set to achieve 

a roughly uniform sample size.  

 

Sampling without replacement was done with 16 or 8 samples each time, with    

     ∑     ⁄  and the denominator reduced at each step to account for the sampling at the 

previous step. 

 

The settings of     and  ̃, the sample sizes achieved and the average coverage are shown in 

the tables below. 

 

Series 1: Sample Rate about 1:6 

 
 

Independent sampling Replacement sampling 
Without 

replacement 

    average 

sample 

average 

coverage 
 ̃ average 

sample 

average 

coverage 

average 

coverage 

–0.03 17 16.13 32.8% 23 16.58 31.3% 30.4% 

–0.05 19 16.08 54.8% 32 16.64 51.5% 50.2% 

–0.07 25 16.32 74.7% 50 16.17 69.6% 69.2% 

–0.09 36 16.22 86.3% 50 16.27 83.3% 82.7% 

-0.11 57 16.27 92.9% 80 16.24 91.2% 90.8% 
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Series 2: Sample Rate about 1:12 

 
 

Independent sampling Replacement sampling 
Without 

replacement 

    average 

sample 

average 

coverage 
 ̃ average 

sample 

average 

coverage 

average 

coverage 

–0.03 8 7.98 19.7% 9 8.23 17.7% 17.3% 

–0.05 9 8.21 36.8% 10 8.21 33.7% 32.9% 

–0.07 10 8.01 53.8% 12 8.01 51.1% 50.4% 

–0.09 12 8.09 69.7% 16 8.09 66.5% 65.3% 

-0.11 15 8.05 80.3% 20 8.05 76.7% 76.5% 

 

To avoid dependence on the precise sample sizes, a measure of ‘Effort’ was devised and 

shown in the graphs in the main text. This measure is calculated by 

 

       
 (                                )

 (                                                     )
 

 

The measure of variation shown in those graphs is  

 

           
                                          

 (                              )
 

 

A.2 Stratified sampling 

 

Stratified sampling was done only at the level of 1 in 6 destinations. 

 

Stratified sampling series 1 was done by creating 4 strata. Alternative 1 was always selected 

and the other three strata consisted respectively of the following ranges of alternatives: 2-10; 

11-30; 31-100. From each block respectively 4, 5 and 6 alternatives were sampled without 

replacement. For stratified sampling strategy 2 we increased the number of strata to 6. Still 

the first alternative was always selected. The other strata comprised respectively alternatives 

2-20; 21-40; 41-60; 61-80; 81-100. From each of these strata 3 alternatives were sampled 

without replacement. Both sampling strategies resulted in a constant number of 16 

alternatives. Note that the numbering of the alternatives means that the choice probabilities 

decline with the alternative index number. Stratified sampling series 1 retains some 

correlation of sampling probability with choice probability, but this is reduced in series 2. 

 


