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ABSTRACT 

This paper studies the modeling of multimodal choice in a railway/highway system with 

continuum park-and-ride services along a linear traffic corridor. Heterogeneous commuters 

choose travel mode among auto, railway and park-and-ride. Both the traffic congestion on 

highway and crowding effects on rail transit are considered. The highway capacity is 

assumed to be stochastic to take into account the travel time reliability on highway. 

Commuters are assumed to be distributed continuously along the corridor. A linear 

complementarity system is proposed to model the modal choice for heterogeneous 

commuters along the corridor and solve the spatial equilibrium pattern. The formulated linear 

complementarity system is transformed into a mixed integer linear program to be solved. The 

modeling approach and solution algorithm are implemented in a small numerical example. 

The resultant solutions show that direct rail mode is chosen by commuters living close to the 

CBD and park-and-ride is chosen by those far away from the city center, while in the middle 

auto mode is preferred. Furthermore, when the stochastic link capacity is considered, more 

commuters choose to use park-and-ride mode for higher reliability. 

 

Keywords: Park-and-ride service, Multimodal choice, Linear complementarity system, Travel 

time reliability, Heterogeneous commuters 

 

Introduction 

As a useful travel demand management strategy, park-and-ride services (P&R) have been 

widely used since 1930s (Noel 1988; Foo Tuan 1997; Lam et al. 2001; Hounsell et al. 2011). 

The principle of P&R service is to encourage commuters to choose combined auto and 

public transit travel mode to reduce auto traffic in the CBD area. 

Most of the previous studies are restricted to the discrete network modeling approaches, but 

the continuum modeling approaches to transportation models are now gaining much more 
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attention because of their advantages in dealing with dense-network models, macroscopic 

problems, and initial phase planning (Ho and Wong 2006). Wang et al. (2003) formulated a 

multimodal user equilibrium (UE) model for the city in the morning rush hours to determine 

the optimal P&R location and parking charge with the objectives of profit maximization and 

social cost minimization. Wang et al. (2004) considered a congested highway and a 

congestion-free railway to compare the characteristics of the modal choice equilibrium before 

and after a P&R service is introduced, and derived the optimal P&R locations and parking 

charges to maximize profit and minimize social cost. As an extension to Wang et al. (2004), 

Liu et al. (2009) relaxed two assumptions: railway is congestion-free and only one P&R 

facility is considered. A deterministic continuum equilibrium model is developed to represent 

modal choice and P&R transfer behaviors, and the model is transformed to a discrete 

problem by a supernetwork approach in the end. Although Liu et al. (2009) proposed an 

infinite mathematical programming method to formulate the similar spatial equilibrium travel 

pattern problem, the optimization formulation of the UE modal choice is not applicable for 

modeling multi-class equilibrium with heterogeneous commuters. 

This study contributes to the literature in two major aspects. Firstly, linear complementarity 

system (LCS), which belongs to a class of modeling paradigm of differential variational 

inequalities (DVI) (Pang and Stewart 2008), is adopted to formulate the multimodal choice 

behavior throughout the corridor with heterogeneous commuters. The multimodal choice on 

each home location is modeled into a complementarity problem, while the spatial interaction 

of the travel time among different locations can be characterized by ordinary differential 

equations (ODEs). Therefore, it is natural to apply the DVI paradigm to model the spatial 

equilibrium travel pattern with multimodal choice in a linear traffic corridor with continuum 

P&R services. Secondly, the travel time reliability is considered in modeling the multimodal 

choice behavior. We assume stochastic highway capacity and hence stochastic travel time 

for highway users. Commuters using highway have to reserve a time budget to make sure 

not being late with certain level of punctuality requirement. Higher level of travel time 

reliability is regarded as one of the advantages in favor of rail transit usage and taking into 

account this factor makes the model more realistic.  

 

Preliminary assumptions 

A corridor with continuous entry points to the highway, railway, and P&R transfer services is 

considered, and CBD is assumed to be the destination and only exit point for all the 

commuters, as is shown in Figure 1. 

 

Figure 1 - A corridor with multimodal choice 
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With continuum modeling approach applied, it is assumed that both the entry points and P&R 

interchange services are infinite along the corridor, and thereafter, commuters can choose 

among three modes: auto, railway and P&R at any entry point to go to CBD. P&R users can 

drive private car from home and transfer to railway at any location to complete the trips. Let   

represent the length of the corridor,    denote the P&R facility location, which is the distance 

from the location to CBD. The P&R facilities are assumed to be distributed continuously 

along the corridor. It is also assumed that commuters are continuously distributed along the 

corridor with travel demand density of       at location  , wherein   is the distance from the 

location to CBD.   

Furthermore, heterogeneity is considered in this paper. It is assumed that heterogeneous 

commuters have different punctuality requirements when considering travel time reliability. It 

is also well known that travelers may value travel time differently, depending on the income 

level or trip characteristics, and thus heterogeneous commuters with different value of time 

have to be considered.   

We denote     
     and     

     as the travel demand density (number of travelers per unit 

distance) for users choosing auto and rail mode at location   respectively, and     
 

       as 

the demand density of P&R users driving onto highway at   and transfer at P&R location    

to complete the rest part of the trip by train, wherein {   } represents the commuter group 

with    and    as the punctuality probability requirement and value of time respectively.  

It should be noted that    is corresponding to    to represent the heterogeneous risk 

aversion. It is also assumed that the total demand density for different commuter group 

{   } at location   is given as     
    ,          ,          , so we have  

    
         

     ∫    
 

(    )   

 

 

     
                                             

 

General travel cost along the corridor 

General travel cost by auto 

Travel time budget 

When travel time on highway is considered as stochastic, travelers would reserve some 

additional time to avoid late arrival. As is done in Lo et al. (2006), travel time budget can be 

expressed as 

                                                                                    

where    is travel time budget, T is the travel time on highway,      and    are the 

expectation and standard deviation of T respectively,   is a parameter related to the reliability 

of punctual arrival  , which can be written as 

 {    }   {          }                                                        

Rearranging Eq.(3) to obtain: 
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 {
      

  
  }                                                                     

Since 
      

  
 is the standard normal variable, the cumulative distribution function      of the 

standard normal variable can be written as 

                                                                                       

Accordingly, larger   leads to higher reliability  , and vice versa.  

Stochastic link capacity 

Events as unpredicted vehicle breakdowns, traffic signal failures and minor traffic accidents, 

may occur on the transportation network and result in reducing the effective link capacities 

and degrading the performance of the network (Lo and Tung 2003). Therefore, it is important 

to consider such impact into the transportation network modeling for design and planning 

purposes. It is further assumed that the link capacity    at location   is the single source of 

travel time uncertainty and the probability distribution of the link capacity at each location is 

known and given. For simplicity, uniform distribution is adopted here for illustration purpose. 

If the maximum capacity and the minimum capacity are denoted as      and      

respectively, the uniform probability distribution function can be described as in Eq.(6). 

      
 

         
     [         ]                                            

where        and       . 

Let           represent the travel time driving unit distance at location  , where       is the 

traffic volume at location  . As is done in Glen (1987), the travel time is supposed to be fully 

described by a first-order model where    .: 

  (     )    
 [   (

     

  
)

 

]                                                      

where    
  is free flow travel time per unit of distance,   and    are parameters. 

Assuming the link capacity is independent of the traffic volume on it (Lo and Tung 2003), we 

can derive the expectation and variance of travel time on one unit distance at location  .  

 (  (     ))    
    

        (  
  )    

  
  
                      

         
                

 (  (     ))    
  

       
  (  

  )    
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  )   (  
  )
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]
               

In order to analyze the travel time between any different locations on highway, we divide the 

highway into several unit sections and assume    (     ) is the travel time from section    to 

section   , then we can get 

   (     )  ∑  (      )
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To calculate the covariance among the travel time on different link segments, we need to 

know covariance among the stochastic link capacities at different sections along the corridor, 

which can be obtained and calibrated from the real historical data and is assumed to be 

given in this study. In most of the previous studies, the distributions of link capacities are 

assumed to be independent, and this assumption should be reasonable for relatively few 

network disruptions in the form of traffic incidents, so the covariance part in Eq.(12) will be 

zero based on this assumption. 

General travel cost 

Since the traffic volume at location   on highway is the accumulation of travelers choosing 

auto mode from the boundary of the corridor to location   and the travelers choosing P&R 

with the entry points before location   and transfer points after location  , therefore the total 

traffic volume of all commuter groups at location   on highway can be calculated as      . 

      ∑ ∑(∫     
    

 

 

   ∫ ∫     
 

(    )
 

 

 

 

     )

 

   

 

   

                       

The general travel cost by auto from location   to CBD for commuter group {   } is shown 

as Eq.(14).  

    
       (  

     
  

     
    )          

                                     
 

wherein    is the value of time for commuter group {   },   
   represents the access time 

from home to highway,   
  

 is the egress time from parking place to workplace, and     
     is 

the travel time budget for commuter group {   } from location   to CBD. The operating cost 

is assumed to be linear function of the travel distance as         
    , where   

  is 

constant, which may include fixed part of the tolls, and    presents the variable part of the 

operating cost from location   to CBD, such as the fuel, insurance and variable parts of the 

highway tolls, etc., and   is the operating cost per unit distance of traveling.   
  denotes the 

parking fee at CBD. 

General travel cost by railway 

Similar to auto users, the total traffic volume of all commuter groups at location   by railway 

can be calculated as      . 

      ∑ ∑ (∫     
    

 

 

   ∫ ∫     
 

(    )
 

 

 

 

     )

 

   

 

   

                         

Let   (     ) be the crowding cost on the train per unit distance at location  . As is done in 

Huang (2000), a simple linear function with respect to traffic volume on the train is applied to 

describe the crowding cost,   
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  (     )                                                                          

where      are the calibrated parameters. Therefore, the crowding cost for commuters 

traveled from location   to CBD should be 

      ∫ {   [∑ ∑ (∫     
    

 

 

   ∫ ∫     
 

(    )
 

 

 

 

     )

 

   

 

   

]}   
 

 

              

The general travel cost by rail transit from location   to CBD is described as follows: 

    
       (  

     
   

 

  
)                                                          

where   
     

   represents the access and egress time, 
 

  
 is the travel time from location   to 

CBD by train, wherein    is the average travel speed of the train.         
     is assumed 

to describe the fare structure of railway services, where   
  is the fixed part of the fare, 

and   is the railway fare per unit distance. 

General travel cost by P&R 

The general travel cost by P&R is as below,  

    
 

(    )      
     (    

         
 (  ))    (    )    (  )

            
  

    
  

  
   (  )    (  )      

  
                      

where     
         

 (  ) and   (    ) are the travel time budget and operating cost from 

location   to P&R facility location   .        represents the parking fee at P&R facility 

location   , which can be calculated as   (  )    
   

  
 

    and assumed to be given (Liu et al. 

2009).   
  

 is the access time from parking place to train station, and    is the inconvenience 

or disutility cost. 
  

  
 is the travel time from P&R location    to CBD by train,   (  ) is the 

crowding cost from location    to CBD, and   (  ) the service fare from location    to CBD. 

 

Continuum equilibrium model with multimodal choice 

To present the continuum equilibrium model with multimodal choice, we first introduce some 

notations used throughout the paper.  

Table 1 – List of notations and descriptions 

Notation Description 

Indices  

  Index of sections,   {     } 

  Index of different punctuality probability requirement,   {     } 

  Index of different value of time,   {     } 

{m, n} Index of commuter groups 

Variables  

    
    Travel demand density of commuter group {   } choosing auto mode at section   

    
    Travel demand density of commuter group {   } choosing rail mode at section   

    
    

 
Travel demand density of commuter group {   } driving from section   to   and transferring to 

railway 
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    Equilibrium cost for commuter group {   } at section   

    
    Travel time budget for commuter group {   } at section   

     Crowding cost on railway at section   

Parameters  

  Corridor length (km) 

  Section number of the corridor 

  Number of different punctuality probability requirement 

  Number of different value of time 

    
    Total demand density of commuter group {   } at section   (commuters/h/km) 

   Time to cost coefficient for commuter group {   } (S$/min) 

   Punctuality probability requirement for commuter group {   } 

   Parameter related to the reliability of punctual arrival for commuter group {   } 

  BPR function parameter 

  
  BPR function parameter, free-flow travel time (min) 

     Maximal link capacity (veh/km) 

     Minimal link capacity (veh/km) 

C Deterministic link capacity (veh/km) 

  
   Time from home to highway (min) 

  
  

 Time from parking place to workplace (min) 

  
  Fixed part of the operating cost by auto (S$/veh) 

  Operating cost per unit distance by auto (S$/km/veh) 

  
  Parking fee at workplace (S$/veh) 

  
   Time from home to railway station (min) 

  
   Time from railway station to workplace (min) 

  
  Fixed part of the railway fare (S$) 

  Railway fare per unit distance (S$/km) 

   Average speed of the train (km/min) 

  Parameter of the crowding cost  

  Parameter of the crowding cost  

  
  

 Time from parking place at P&R location to train station nearby (min) 

   Fixed transfer disutility cost (S$) 

We model the UE conditions with complementarity formulation as following: 

      
         

         
      

      
         

         
      

      
 

(    )      
 

(    )      
      

      
         

         
     ∫     

 
(    )

 

 

        
      

  [   ]       [                          

                      

where     
     represents the minimum general travel cost among the three modes at 

location   for commuter group {   }. The first three constraints in (20) make sure that at 

equilibrium, the individual travel cost by a mode at any location should be the minimum 

among the three modes if the mode is used at the location. The last complementarity 

constraint entails that total users by the three modes in group {   } amounts to the given 

total travel demand density     
  at location  . 
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LCS formulation 

We seek to formulate the spatial equilibrium traffic assignment with multimodal choice into 

LCS. Firstly, we take second order derivative of travel time budget  

    
     on highway with respect to   (Appendix 1 provides the detailed derivation).  

      
    

   
  [

  
                 

         
     

  √
 

        
 (

             

         
)
 

]  

∑ ∑ (    
     ∫     

 
(    )

 

 

    ∫     
      

 

 

  )

 

   

 

   

         

For simplicity, using      to denote the constant part in Eq.(21), 

     [
  
                 

         
     

  √
 

        
 (

             

         
)
 

]              

then we can get 

      
    

   
       ∑ ∑(    

     ∫     
 

(    )
 

 

    ∫     
      

 

 

  )

 

   

 

   

         

Similarly, taking second order derivative of the crowding cost on railway (Appendix 2 

provides the detailed derivation), then we can get 

       

   
   ∑ ∑(    

     ∫     
      

 

 

  )

 

   

 

   

                                 

The above ODEs reflect the spatial interactions of the travel time and crowding cost among 

different locations respectively along the corridor. Furthermore, initial conditions and 

boundary conditions of the ODEs can be expressed as follows. 

    
                                                                              

     
 

  
        

     
   

  
                                                       

The initial conditions ensure that the travel time and crowding cost at city center will be zero. 

The boundary conditions entails that no travel demand will be generated beyond the corridor 

length  , i.e.              . 

Based on the above analysis, LCS can be used to describe the spatial equilibrium travel 

pattern with multimodal choice. The solution is to find     
    ,     

    ,     
 

(    ),     
    , 

    
    ,       so that the following conditions (A) and (B) are satisfied. 

(A) For almost all       ] 
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 (B) The initial and boundary conditions: 

        
                

     
 

  
        

     
   

  
       

                                           

Discrete approximation of the continuum model 

LCS formulated above is quite difficult to be solved due to the combination of 

complementarity conditions, ODEs and integral parts in the model. In this study, the 

numerical solution of the formulated LCS will be accomplished via a time-stepping scheme. 

Specifically, we divide the corridor length into equal length sub-intervals by a positive integer 

   , so we get the length of each section    
 

 
. Then we obtain the numerical solution of 

the LCS by computing the discretized scheme: {    
   }, {    

   }, {    
    

}, {    
   }, {    

   }, {    },   

       . 

Note that     
    

 represents the demand density for the commuters in group {   } choosing 

P&R combination mode, who get onto highway at section   and drive at least one section 

distance to transfer to transit at section  , which requires        .  

In the discretized scheme, the derivative can be approximated by the forward difference 

quotient:  

      
    

   
 

[    
            

    ]  [    
         

       ]

  
                        

       

   
 

[              ]  [              ]

  
                                 

Hence, the discretized approximation of the first two equations in condition (A) can be 

described as: 
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Noting that     
                      , the discretized equations can be converted into a 

standard form of complementarity problem, so we can obtain the following linear 

complementarity problem (LCP) in which the variables are 

(    
   )
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The initial and boundary conditions (B) can be rewritten in the following discretized form: 

      
            

    
          

      
      

               
                                                

Eqs. (34) can be substituted into (33) directly to simplify the calculation. 

Transformation of LCP to Mixed Integer Linear Program 

In this study, an equivalent mixed integer linear program (MILP) method is used to 

reformulate the LCP. Firstly, bilinear formulation approach is used to state the LCP as a 

mixed integer bilinear program (MIBLP) as follows: 

                   
                 

           
                                                          

where   presents the vector of n ones.  

Proposition 1. The solution of the proposed LCP (33) is equivalent to the solution of the 

MIBLP problem (35) with zero as minimal objective value. 

Proof. If   solves original LCP, define 

   {
                  
                           

                                                              

then the   solving (33) render zero as objective value of MIBLP problem (35). If   solves (35) 

with zero as minimal objective value, then                   . Since   is binary, so 

either    or        must be zero and another one must be one. In that case, there must be 
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one of      and   to be zero so that                   , then it also fulfills that 

          , which is the solution to LCP (33) as well. 

Let     denotes the      th element of  , (35) can be rewritten as follows: 

        ∑∑     

 

   

 

   

          

       ∑        

 

   

            

             

                                               

Finally, we apply reformulation-linearization technique (RLT) to covert the MIBLP into a MILP, 

and the proof of equivalence can be referred to Sherali et al. (1998). This method transforms 

the problem into a higher dimensional space problem such that its continuous relaxation 

approximates the closure of the convex hull of feasible solutions to the underlying mixed 

integer program (MIP) problem. Specifically, multiply constrains in (35) by        and    to 

reformulate the problem, and then linearize it by substituting         . Therefore, we can 

get the equivalent MILP as follows: 

        ∑∑      

 

   

 

   

       ∑         

 

   

            

∑        

 

   

 ∑         

 

   

          

                                 

                                 

                                            

 

Numerical results 

In this section, a set of numerical results is presented in an example corridor. The corridor is 

divided into   sections, and the deterministic UE modal choice is achieved on each section. 

On each section the link capacity is stochastic and follows uniform distribution. Here we 

analyze a single user class problem with the following parameter values:     ,     , 

     ,      ,   
   ,           ,          ,       ,   

    ,   
  

  ,   
   , 

      ,   
   ,   

     ,   
    ,   

     ,       ,       ,        ,          , 

  
  

  ,        and          for           . 

The corridor is divided into 10 sections, and sections from 1 to 10 represent the locations 

from CBD to the boundary of the corridor. First of all, we examine the modal split pattern at 

equilibrium for the scenario considering travel time reliability with punctuality requirement 

     . 
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Table 2 – Modal split pattern at equilibrium status with stochastic link capacity (commuters/h/km) 

Section Auto user density Railway user density P&R user density 

1 0 800 0 

2 0 800 0 

3 0 800 0 

4 0 800 0 

5 800 0 0 

6 492.9 0 307.1 

7 0 0 800 

8 0 0 800 

9 0 0 800 

10 0 0 800 

The modal split pattern at equilibrium with stochastic link capacity is illustrated in Table 2. 

Rail mode is chosen at locations close to CBD, where the traffic congestion on highway is 

tremendous. On the contrary, both auto mode and P&R are used far away from CBD where 

highway traffic congestion is light. Specifically, all users choose railway from location 1 to 4, 

and auto is used at location 5 and 6, where the transfer cost of P&R mode is too high to be 

offset and commuters prefer direct auto mode. At locations that are close to city boundary, 

from location 7 to 10, P&R is the best choice, where commuters drive the car in a relatively 

light traffic condition on the highway that are far from the city center and then take advantage 

of public transit to avoid traffic congestion around the city center. 

 

Figure 2 - General cost of three modes at equilibrium status with stochastic link capacity 

Figure 2 depicts the general cost by three modes along the corridor. From CBD to the 

boundary of the corridor, the general cost of railway is less than other modes at the first half 

corridor, and then it takes lowest general cost by auto mode from location 5 to 6. From 

location 7 to the corridor boundary, P&R is preferred according to its lowest general cost. 

The general cost of P&R at CBD (location 1) is not available since no one will choose P&R at 

destination as assumed in the previous content.  
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Table 3 – Comparison of mode split patterns between DLC and SLC (commuters/h/km) 

Section 

DLC 

 

SLC (     ) 

Auto user 
density 

Railway user 
density 

P&R user 
density 

Auto user 
density 

Railway user 
density 

P&R user 
density 

1 0 800 0 0 800 0 

2 0 800 0 0 800 0 

3 0 800 0 0 800 0 

4 0 800 0 0 800 0 

5 800 0 0 800 0 0 

6 800 0 0 492.9 0 307.1 

7 49 0 751 0 0 800 

8 0 0 800 0 0 800 

9 0 0 800 0 0 800 

10 0 0 800 0 0 800 

DLC - deterministic link capacity, SLC - stochastic link capacity 

Table 3 compares the modal split patterns between the two scenarios of with and without 

considering the stochastic link capacity. As is shown in table 3, the resultant modal choices 

are the same from location 1 to 4 and location 8 to 10 respectively, which are the two 

extreme cases that are close and far away from the city center. In the middle of the city area, 

location 5 to 7, more commuters choose P&R when considering stochastic link capacity. The 

reasons are obvious as more travel time needs to be reserved on highway to take into 

account the travel time reliability, thus P&R is more favorable.  

 

                        DLC - deterministic link capacity, SLC - stochastic link capacity 

Figure 3 - Comparison of general costs at equilibrium status between DLC and SLC 

Figure 3 illustrates the different general costs before and after considering stochastic link 

capacity. It is obvious that all the general costs of three modes increase after considering 

stochastic link capacity because people should consider travel time budget for higher 

reliability, which results in changing the modal split pattern, and more people choose railway.  
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Finally, the comparison of mode split results with different travel time reliability requirements 

are made for sensitivity analysis. 

Table 4 – Comparison of mode split patterns with stochastic link capacity among different reliability requirements 
(commuters/h/km) 

Section 

      

 

      

 

      

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

1 0 800 0 0 800 0 0 800 0 

2 0 800 0 0 800 0 0 800 0 

3 0 800 0 0 800 0 0 800 0 

4 0 800 0 0 800 0 0 800 0 

5 800 0 0 800 0 0 800 0 0 

6 492.9 0 307.1 715.6 0 84.4 782.3 0 17.7 

7 0 0 800 0 0 800 0 0 800 

8 0 0 800 0 0 800 0 0 800 

9 0 0 800 0 0 800 0 0 800 

10 0 0 800 0 0 800 0 0 800 

Table 4 shows the modal split patterns at equilibrium status with different travel time 

reliability requirements, it shows that the number of auto users decreases in terms of the 

growing of reliability requirement, while the amount of P&R mode users increases. It is easy 

to understand this situation since higher reliability requires more travel time budget and 

higher general cost by auto, in this case some commuters choose rail transit or P&R mode 

instead. 

To learn how crowding effect on railway influences the mode split pattern, different 

parameter values of the crowding cost function in Eq.(16) are used and the comparisons of 

the results are shown in Table 5. 

Table 5 – Comparison of mode split patterns with different parameter values of crowding effect on railway 
(commuters/h/km) 

Section 

       ,          

 

       ,           

 

       ,           

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

Auto 
user 
density 

Railway 
user 
density 

P&R 
user 
density 

1 0 800 0 0 800 0 0 800 0 

2 0 800 0 0 800 0 0 800 0 

3 0 800 0 0 800 0 0 800 0 

4 576.2 223.8 0 0 800 0 0 800 0 

5 800 0 00 800 0 0 54.5 745.5 0 

6 800 0 0 492.9 0 307.1 0 0 800 

7 502.9 0 297.1 0 0 800 0 0 800 

8 698 0 102 0 0 800 0 0 800 

9 0 0 800 0 0 800 0 0 800 

10 0 0 800 0 0 800 0 0 800 

From Table 5, one can find that, as the parameter values in the crowding cost function 

decrease, crowding cost goes down and more people choose rail and P&R modes while less 

people choose auto mode.  
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Conclusions 

In this paper, the spatial equilibrium travel pattern with multimodal choice is formulated into 

LCS, and then it is transformed into an equivalent MILP by a discrete approximation method. 

A numerical example is conducted to compare the equilibrium patterns before and after the 

stochastic link capacity is considered, and the commuters’ modal choice and P&R behaviors 

are characterized and analyzed. Numerical results show that public transit is preferred by 

users living close to CBD, while P&R mode is the prior choice for commuters far from CBD, 

and auto is also used around the middle part of the corridor, where the general cost of P&R 

is higher than direct auto mode in terms of the high transfer cost of P&R. In addition, when 

considering higher travel time reliability, more commuters will transfer from auto mode to 

P&R since the increase of general cost is so little that it can be ignored compared to the 

large increase of reliability. 

It is proved in this study to be a successful attempt to apply the DVI modeling approach to 

model spatial equilibrium travel pattern with multimodal choice in a metropolitan area. 

However, only static equilibrium pattern is described. In the future study, dynamic elements 

will be introduced to model a dynamic spatial equilibrium with multiple transportation modes 

in a traffic corridor. 

 

Appendix 1. Deriving the second order derivative of     
     

Since the travel time function is continuous and partial derivable with respect to  , we can get 

the second order derivative of the travel time budget on highway. 

The expectation of travel time       from location   to CBD is as below, 
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According to Theorem 1 stated below, the derivative of  (     ) can be derived. 

Theorem 1. If   is continuous on [   ], then the function   defined by 

     ∫       
 

 

                                                             

is continuous on [   ], and differentiable on      , and           . 

In this study, the travel time function is continuous, taking first order derivative of the 

expectation function, we get 
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As for the double integral ∫ ∫     
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Then the second order derivative of the expectation function can be derived. 
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Similarly, we can get the second order derivative of the standard deviation function.  
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Taking second order derivative of Eq.(44), we get 
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Finally we can get the second order derivative of the travel time budget function as follows: 
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Appendix 2. Deriving the second order derivative of       

As for the crowding cost on railway 
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According to Theorem 1, the first order derivative of       can be derived. 
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Then the second order derivative of Eq.(49) can be derived as below. 
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