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ABSTRACT  
Climate change is a prevalent issue facing the world today. Unexpected increase in rainfall 

intensity and events is one of the major signatures of climate change. Rainfall influences traffic 

conditions and in turn traffic volume in urban arterials. For improved traffic management under 

adverse weather conditions, it is important to develop traffic prediction algorithm considering 

the effect of rainfall. This inclusion is not intuitive as the effect is not immediate and the 

influence of rainfall on traffic volume is often unrecognizable in a direct correlation analysis 

between the two time-series datasets; it can only be observed at certain frequency levels. 

Accordingly, it is useful to employ a multiresolution prediction framework to develop a weather 

adaptive traffic forecasting algorithm. Discrete Wavelet Transform (DWT) is a well-known 

multiresolution data analysis methodology. However, DWT imparts time-variance in the 

transformed signal and makes it unsuitable for further time-series analysis. Therefore, the 

stationary form of DWT known as Stationary Wavelet Transform (SWT) has been used in this 

paper to develop a neuro-wavelet prediction algorithm to forecast hourly traffic flow 

considering the effect of rainfall. The proposed prediction algorithm has been evaluated at two 

urban arterial locations in Dublin, Ireland. The study shows that the rainfall data successfully 

augments the traffic flow data as an exogenous variable in periods of inclement weather, 

resulting in accurate predictions of future traffic flow at the two chosen locations. The forecasts 

from the neuro-wavelet model outperform the same from the standard Artificial Neural Network 

(ANN) model. 

Keywords: Traffic Flow Forecasting, Weather Adaptive Algorithms, Stationary Wavelet 

Transform, Artificial Neural Networks, Autocorrelation Function. 
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INTRODUCTION 
  

Intelligent Transportation Systems (ITS) is a broad spectrum of advanced technologies 

designed to improve sustainability in existing transportation network by improving efficiency of 

traffic operationalization and management. An important aspect of ITS is Advanced Traffic 

Management Systems (ATMS) and for ATMS to function efficiently, information about the 

actual and the near-term future traffic state is critical. This necessitates the ability to make and 

continuously update predictions of traffic flows into the future [1], [2]. Traffic flow prediction has 

become an active field of research over the last fifteen years.  

There exists numerous parametric and non-parametric approaches for predicting traffic flow in 

short-term future. The predominant non-parametric approach, studied in the existing literature 

on traffic flow forecasting, is the Artificial Neural Network (ANN) algorithms. Conventional ANN 

structures, such as the Feed Forward Back Propagation Neural Network (FFBPNN) algorithm 

have been utilized widely by researchers to predict traffic flow in short-term future [3]-[6]. Apart 

from the conventional ANN, usage of non-conventional ANN structures [7], such as 

time-delayed ANN [8], recurrent neural networks [9] and genetically optimized neural networks 

[10], [11], are well-known in this field. Hybrid ANN structures (ANN structures used in 

conjunction with other signal processing algorithms) are also well-known for their applicability 

in traffic flow predictions. Spectral basis ANN [12], ANN combined with a fuzzy modeling 

approach involving Kalman filtering [13], ANN combined with principal component analysis [14] 

and pattern-based ANN [15] are a few examples of such studies. The different structures and 

applications of ANN in traffic forecasting have established the versatility of these models 

compared to other existing methodologies. Due to their ability to predict precisely, to adapt and 

to be flexible for use in both univariate and multivariate paradigms, the ANN algorithms have 

been chosen for modeling traffic flow in this paper. A comprehensive review of the different 

approaches and applications of ANN in traffic prediction is provided in [16]. 

The Wavelet Transform (WT) [17], [18] is a popular signal processing technique which has 

been used in conjunction with ANN for various purposes in transportation research. One of the 

first instances of the use of WT combined with ANN in the transportation field is the work on 

utilization of Discrete Wavelet Transform (DWT) for data filtering to improve the performance of 

a neuro-fuzzy ANN incident detection algorithm [19]. Other examples include developing a 

wavelet energy algorithm featuring Radial Basis Function Neural Network (RBFNN) for fast 

incident detection on rural and urban roads [20] and using WT with Recurrent Neural Networks 

(RNN) for online modeling and control of traffic flow [21]. In transportation literature WT has 

been mainly employed as a denoising procedure as the coefficients generated using DWT are 

non-stationary in nature and hence the regular time-series prediction algorithms cannot be 

used successfully with DWT coefficient data series. To eliminate the problem of 

non-stationarity in time-series datasets decomposed using DWT, a novel redundant WT (also 
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referred to in the literature as nondecimated WT, stationary WT (SWT) or a-trous algorithm) 

has been introduced by researchers in different fields [22], [23]. In summary, the trend in recent 

years has been to use SWT, a stationary version of the DWT, to develop robust and efficient 

time-series prediction algorithms. This relatively new trend is well developed, as seen in 

references [22]-[24], and the variety of fields in which it has been successfully implemented 

displays the model’s generalizability. In the field of traffic flow forecasting, SWT has been used 

for denoising traffic volume time-series data from highways, prior to prediction with 

self-organizing ANN [24]. However, the multiresolution structure of SWT, involving 

independent modeling of the higher and lower resolution components, has yet to be exploited 

in an urban arterial traffic prediction framework.  

In this paper, the multiresolution structure of SWT is used to its fullest potential in developing a 

weather adaptive neuro-wavelet traffic forecasting algorithm which takes into account the 

effect of weather at different resolution levels. The effect of rain on travel demand and traffic 

accidents has been confirmed [25]. The study illustrated that rain had a very real effect on 

travel demand, with the demand decreasing with increasing rain and it was also determined 

that there are more accidents during rainy conditions. Findings in a technical report [26] identify 

that adverse weather reduces the capacities and operating speeds on roadways, resulting in 

congestion and productivity loss. With regards to weather conditions affecting lane speed, an 

investigation determined that the variation of lane speed is different in fine and adverse 

weather conditions [27]. The effect of weather on traffic congestion has also been investigated 

and it was found that rain had a clear extend effect on morning peak congestion [28]. It has 

also been determined that including the effects of weather in ARIMA forecasting models can 

result in improvements in forecast accuracy [29]. These conclusions suggest that rain has a 

definite impact on traffic flow. In this regard, it was thought of as imperative to develop a traffic 

flow forecasting model that takes into account the weather conditions of the forecasted time 

interval. It is urgent to develop this model because the presence of climate change decrees 

that many locations around the world will experience longer and more intense periods of 

inclement weather. Therefore, with the likelihood of more regular precipitation in many areas, it 

is necessary to be able to factor in the effect of various levels of precipitation on traffic flow 

conditions. In this work, the effect of rainfall on traffic volume has been investigated at different 

resolution levels and incorporated in the prediction model accordingly.  

The work in this paper is organized into four sections. Following the introduction in Section 1, 

Section 2 describes the multiresolution weather adaptive traffic prediction methodology 

including the theory behind the SWT and ANN algorithms. Section 3 discusses the traffic flow 

and precipitation data used in modeling along with the results of the prediction algorithms. The 

paper is concluded in Section 4. 
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Methodology 
 

This section contains a brief description of the theory behind SWT and ANN algorithms used in 

this paper and a detailed description of the proposed neuro-wavelet prediction framework. 

 

Theoretical Background 

SWT has been used to decompose hourly traffic flow and rainfall time-series datasets. ANN 

based prediction algorithms were used to predict the traffic flow time-series in near future. 

Section 2.1.1 covers the SWT theory, while the ANN structure is discussed in section 2.1.2. 

 

Stationary Wavelet Transform 

The discrete wavelet transform (DWT) (Mallat, 1989) is a WT with a discrete-time mother 

wavelet, a non-zero integer dilation (scale) parameter and a discrete translational parameter. 

Generally in DWT, the dilation parameter is a power of 2 indicating dyadic scales. The DWT of 

a time-series signal, ( )x t , can be approximately described as the discretized form of the 

following:  

,( , ) ( ), ( )a bW a b x t t
                     (1) 

where, , ( )a b t is a discrete wavelet, the dilation parameter 2 ja   and the translation 

parameter 2 jb k . The discrete wavelet 
, ( )j k t  can be defined as, 

/2

, ( ) 2 (2 )j j

j k t t k   
                     (2) 

Here, j denotes the scale and k denotes the position. In DWT the time-series or the signal is 

essentially simultaneously filtered through a high-pass and a low-pass filter in this process. 

The low-pass filter produces the approximation coefficients and the high-pass filter produces 

the detail components. Any low-pass filter which satisfies certain conditions can be considered 

as a scaling function and the scaling function, ( ),t  can be convolved with the signal, ( )x t , to 

produce the approximation coefficients,  

/2

,( ) ( ), ( ) ( )2 (2 )j j

j j kc k x t t x t t k dt 


 


                         (3) 

Similarly, the detail coefficients generated by filtering through the high-pass filter can be 

defined as, 

/2

,( ) ( ), ( ) ( )2 (2 )j j

j j kd k x t t x t t k dt 


 


                        (4) 

The original time-series signal can be represented as, 

0

0 0 , ,( ) ( ) ( ) ( ) ( )
j

j j k j j k

k j k

x t c k t d k t 
 

  

                            (5) 
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In the multiresolution analysis, the approximation component at level j, 
jc , can be further 

decomposed into the approximation and detail components at the next level, j+1. Equation (6) 

display the formulae required for extending the coefficient calculation at further decomposition 

levels for the approximation and detail cases respectively.  

1 0

1 1

( ) ( 2 ) ( )   

and,  ( ) ( 2 ) ( )

j j

n

j j

n

c k h n k c n

d k h n k c n













 

 





                           (6) 

0

1

( ) 2 ( ) (2 )   

and,  ( ) 2 ( ) (2 )

n Z

n Z

t h n t n

t h n t n

 

 





 

 




                           (7) 

At each level of decomposition, convolution of the approximation coefficients at the previous 

level with the time reversed filters, 0 1( ) and ( ),h n h n  followed by downsampling produces the 

approximation and detail coefficients at the next level respectively (equation 7). Approximation 

and detail coefficients (
jc  and 

jd  ) of a signal x(t) are not the same length as the original 

signal. For a finite even-length 0 ( )h n ,  

1 0( ) ( 1) ( )nh n h N n          (8) 

where, N is any odd number; the high-pass and the low-pass filters are in reverse order and in 

alternate signs. These filters can be called quadrature mirror filters. 

In a DWT, x(t) is convolved with filters and then decimated. This decimation removes the 

time-invariant structure. At every step of the decimation process, either the odd indexed 

elements or the even indexed elements are chosen and the rest is discarded. However, 

synthesizing the approximation and details components, or the inverse DWT (see, equation 5) 

removes the time-variance introduced through downsampling. 

The presence of downsampling in DWT means that the time-invariant structure of the 

time-series, x(t), is altered through the transform. However, for all practical time-series 

modeling related purposes it is important to achieve or retain the stationarity property of the 

signal. Therefore, methods were devised to incorporate the property of shift-invariance in WT.  

To retain the time invariance structure of the dataset, DWT can be performed without 

decimations through the algorithm proposed by Nason et al. [30] and this transform is termed 

as SWT (or  -decimated WT, or shift-invariant WT). The SWT structure is shown in Fig. 1, 

where time-invariant coefficients are produced in a similar fashion as DWT without any 

decimation operation.  
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Figure 1 - Stationary Wavelet Transform Decomposition Tree 

 

The SWT is obtained by convolving the signal x(t) with the appropriate filters as in the DWT but 

without downsampling. Equation (9) represents the process of generating up-sampled 

approximation and detail coefficients through SWT. 

 

 

1 0

1 1

( ) ( 2 )

, ( ) ( 2 )

j

j j

l

j

j j

l

c k h l c k l

and d k h l c k l













 

 




        (9) 

The approximation and the details coefficient obtained through SWT can be synthesized 

through Inverse SWT (ISWT) to reconstruct the original signal. The crucial result of this is that 
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the coefficients of the approximation and detail at each level are the same length as the original 

signal. For further details on SWT, [30] can be consulted for a thorough description of the 

mathematical theory.  

 

Artificial Neural Network Algorithm 

ANN is a statistical data mining tool which involves a network structure inspired by the 

biological neural networks [31]-[33]. A brief description of this ANN structure is provided here. 

ANN generally consists of a set of inputs or input vectors (N), which are then multiplied by a set 

of weights, to generate a net input. A bias is added to the net input and the result is put through 

an activation function to produce an output from the network. The ANN algorithm used in this 

paper follows a FFBPNN structure with a unique input vector formulation. The FFBPNN 

structure was chosen as it shows comparable accuracy with other more complex NN 

structures [34]. Therefore, to improve the ease and speed of development, FFBPNN was used 

in this paper without compromising on accuracy compared to more complex NN structures. 

FFBPNN consist of both a forward and backward phase. Firstly, the Feed Forward (FF) phase 

involves the network receiving the input data and passing it to the hidden layer of the network. 

The input vector of the FFBPNN structure in this paper was generated using an autocorrelation 

based variable reduction technique. The process involves plotting autocorrelation coefficients 

against time lag for a stationary traffic flow time-series (to ensure stationarity, the mean is first 

subtracted from each observation of the traffic flow time-series to be analyzed). These 

autocorrelation coefficients measure the correlation between observations at different lags and 

provide useful descriptive information about the properties of the time-series data. The lag 

points with high autocorrelation values were chosen as the most influential data points to be 

used to predict traffic flow in the future. It is expected that these are the points which have the 

most influence on the near-term future prediction of traffic flow data. Output values are 

calculated by summing up the weighted inputs of the input layer and passing these 

summations through the activation function, a log-sigmoid function in this case. After the 

forward pass of the inputs, the Back Propagation (BP) phase of the network compares the 

calculated network outputs, 
pqa , with the desired or target values, 

pqt , and is an iterative 

optimization of the error function that represents the performance of the network. This function 

of error, E, is defined as  

      
2

1 1

0.5 ( )
MN N

pq pq

p q

E t a
 

 
  

 
                       (10) 

The partial derivative of this error function gives a direction of steepest descent and from this, 

the corrections to the weights of the network are determined for each iteration. In summary, a 

difference between the network output and the target output results in the gradient descent 

algorithm adjusting the connection weights ( 1 2, , , MNw w w ) of the network, in an attempt to 

bring future network outputs more in line with the desired outputs i.e. teaching the network.  
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The Levenberg-Marqaurdt (LM) algorithm [35], [36] is used with the FFBPNN in this paper as 

to optimize the error function. This algorithm is an iterative optimization technique that locates 

the minimum of a multivariate non-linear function. Rewriting the standard FFBPNN error 

function as a function of the weights of the network results in Equation 11: 

  2

1 1

( ) ( ) 1
( ) ( )  

2 2 2

MN NT T T

pq pq

p q

f t a

 

   
E E E W E W

W                       (11) 

where 1 2[ , , , ]T

pw w wW
, 11[ , , ]MN Ne eE

  

The weight updation is then achieved as, 

1( 1) ( ) ( )T T

k k k kk k   W W J J J E                      (12) 

where the Jacobian matrix J , contains the first derivatives of the network errors with respect to 

weights and biases, and E is a vector of network errors. T
J J  is positive definite, but if it is not, 

then some perturbations made into it control the probability of it being non-positive. Thus, 

      1( 1) ( ) ( )T T

k k k kk k     W W J J I J E                      (13) 

The quantity   is a learning parameter which decreases as the iterative process approaches 

to a minimum.  

In summary, the ANN model in this work uses autocorrelated input vectors as input to a 

FFBPNN structure with LM algorithm applied for training. Therefore, the forecasts in this work 

are computed using an input dataset composed of previous observations which are highly 

correlated with the recent data. This framework hugely improves the computation time of the 

network as the size of the input vector, and hence the number of neurons in the network setup, 

is reduced considerably [34]. Hereafter, this FFBPNN structure involving autocorrelated input 

vector has been labeled as Autocorrelation Neural Network (ACNN). 

 

Neuro-Wavelet Prediction Framework 

A schematic of the prediction framework is shown in Fig. 2. The proposed framework uses 

SWT to decompose traffic flow and precipitation time-series data into approximation and detail 

components. These components are then predicted individually using separate ACNN models, 

with the forecasted components then recombined using an inverse SWT (ISWT). This 

recombined and reconstructed time-series is the predicted traffic flow. A novel element of the 

work is the method whereby precipitation data is used to compliment historical traffic flow data 

as an additional input to the ACNN forecasting models to develop a weather adaptive traffic 

prediction algorithm. Accordingly the proposed framework comprises of two parts: One part is 

a Dry model where traffic flow is predicted using a stationary neuro-wavelet algorithm. The 

other part is a Wet model which predicts traffic flow utilizing both traffic flow and rainfall 

information. The Wet model is activated if rainfall is expected in the forthcoming hour, based on 

local weather forecasts. The following two subsections describe the Dry and Wet forecasting 
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models.  

 

 

Figure 2 - Stationary Neuro-Wavelet Prediction Framework 

Dry Model 

The Dry forecasting model predicts traffic flow in near future using current and recent past 

observations of the same. The first step of the procedure is to decompose traffic flow data 

using SWT, to an optimized level, j. The approximation and detail components at all levels of 

decomposition are then forecasted with individual ACNN models, as seen in Fig. 2. These 

separately forecasted components are then reconstructed using ISWT. The recombination of 

the separate approximation and detail elements in this way produces a final forecasted 

time-series, of the same order as the original hourly traffic flow time-series input to the model. 
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Wet Model 

The Wet forecasting model follows the same basic idea as in the Dry model. However, it is 

unique in incorporating the rainfall data to augment the historical traffic flow data as an 

extraneous variable for predicting future traffic flow in wet conditions. The current and 

time-lagged correlation between traffic flow and precipitation time-series can be assumed as 

an indicator of how much traffic flow is affected by rainfall. This relationship can exist at 

different frequency levels and by exploiting the multiresolution framework of SWT, the 

correlation between the two aforementioned time-series has been calculated for the original 

time-series datasets as well as at different levels of approximation and detail components. The 

component series showing maximum correlation between traffic and rainfall data have been 

used as input to the ACNN structure. In most cases, it has been observed that the 

approximation coefficients of obtained by decomposing the traffic flow and rainfall time-series 

show the maximum correlation. Therefore in the Wet model as described Fig. 2, the 

approximation coefficients for both rainfall and traffic flow data are presented as input to the 

ACNN structure at each level of decomposition, for illustrative purposes. The ACNN algorithms 

in Wet model are multivariate models, including both rainfall and traffic flow as input, and 

producing future traffic flow levels as output. 

 

EVALUATION OF NEURO-WAVELET MODEL 
 

Data 

The prediction methodology described in the previous section is evaluated using real-time 

traffic flow data from urban arterials along with hourly precipitation data in Dublin, Ireland. In 

the following subsections the description of the modeled traffic flow data, rainfall data and the 

model fitting procedure are described. The data modeled using the proposed prediction 

methodology is obtained from the Sydney Co-ordinated Adaptive Traffic System (SCATS) 

database in the Traffic Control Centre of Dublin City Council. The SCATS database constitutes 

of traffic condition related information from all the major urban arterials in Dublin city-center 

and the surrounding suburbs. SCATS datasets contain traffic volumes aggregated over every 

15 minutes in every lane of a given junction. For this paper, hourly traffic data from January 

2009 were collected from two SCATS sites, TCS 106 and TCS 125, as seen in Fig. 3.  
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Figure 3 - Location of Data Collection Sites 

Both these sites lie to the west of Dublin City Centre. TCS 106 is a 5 phase junction consisting 

of a T-junction where the Kylemore Road meets the Lucan Road. TCS 125 is a 4 phase 

crossroads where the Nephin Road intersects the Navan Road. It is expected that both sites 

will be influenced by commuter traffic, with TCS 106 and TCS 125 being situated close to the 

two major commuter routes, N4 and N3 respectively, in and out of the city. 

It is important to note that the traffic flow observations recorded on a weekday are substantially 

different to those traffic observations recorded on the weekend. Therefore for ensuring 

consistency in within-day traffic dynamics, only weekday traffic condition observations are 

modeled in this paper. Fig. 4 shows typical traffic flow levels for a weekday at each of the two 

junctions modeled. Typically the values are highest around 08:00 hrs as commuters travel to 

work during the morning peak period and again at 17:00 hrs during the evening peak period, 

while the roads are quietest from midnight until approximately 06:00 hrs the next morning. It is 

also evident from Fig. 4 that TCS 106 encounters heavier traffic than TCS 125. Also, the 

bimodal nature of the traffic flow at TCS 106 indicates that the junction is more affected by 

commuter traffic. The traffic flow time-series for TCS 125 does not display such prominent 

peaks and troughs during expected commuter travel hours. The graph shows that the variation 

of traffic volume at TCS 125 is more stable, with a fairly consistent flow of traffic from 07:00 hrs 

to 19:00 hrs. 
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Figure 4 - Typical Weekday Hourly Traffic Flow Data 

 

 

Figure 5 - Barchart of Hourly Rainfall Data for the first 10 Weekdays of 2009 
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The rainfall data used in this model were collected from the Phoenix Park weather station, as 

provided by Met Eireann, the Irish National Meteorological Service [37]. The weather station is 

located in close proximity of the two chosen traffic junctions which ensures that local rainfall 

events which may affect the traffic flow at the two chosen sites will be reflected in the rainfall 

records of the chosen weather station (see Fig. 3). Hourly rainfall records were available from 

the Phoenix Park weather station and hence, traffic flow data at hourly resolution were used for 

modeling in this paper. The rainfall levels (measured in mm/hr) during the weekdays between 

1st and 14th January 2009 are shown in Fig. 5. Generally January and February are the 

wettest months of the year in Dublin, however at this instance that there were not many rain 

events during the majority of this time period as can be seen in the figure. 

 

TRAFFIC MODELING USING SWT-ACNN STRUCTURE 
 

Traffic flow time-series data are modeled using an SWT-ACNN structure for future predictions. 

The framework consists of two parts, as discussed in the methodology, the Dry model and the 

Wet model.  

 

Dry Model 

The proposed neuro-wavelet traffic prediction framework, employed the Dry model to predict 

traffic flow provided there were no rainfall events existing or expected in the next hour. In this 

model at the first step, the SWT involving the db3 wavelet basis function [18] was used to 

decompose the traffic flow time-series into separate approximation and detail coefficients (see 

Fig. 6). This decomposition was performed multiple times to achieve an optimum level of 

approximation for representing the within-day traffic dynamics. At each level the approximation 

coefficients were decomposed using SWT to generate approximation and details coefficients 

for the next level; the transformation was undecimated and the generated datasets were of the 

same length as the original traffic flow data. Each different component series generated 

through SWT, was modeled by an individual ACNN and the output from all ACNN structures 

were reconstructed using ISWT. In all, 240 observations of hourly traffic flow were used in this 

model. Eight days were used to train the ACNN (points 1 - 192) while the points from the ninth 

day (points 193 - 216) were used to predict hourly traffic flow levels on the tenth day (points 

217 - 240). The size of the input vectors for the ACNN prediction algorithms was dependent 

upon the results of the autocorrelation procedure on both hourly traffic flow datasets. Study of 

the autocorrelation coefficients for TCS 106 showed that 5 points from a 24 hour period were 

deemed to have an autocorrelation coefficient of sufficient size to be influential in future 

predictions. Therefore, in the prediction of traffic flow at TCS 106, the training and test datasets 

made use of these 5 influential points when creating the input vectors for the ACNN. Thus, 5 

influential historic hourly traffic flow data points were used to predict a single future hourly 



Weather Adaptive Traffic Prediction using Neuro-Wavelet Models 

DUNNE, Stephen, GHOSH, Bidisha 

14 

traffic flow value, rather than using the entire 24 points of the day at each iteration of the 

prediction algorithm. 

This procedure was repeated in steps to predict a full 24 hour period. The same methodology 

was followed for the TCS 125 traffic flow dataset, although only 3 points were deemed 

influential in this case. In case of rainfall events, the framework switched to a Wet model. The 

standard ANN model used for comparison in this work used the entire 24 points from a day for 

prediction. In this way, the SWT-ACNN model is also valuable as a model that reduces 

computational time e.g. in the case of TCS 125, the standard ANN prediction dataset was 8 

times larger than that used in the SWT-ACNN model, thus the SWT-ACNN model computed a 

prediction in a shorter time. 

 

Wet Model 

As discussed in the methodology, traffic flow is affected by weather [25] and hence rainfall data 

was included in the Wet model framework. Rainfall data time-series were decomposed using 

SWT in the same way as the traffic flow data. Current and time-lagged correlation coefficients 

were calculated to determine whether rainfall events and traffic flow were related substantially 

at different frequencies to improve the forecast accuracy. The correlation coefficients between 

rainfall data and traffic flow data at junction TCS 106 are shown in Table 1, as an illustrative 

example.  

Table 1: TCS 106 Rainfall Data Correlation Coefficients 

 A B C 

Original Time-Series 0.1114 0.2998 0.2808 

Approximation Level 1 0.1199 0.3157 0.3459 

Approximation Level 2 0.1316 0.3860 0.3879 

Approximation Level 3 0.1404 0.3224 0.2943 

Detail Level 1 0.0140 0.0793 0.0492 

Detail Level 2 0.0087 0.0341 0.0153 

Detail Level 3 0.0889 0.1796 0.2116 

 

Correlation coefficients for the original time-series and their SWT components (approximation 

and detail coefficients at 3 levels in this case) were all looked at individually to ascertain which 

components had the highest correlation. The labels A, B and C in Table 1 refer to conditions 

under which the correlation coefficients were calculated. In condition A, the entire rainfall and 

traffic flow datasets were used for calculating the correlation coefficients. This condition 

resulted in the lowest levels of correlation as expected because, for a large proportion of the 

time, the rainfall data is 0 mm/hr and this skews the relationship between traffic flow and 

rainfall. Condition B focused on the correlation present only in instances where there is some 
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level of rainfall in a given hour. As seen in Table 1, this resulted in an improved level of 

correlation. The results for Condition B in Table 1 along with visual inspection of Fig. 5 

vindicate the decision to calculate correlation coefficients at times when rain is present only to 

negate the effect of large proportion of 0 values in the rainfall dataset. Condition C looked at 

hours where rain was present along with a single following hour of such time periods. This was 

to allow for the delayed affect that inclement weather can cause to traffic flow levels and 

behavior i.e. traffic jams formed under rainy conditions may still be present for a percentage of 

the following dry hour. 

Conditions B and C both produced similar levels of correlation between rainfall and traffic flow 

at junction TCS 106. An interesting result was that there is a much greater correlation present 

in the approximation coefficients than the detail coefficients. Based on this behavior, the 

decision was made to only use the approximation components of the decomposed hourly 

rainfall data as part of the inputs in the Wet model framework. It was also decided that the 

when rainfall was expected in the forthcoming hour, the Wet model would be activated for both 

the forthcoming hour and the hour after that to allow for the time-lagged effect of rainfall on 

within-day traffic flow dynamics. Also, in the Wet model, the input vector sizes for the individual 

ACNN were twice the size as the respective Dry model input vectors i.e. where 3 hourly traffic 

flow data points were used to predict 1 future data point at TCS 125 in the Dry model, 6 points 

(3 hourly traffic flow and 3 hourly rainfall) were used for the same in the Wet model case 

 

PREDICTIONS & COMPARISONS 
 

The SWT-ACNN model has been used to predict the traffic volume on Wednesday, January 

14th 2009 for junctions TCS106 and TCS 125. The forecasts and the observed traffic volumes 

are plotted in Fig. 6a and 7b. To illustrate the efficiency of SWT-ACNN structure, a standard 

ANN algorithm, comparable to the fundamental FFBPNN structure used in the ACNN model, 

has been used to predict traffic volume on the same day over a 24 hour period. The shaded 

boxes in Fig. 6a and 7b show periods of rainfall (from 14:00 hrs to 19:00 hrs) where the Wet 

model framework took over from the Dry model framework, as discussed in the methodology. It 

is important to note here that the rainfall in this period was actually intermittent, as seen by 

close inspection of Fig. 5. Rainfall events occurred at 14:00 hrs, 16:00 hrs and 18:00 hrs but 

the hours in between were also subject to the Wet model prediction algorithm in order to 

address the time-lagged effect of precipitation on traffic flow i.e. the Wet model activates for 

hours t and t+1 when rain is expected at hour t. It is immediately visible from the graph that the 

wavelet model outperforms the non-wavelet model significantly. Table 2 presents the mean 

absolute percentage error (MAPE) and root mean squared error (RMSE) from the predictions 

carried out at TCS 106 and TCS 125. 
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Figure 6 - (a) TCS 106 Prediction Results & (b) TCS 125 Prediction Results 
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Table 2: Prediction Accuracy - MAPE and RMSE 

  TCS 106 TCS 125 

Mean (vehicles/hour) 1664.5000 1446.5000 

Standard Deviation 1087.8000 745.0892 

SWT-ACNN 
MAPE 9.0938 8.0082 

RMSE 125.4183 67.2349 

ANN  
MAPE 14.1061 13.3406 

RMSE 165.8897 100.0232 

 

The values in Tables 2 emphasize the importance of using a multi-resolution framework in 

incorporating the effect of rainfall in traffic prediction, with the SWT-ACNN more accurate at 

both TCS 106 and TCS 125, based on the MAPE and RMSE values. As an illustrative example 

of the effectiveness of the Wet model in predicting traffic flow, Table 3 presents the MAPE for 

the neuro-wavelet prediction model during dry and wet times at junctions TCS 106 and TCS 

125.  

Table 3: Wet and Dry Condition MAPE 

TCS 106 SWT-ACNN Model 

Overall MAPE (24 points) Dry Time MAPE (18 points) Wet Time MAPE (6 points) 

9.0938 10.6463 4.4362 

 

TCS 106 Standard ANN Model 

Overall MAPE (24 points) Dry Time MAPE (18 points) Wet Time MAPE (6 points) 

14.1061 16.5664 6.7254 

 

TCS 125 SWT-ACNN Model 

Overall MAPE (24 points) Dry Time MAPE (18 points) Wet Time MAPE (6 points) 

8.0082 9.9116 2.2979 

 

TCS 125 Standard ANN Model 

Overall MAPE (24 points) Dry Time MAPE (18 points) Wet Time MAPE (6 points) 

13.3406 15.9555 5.4958 

 

The table is based on the predictions shown in Fig. 6a and 7b, where a rainfall event occurs 

from 14:00 hrs to 19:00 hrs. Hence, for this time period, the Wet model is enabled as the 

chosen prediction methodology. The findings in Table 3 emphasize how effective it can be to 

include rainfall as an input to the neuro-wavelet model. 
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CONCLUSION 
 

Rainfall effects travel dynamics in urban transport networks in a complex manner and causes 

congestion and often an increased frequency of accidents on the roads. A neuro-wavelet 

prediction algorithm has been proposed in the paper to forecast hourly traffic flow taking into 

account the effect of precipitation. The neuro-wavelet structure utilizes a multiresolution 

wavelet analysis framework to address the fact that rain can affect traffic flow dynamics at 

different resolution levels. To retain the time-invariance of the original time-series datasets an 

undecimated form of WT (SWT) has been used in this purpose. This model taking rain into 

account is a novel application of SWT in the field of traffic prediction. 

The algorithm toggles between a Dry and a Wet model depending on whether rainfall is 

expected in the forthcoming hour. The algorithm was evaluated using real-time hourly traffic 

volume and precipitation observations. The prediction accuracy of the Wet model is superior to 

the Dry model and the standard ANN model during rainfall periods. This emphasizes that 

rainfall affects traffic volume and the inclusion of rainfall as a model input improves the 

prediction accuracy during rainfall events. The algorithm also outperformed the conventional 

ANN algorithms in dry situations (where traffic flow data alone were used as model input). This 

confirms that the proposed algorithm is flexible and can be applied to situations where and 

when rainfall data is not available. For future research in this area, it will be important to 

investigate the performance of this algorithm using higher resolution traffic and rainfall 

time-series datasets. 
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