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ABSTRACT 

This research explores the factors contributing to crash severity. This study main goal was to 
develop a binary classification modelling approach to predict the probability that a crash will 
result in severe outcomes. Real world crash data were collected from the Portuguese Police 
Republican National Guard records for the Porto metropolitan area, for the period 2006-
2010. A total of 1,374 crash observations involving light duty vehicles resulting in injuries 
and/or fatalities were analysed. In this paper, the effect of vehicle characteristics, such as 
weight, engine size, wheelbase and registration year (age of vehicle) were analysed using 
data mining approaches in order to extract patterns from the predictors and relate them to 
the occurrence of injuries and fatalities in a crash.  
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Two types of predictive approaches were tested: Classification and Regression Trees 
(CART) and logistic regression models.. Logistic regression models for two vehicle crashes 
are not reported in this paper. The response variable FatalSIK was created to signify the 
probability of a serious injury or fatality, in a crash, and was defined as a binary variable (=1 
for a severe crash, 0 otherwise). To conduct the analysis with high imbalanced data, 
oversampling followed by correction of prior probabilities for the original crash population was 
applied.  
 
The CART analysis results for two-vehicle collisions show that the weight of the vehicles 
involved was the most important variable for FatalSIK prediction, followed by the road speed 
limit. The highest percentage of severe crashes occurred in collisions involving heavier 
vehicles and in high speed routes (Fisher’s exact p-value <4.539E-4). For single-vehicle 
crashes, the engine size of the vehicle was the most important explanatory variable, followed 
by the vehicle’s age. For those crashes, the highest percentage of severe crashes was 
associated with vehicles with a larger engine size (>=1588cm3) and those that were older 
(=4.5 years) (Fisher’s exact p-value <0.0164). The logistic regression model for single 
vehicle crashes incorporated the vehicle age, engine size, wheelbase, and weather 
conditions as predicts of severe crash outcomes (Chi-Sq p-value <0.0004). The single 
vehicle crash model correctly classified 76.4% of the observations.  
These research findings provide important information for both public decision makers and 
automotive industry personnel to continue to produce ecologically friendly vehicles while still 
achieving improved protection of the vehicle occupants in the event of an injury crash.  
Keywords: CART, Logit Model, Crash Severity, Variable Relative Importance, and Rare 
Events 
 

1. INTRODUCTION  

More than 1.2 million people die on the world´s roads every year (WHO, 2009a). Road traffic 
accidents in the European Union (EU) estimated 34,000 deaths and more than 1.1 million 
people injured, representing estimated costs of 140 billion Euros (WHO, 2009b).  
Hermans et al. (2009) have shown that Portugal had the lowest safety performance score, 
which suggests that Portugal should invest more in vehicle technology and in new(er) cars. 
The Portuguese National Authority for Road Safety (ANSR) show that during the year 2011, 
there have been a total of 32,541 crashes involving injuries and those resulted in 2,436 
serious injured and 689 fatalities on the Portuguese roads (ANSR, 2012).  
There has been an increase in the amount of consumer interest in the safety performance. 
However, consumers tend to equate vehicle safety with the presence of specific features or 
technologies rather than with vehicle crash safety/test results or crashworthiness (Koppel et 
al., 2008). Crash testing is a resource for consumer regarding vehicle crash safety and 
credits a car manufacturer for focusing on safety. EuroNCAP discourage consumers from 
comparing ratings of cars from different segments, and in real crashes, there is obviously no 
control on the vehicle categories involved (Coelho et al, 2010). Despite the scientific 
conditions under which crash tests are conducted, they have limitations: first, they do not 
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account for mass differential between the vehicles involved within the collision; second, on 
real roads the speed of the crash impact frequently is higher than 64 km/h, which is the 
speed at the frontal impact takes place in crash testing conducted by EuroNCAP 
(EuroNCAP, 2009). Therefore, crash testing results must be viewed with some caution when 
it comes to predict car crashworthiness in crashes involving vehicles of different weights and 
sizes. 
Thus, the two main objectives for this research are:  
- To analyse the vehicle characteristics which are more important in the crash severity 
classification models based on CART methodology, for single-vehicle crashes and two-
vehicle collisions.  
- To develop a logit model to predict crash severity for single-vehicle crashes. 
 
The information generated in this study can be useful for manufacturers, and to lead clear 
directions to policymakers about actions needed and which priorities should be set in order to 
improve vehicle regulations for a significant improvement on road safety level. 
 
The paper is organized as follows: chapter 2 provides a literature review, followed by 
methodology in chapter 3, results and discussion in chapter 4, and finally conclusions in 
chapter 5.  
 
 

2. LITERATURE REVIEW 

In the literature, most attention is paid to vehicle type and risk to the drivers, but not to its 
relation to crashworthiness. There is a lack of a methodology to estimate the effect of 
vehicles characteristics with the crash severity during vehicles collisions. 
A number of studies have attempted to correlate safety and vehicle design features. Evans 
(2004) explored vehicle mass and size, and concluded that those variables are strongly 
correlated, which makes it difficult to determine the separate contribution of mass and size 
on crash risk. Wood and Simms (1997) showed that in collisions between cars of similar size 
and in single vehicle crashes the fundamental parameters which determine the injury risk are 
associated to the size, i.e. the length of the vehicle. However, in collision between dissimilar 
sized cars the fundamental parameters are the weight and the structural energy absorption 
of the vehicle. Wenzel and Ross (2005) suggested the quality of cars may be more 
correlated to the risk than weight, but this correlation is not strong. Most of the range in risk in 
cars must be attributed to vehicle design and to the difficulty to quantify driver characteristics 
and/or behaviour. Broughton (2008) showed that the driver casualty rate decreases with the 
size of his car, however the driver casualty increases with the size of the other car involved in 
the collision. Tolouei and Titheridge (2009) showed that increasing vehicle mass generally 
decreases the risk of injury to the driver.  
Previous studies related to crash analyses have used a broad spectrum of statistical models 
to reach conclusions. For example, statistical regression models are very popular for 
analysing contributing factors to injury severity (Li and Bai, 2008, Boufous et al, 2008, 
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Bedard et al, 2002, Al-Ghamdi, 2002, Chang and Wang, 2006). Kononen et al. (2011) have 
identified and validated a logistic regression model for predicting serious injuries associated 
with motor vehicle crashes with the following inputs: crash direction, change in velocity, 
presence at least on a older occupant and vehicle type. Martin and Lenguerrand (2008) have 
estimated the driver protection provided by passenger cars for the France vehicles fleet by 
applying a conditional Poisson regression. Mendez et al. (2010) has evaluated the 
crashworthiness and the aggressively of the Spanish car fleet by applying two types of 
regressions: logistic models in a single-crashes and generalized estimating equations 
models in tow-crash crashes. However, regression models have many assumptions and pre-
defined underlying relationships between the dependent and independent variables (Chang 
and Wang, 2006). A more advanced data mining technique is the Classification and 
Regression Trees Analysis (CART). Meng and Weng (2012) argued that CART can provide 
higher prediction accuracy than the conventional binary logit model. CART methods do not 
require predefined causal relationship between target (dependent variable) and predictors 
(independent variables). Decision trees provide an excellent introduction to predictive 
modeling and are useful to predict new cases, select useful inputs and optimizing complexity 
(SAS Institute Inc., 2007). Chang and Wang (2006) have classified CART as a flexible non-
parametric technique which can provide more informative and smart set of models, and its 
application is a valuable precursor to a more detailed logistic regression analysis in crash 
injury data. 
 
For real-world crash severity prediction datasets, the target variable (related to serious 
injuries is predominantly imbalanced, with the majority of instances composed of non-severe 
crashes (majority class) and only a small percentage of severe crashes (minority class). The 
classification problems based on imbalanced data occur often in applications when the 
events of interest are rare (such as severe crashes). The costs of type I and type II errors is 
dramatically asymmetrical, making an invalid prediction of the minority class more costly than 
an accurate prediction of the majority class (Crone and Finlay, 2012). Several studies have 
recommended re-sampling methods to address the problems related to imbalanced classes 
in several domains (Cieslak and Chawla, 2008, Kotsiantis et al, 2006, He and Garcia, 2009, 
Japkowicz and Stephen, 2002, and, Crone and Finlay, 2012).  
 
In summary, several studies have addressed the effect of vehicle type to examine the risk of 
injury levels, with the standard practice being for models to be constructed using samples of 
the available data. However, there is a gap on how to handle the low frequency of severe 
crashes. To date, the authors are not aware of any data mining severe crash events and 
appropriate predictive modeling approach. The strength of the study is that the effect of 
vehicle characteristics are considered for the decision modeling with rare events, as it 
happen in the field. Further research is needed to address this imbalanced data to better 
accident analysis accuracy to reinforce strategies for traffic safety policies and automobile 
industry smart challenges. 
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3. METHODOLOGY  

One motivation for this research was to focus on the vehicle fleet characteristics and analyze 
which (if any) has a stronger impact on crash severity. In previous studies, most attention 
focused on vehicle body type, rather than vehicle specific technical characteristics (Abdel-
Aty, 2003, Kononen et al, 2011, Bedard et al, 2002, Al-Ghamdi, 2002). In this study, vehicle 
technical characteristics, such as weight, engine size, wheelbase and registration year (age 
of vehicle) were analyzed with data mining methodologies in order to extract patterns from 
the predictors and relate them to the occurrence of injuries and fatalities in a crash. Figure 1 
summarizes the methodology. 
 

 
Figure 1 –Methodology overview. 

 
This research focused exclusively on post-crash consequences rather than on pre-crash 
contributing factors to the event. Drivers’ behavioral characteristics, such as age and gender, 
as well as population socio-demographic factors were out of the scope of this study. Seat 
belt use is one of the most important predictors of serious injuries (Abdel-Aty, 2003, and 
Kononen et al 2011). However information on the seat belt use, air bag data, roadway 
curvature and grade, even though those factors influence crash outcomes, they were not 
available in the crash reports.  
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The three most popular methods in predictive modeling are: decision trees, regressions and 
neural-networks. In the study presented in this paper, CART and logit regression were 
selected for the development of binary prediction models no analyze crash severity.   

3.1 Decision Tree Model  

The CART methodology was used for the following reasons. First, traditional statistics have 
limited utility in the task of variable selection for multiple variable comparisons. Second, 
predicted variables are rarely satisfactorily distributed. CART has the potential to “uncover 
complex interaction between predictors which may be impossible to uncover using traditional 
multivariate techniques” (Crone and Finlay, 2012).  
To select useful inputs, trees employ a split search algorithm. The root node is divided into 
child nodes on the basis of an independent variable (predictors), which creates the best 
purity in the way that the data in the child note is more homogeneous than in the upper 
parents node (Kashani, 2011). This process will last until all the data in each node have the 
most possible homogeneity, leading to the terminal nodes, or terminal leafs. One of the most 
commonly criteria used in the trees split is the Gini index. 
The variable relative importance (VRI) is provided by CART methodology output, and it 
denotes the surrogate splitting rule using that input in a way that assures the reduction in 
sum of squares errors (SSE) from the predicted values. The VRI (called Variable Importance 
Measure) is very useful select useful predictors (Kashani, 2011, and SAS Institute Inc., 
2007). The variable that has the most importance to classify the target, has the largest 
number compared to the others predictors. It must be noted that the variables relative 
importance may or may not follow the order of the variables selected at the tree structure. 

3.2 Logit Model  

Regression offers a different approach to prediction compared to decision trees. 
Regressions, as parametric models, assume a specific structure between inputs (predictors) 
and target. By contrast, trees as predictive algorithms, do not assume any association 
structure, they simply isolate concentrations of cases with like-valued target measurements. 
The logistic regression technique provides information on the parameters estimates, their 
standard error and their significance.  
 
The logistic function is simple the inverse of logit function. A logistic regression applies a logit 
transformation (a natural log of the odds) to the probabilities and ensures that the model 
generates estimated probabilities between 0 and 1. At this function, x has an unlimited range 
while P (Probability) is restricted to range from 0 to 1. 
The logit transformation in the logistic regression model is described by the following 
equation: 

�������� = log  �
1 − �� = β0	 + 	β1 ∗ ��	+	. . . +	βk ∗ �� 

(1) 
The above equation in terms of probability it can be rewritten into: 
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� = exp	�β0	 + 	β1 ∗ ��	+	. . . +	βk ∗ ���
�1 + exp	�β0	 + 	β1 ∗ ��	+	. . . +	βk ∗ ���� 

(2) 
The estimated factors for the response variables are provided by the independent variables. 
Since in the logistic approach the expected value of the target is transformed by a link 
function, (the likelihood function), the maximum likelihood estimates the values of the 
parameters that maximize the probability of obtaining the training sample. The parameters 
estimates from the maximum likelihood estimation are used in the logistic equation model to 
predict the binary target. 

3.3 Data Description 

Data were collected from the road traffic Departments of the Portuguese Road Safety Police 
National Republican Guard (GNR) and the Portuguese Public Safety Police (PSP). Recorded 
crash reports involving property damage only were excluded. Crash reports that involved 
injuries and/or fatalities outcomes were exclusively selected. A total of 2270 reports were 
extracted, as indicated in Table I. Crash reports were gathered for 5-years’ time period 
between 2006 - 2010. 

 

Table I – Relevant Crash Frequencies Gathered in the Study  
Data Source 2006 2007 2008 2009 2010 Total by Data Source 

GNR Porto, PT 298 548 508 161 184 1699 

PSP Aveiro, PT - 65 65 - - 130 

PSP Porto PT - 166 275 - - 441 

Total by year 298 779 848 161 184 2270 

 
As a result of the difficulty in matching vehicles to injury outcome, it was decided to reduce 
the sample size from a desirable 2270 observations to a manageable 1374 crash 
observations for which vehicle identification number (VIN) requests were made. 
 
Table II shows the description of each variable. This table lists all independent variables and 
dependent variables in the dataset. Table IIa) identifies the independent variables which 
were analysed to estimate its impact to the crash severity: 10 independent variables and 18 
independent variables, for the single-vehicle crash and two-vehicle collisions, respectively. 
For the two-vehicle collisions dataset the derivate variables of the combined effect of vehicle 
V1 and vehicle V2 differential characteristics, are also included. For instance, in a two-
vehicle collision, the weight differential between V1 and V2 was expressed by WTV2V1 (kg), 
which was obtained by subtracting the weight of vehicle V1 to vehicle V2. The same 
procedure was applied for the vehicle’s engine size, wheelbase, and age, leading to the 
following variables: ccV2V1, WBV2V1, and AgeV2V1.  
In Portugal, the injury severity of the vehicle’s occupants is recorded in three levels: light 
Injury (LI), serious injury (SI) and fatality. Table IIb) identifies two categories for the 
dependent variables. The dependent variable entitled “SIK” was created to signify the sum of 
the number of serious injured and killed in a crash. Since this study focused on modelling the 
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crash severity, the response variable SIK was then converted to a binary target, FatalSIK. 
The response variable FatalSIK was assigned a value of 1 if SIK>0, zero otherwise.  
 
 

Table II – Description of variables in the crash data set: a) independent original variables and b) dependent 
variables included in the crash data set 

 

a) Independent Variables 
 

 

Description 
 

Variables Labels 
 

Age of Vehicle 1 
AgeV1 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration. 

AgeV1*DT,*LR 

Age of Vehicle 2 AgeV2 (yr) was calculated based on the year of the crash 
event minus the year of the first vehicle registration 

AgeV2*DT 

Age Difference between vehicles (V2) 
and (V1) 

AgeV2V1 (yr) stands for age of vehicle V2 minus the age of 
vehicle V1, crash observation. 

AgeV2V1*DT 

Alcohol and/or Drugs The Driver´s test for alcohol and or drugs is presented as: 
Code=0, legal; Code=1, illegal 

AlcoholDrugs*DT,*LG 

Crash Type  for single vehicles crashes Ran off road 
Rollover 

RanOff*DT 
Rollover*DT, *LG 

Crash Type for two vehicle- collisions 

Rear End 
Head-On 
Sideswipe 
Other 

RearEnd*DT 
HeadOn*DT 
Sideswipe*DT 
Other*DT 

Divided/undivided 
Existence or absence of physical median: Code=0, 
undivided 
Code=1, divided 

DivisionCode*DT,*LG 

Engine Size of Vehicle 1 Engine size of vehicle (V1) (cm3) ccV1*DT,*LG 
Engine Size of Vehicle 2 Engine size of vehicle (V2) (cm3) ccV2*DT 
Engine Size Difference between 
vehicles (V2) and  (V1) 

ccV2V1 stands for engine size of vehicle V2 minus the 
engine size of vehicle V1, at crash observation, (cm3). 

ccV2V1*DT 

Road Class 

Roads is based in the number of lanes and coded as 
follows: 

Code=0, two lanes 

Code=1, multi-lanes 

Code=2, motorway 

RoadClass 

Speed Level 
The speed level was coded as follow: 
If Speed limit<=90km/hr, then code=0 
If Speed limit>90, then code=1 

SpeedLevel*DT,*LG 

Wheelbase of Vehicle 1 Wheelbase of vehicle (V1) (mm) WBV1*DT,*LG 
Wheelbase of Vehicle 2 Wheelbase of vehicle (V2) (mm) WBV2*DT 
Wheelbase Difference between vehicles 
(V2) and (V1) 

WBV2V1 stands for wheelbase of vehicle V2 minus the 
wheelbase of vehicle V1, at crash observation, (mm). 

WBV2V1*DT 

Weight of Vehicle 1 Weight of vehicle 1 (V1) (kg) WTV1*DT,*LG 

Weight of Vehicle 2 Weight of vehicle 2 (V2) (kg) WTV2*DT 

Weight Difference between vehicles 
(V2) and (V1) 

WTV2V1 stands for weight of vehicle V2 minus the engine 
size of vehicle V1, at crash observation (kg). 

WTV2V1*DT 

Weather Conditions 
Weather conditions at the moment of the crash: 
Code=0, Clear and/or dry pavement 
Code=1, rain and/or wet pavement 

WeatherCode*DT,*LG 

b) Dependent Variables 
 

Description 
 

Variable Label 

Number of Killed (K) plus Serious 
Injured (SI) 

SIK: sum of occupants serious injured ( sum SI) + sum 
of occupants killed (sum K) in a crash SIK SIK 

Serious and/or Fatal SIK 
FatalSIK: categorical response for a crash outcome used 
to predict either a serious injury, or fatality in a crash event. 

FatalSIK=1, if SI>0 and/or K>0, else, FatalSIK=0 
FatalSIK*DT,*LG 

*DTVariables in bold are used in the decision trees models for single and/or two-vehicle collisions. 
*LGVariables in bold are used in the logit model for single-vehicle crashes. 
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3.4 Modeling Approach for Crash Severity Prediction (with Rare Events) 

For real-world crash severity prediction data, the target variable is predominantly 
imbalanced. The percentage of severe/fatal crashes has been estimated with 2.8% 
distribution given any level of injury (Abdel-Aty, 2003). Hence severe crashes have lower 
frequency than non-severe crashes. With regard to binary data classification (severe crash 
vs. non severe crash), analysis of data containing rare events, poses a great challenge to the 
machine learning community. The answer to the question “Why is the data containing rare 
events a challenge?” is explained next. Classification models, such as decision trees and 
logistic models, tend to provide a severely imbalanced degree of accuracy: with the minority 
class having 100% accuracy, and the minority class (which represent the event of interest) 
having accuracies in the interval 0-10% (He and Garcia, 2009). When probabilistic statistical 
methods are used, such as logistic regression, they underestimate the probability of the rare 
events because they tend to be biased toward the majority class (non-severe crashes), 
which has significantly higher frequency compared to the minority class (severe crashes). On 
the other hand, CART tends to perform more poorly with unbalanced data, because the 
splitting criteria, Gini index, it is skew sensitive (SAS Inc.; 2007 and Cieslak and Chawla, 
2008). This occurs because the sampling methods prior to the decision tree induction alter 
the class distribution driving the bias towards the majority or positive class (Cieslak and 
Chawla, 2008).  
 
In this study, the target being predicted, crash severity (FatalSIK”1’), had the following 
distribution: 3.7% and 7.3%, for two and single, vehicles crashes respectively. Hence the 
dataset clearly qualifies as an imbalanced data.  
 
Random sampling often does not provide enough targets to train a predicted model for rare 
events, such as, severe crash observations. Following previous work, the original 
Portuguese crash population was randomly stratified, (Cieslak and Chawla, 2008, Japkowicz 
and Stephen, 2002, He and Garcia, 2009, and Crone and Finlay, 2012). Hence, all the 
observations having the rare event (severe crashes) were selected, and only a randomly 
fraction of the non-event (non-severe crashes) were included (SAS Institute Inc.; 2007).  
For the crash dataset, the training samples were stratified to the target level 50/50 
proportion, (SAS Institute Inc.; 2007, Cieslak and Chawla, 2008). The bias introduced by 
resampling (over-representation of target “1”) was corrected by adjusting the predicted 
probabilities with prior probabilities to correct for the original crash distribution (SAS Institute 
Inc.; 2007). Thus in training sample, the target level “1” (sever crash) is over-represented. 
The bias introduced by resampling was corrected by adjusting the predicted probabilities with 
prior probabilities in order to predict the original distribution of target “1” in the original crash 
data.  
For the decision trees the adjustment of prior probabilities was performed with a decision 
node (SAS Institute Inc.; 2007). Table III summarizes the adjusting prior probabilities for the 
stratified training samples used in the trees model development. For the logistic regression 
model development, the bias introduced by re-sampling was corrected by adjusting the cut-
off during the model training, and by taking into account the prior probabilities for the severe 
crashes in the data set.   
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Table III – Stratified Training Sample for Model Development 

Data set 
Stratified Levels 

Prior Probabilities Adjusted Prior 
Level Count 

Two 
1 32 0.5 0.037 

0 32 0.5 0.963 

Single 
1 38 0.5 0.036 

0 38 0.5 0.924 

 
In this study, data mining was performed with the Statistical Analysis Software, SAS® v9.2 
and SAS®Enterprise Miner™6.2 software (SAS Institute Inc.; 2007).  
 
Decision trees results were discussed based on VRI (Kashani et al, 2011, SAS Institute Inc., 
2007). The assessment of the logistic predictive modeling was evaluated by the event 
classification table, similarly to the confusion matrix used elsewhere (He and Garcia, 2009, 
and Kotsiantis et al, 2006). At Enterprise Miner interface, the event classification table 
provides the assessment score rankings for the model, based on the predicted probabilities 
of the observed response. This table output provides the number of observations that follow 
into each of the four classification categories for the target being predicted: False Negative 
(FN), True Negative (TN), False Negative (FN), and True Positive (TP).  
 
Next, Table IV defines the measures classification criteria developed in this study for the 
assessment score of the response variable, FatalSIK, used for the evaluation of the 
candidate models. 
 

Table IV– Event Classification Table for the Target FatalSIK 
Target False Negative (FN) True Negative (TN) False Positive (FN) True Positive (TP) 

Predicted Target FatalSIK”0” FatalSIK”0” FatalSIK”1” FatalSIK”1” 

Actual Target FatalSIK”1” FatalSIK”0” FatalSIK”0” FatalSIK”1” 

 
The accuracy rate in the training model is also equivalent to the percentage of the cases 
predicted right by the model within the training sample. In this study the terminology 
“Accuracy Rate” is applied and is defined by the following equation: 
 

%	�  !"# $	%#�& = 	 �'� + '(�
�)( + '( + )( + '�� 

(3) 
Following the selection of the best model to predict FatalSIK”1”, then the validation was 
performed based on a procedure adopted by Crone and Finaly, 2011. The performance of 
accuracy prediction of the final FatalSIK model was evaluated by comparing the model score 
rates for the original crash dataset with the model score for 10 stratified random samples. For 
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each sample subset, the observations were randomly excluded from the majority class (non-
severe crashes) until to equal number of the minority class (severe crashes). Hence, the final 
model was evaluated 10 times by score the final model for each of those stratified samples 
subsets. Then the model accuracy prediction rates for each of those subsets were recorded 
and the average of those 10 accuracy rates was estimated. 
 

4. RESULTS AND DISCUSSION 

This chapter presents descriptive statistics for dependent and independent variables and the 
results for crash severity (target FatalSIK) prediction based on two modelling approaches: 
decisions trees and logistic regression models. The results are discussed in the following 
order. First, descriptive statistics for the entire crash dataset is presented. Second, decision 
trees models for two-vehicle collisions and single-vehicle crashes are analysed. Finally, a 
logit model developed to predict the crash severity response in single-vehicle crashes is 
discussed.  

4.1 Descriptive Statistics 

The descriptive statistics analysis for the crash data set which includes a total of 1374 crash 
observations is presented in Table V. For the entire crash population, the injury severity level 
was as follows: 27 killed k, 61 serious injuries (SI), and 1967 Light Injured. The table also 
presents the average values for the vehicle technical characteristics: weight, engine size, 
age and wheelbase. It is interesting to notice that for both vehicles V1 and V2 the mean age 
was 8.5yr. However, there is a wide range of vehicles age: 1yr to 38 yr, newest and oldest 
vehicles, respectively.  
 

Table V– Descriptive statistics for selected variables in the crash dataset 
 

Variable name in SAS* 
 

 
N. 

Crashes 
Mean 

 
S.D.  

 
Minimum Maximum 

SUMLI1 1374 1.43 0.87 0 8 
SUMSI2 1374 0.044 0.25 0 3 
SUMK3 1374 0.02 0.14 0 2 
SIK4 1374 0.06 0.30 0 3 
WTV15(Kg) 1374 1222.34  334.98 640  3200  
ccV16(cm3) 1374 1662.65  491.67 599  4104  
WBV17(mm) 1374 2581.02  256.47  1625  4325  
AgeV18(yr) 1374 8.48  5.06 1  25  
WTV29(kg) 874 1262.85  364.46 584  3500  
ccV210(cm3) 874 1700.94  522.18 698  4104  
WBV211(mm) 874 2609.00 289.88 1812  4100  
AgeV212(yr) 874 8.54  5.26 1  38  
WTV2V113(mm) 874 28.65  519.87 -2165  2860  
ccV2V114(cm3) 874 34.98  719.72 -2905  2909  
WBV2V115(mm) 874 10.84  396.80 -2213  1918  
AgeV2V116(yr) 874 <1  7.42 -20  28  

1 Sum of LI; 2 Sum of SI; 3 Sum of K; 4 Sum of SI and K; 5 Weight of Vehicle V1; 6 Engine size of Vehicle V1; 7 Wheelbase of 
Vehicle V1; 8 Age of vehicle V1; 9 Weight of Vehicle V2; 10 Engine size of Vehicle V2; 11 Wheelbase of Vehicle V2; 12 Age of 
vehicle V2; 13 Weight Differential between V2 and V1, at two vehicle collision; 14 Engine size differential between V2 and V1 at 
two vehicle collision; 15 Wheelbase Differential between V2 and V1 at two vehicle collision; 16 Age Differential between V2 and 
V1 at two vehicle collision.  
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4.2 Classification and Regression Tree Analysis  

The CART methodology was applied to identify the independent variables (vehicles 
characteristics and crash information) which are more important to classify a crash as severe 
event. The overall crash severity is expressed by the binary target FatalSIK (as explained 
previously in section 3.3). 

4.2.1 CART Analysis for FatalSIK for Two-vehicle Collisions   

 

Figure 2 – Classification Tree for FatalSIK for two-vehicle crashes using a balanced sample. 

 

The predictive decision model for 874 two-vehicle collisions is presented in Figure 2. This 

decision tree was developed with the balanced sample procedure with a 50/50 ratio between 

the target level “1” (32 counts) and target level “0” (32 counts). To eliminate the bias from the 

over-reseprentation of the target level “1”, prior probabilities were adjusted for the original 
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sample distribution, where the 2 counts represent the 3.7% of FatalSIK “1”, and 62 counts 

represent 96.3% of FatalSIK”0” in the original sample distribution.  

In Figure 2 the selected variables were the weight of vehicle V1 (WTV1), weight of vehicle V2 

(WTV2) and the speed level. In this figure, the tree variables split order does not follow 

exactly in the relative importance. The tree parent node was split first by the WTV1, followed 

by speed level and then by WTV2 level. On the other hand, those selected variables relative 

importance to minimize the SSE for the FatalSIK was: 1 for WTV1, 0.796 for WTV2 and 

0.708 for speed level. The above decision tree shows that when the collision involved a 

lighter V1, WTV1<1000.5kg, 98.9% of the crashes on the tree leaf were non severe. On the 

other hand, heavier V1 vehicles with WTV1>=1000.5kg, were associated with a higher 

percentage of severe crashes (5.6%). Then, this leaf was split by the speed level, showing 

that higher speeds are associated with a higher percentage of severe crashes (8.6%). 

Finally, the tree was split by the weight of vehicle V2. Similarly to crashes involving heavier 

vehicles V1, when a heavier vehicle V2 was involved, WTV2>=1392kg, the expected crash 

severity was much higher, 33.3%. Fisher’s exact p-value< 4.539E-04 indicated that the 

FatalSIK cannot be considered independent from the weight of the vehicles involved in the 

crash neither from the speed level. 

4.2.2 CART Analysis for FatalSIK for Single-vehicle Crashes   

Figure 3 illustrates the decision tree structure for single vehicle crashes based on the 

balanced sample approach. During the resampling approach, a 50/50 ratio between the 

target level “1” (38 counts) and target being level “0” (38 counts) was used. As explained for 

the previous trees, the CART output results were corrected to reflect the original sample 

distribution, where 6 counts represented the 7.6% of FatalSIK “1”, and 70 counts represented 

92.4% for FatalSIK”0” for the original target level distribution in the single vehicle crashes 

dataset. 



Binary Classification and Logistic Regression Models Application to Crash Severity  
TORRÃO, Guilhermina; ROUPHAIL, Nagui, COELHO, Margarida;  

 

 
13th WCTR, July 15-18, 2013 – Rio, Brazil 

 
14 

 
Figure 3 – Classification Tree for FatalSIK for single-vehicle crashes using a balanced sample. 

In Figure 3, the tree growth followed the order of the variables relative importance. The 

selected variables were: engine size (ccV1) and age of the vehicle (AgeV1). For the tree 

development, ccV1 had a relative importance of 1; meanwhile Age V1 had a relative 

importance of 0.868. Hence, for lower vehicle engine size, ccV1<1588 cm3, the expected 

overall crash severity was lower, 4.5%. On the other hand, for vehicles with a higher engine, 

ccV1>=1588 cm3, 13.6% of the crashes were severe. Following the engine size, the tree 

was split by the vehicles’ age. For crashes with new vehicles, AgeV1<4.5yr, the crash 

severity was lower, 3.2%. However, when the vehicle was older, AgeV1>=4.5yr, the overall 

crash severity was 6 times higher than for new vehicles, (19.8% vs. 3.2%). This finding 

suggests that the lack of safety devices in the other vehicles, such as air-bags may increase 

the risk of a serious injury for vehicles’ occupants. Fisher’s exact p-value< 0.0164 suggest 

that in single vehicle crashes the engine size and age of the vehicle are significant under the 

caveats previously mentioned.  

4.3 Logistic Regression Analysis for Single Vehicle Crashes 

The logit model developed to predict FatalSIk has four independent variables: AgeV1, 

WBV1, ccV1 and WeatherCode. Table VI shows with the exception of the wheelbase of the 

vehicle, (PrChiSq<0.0593), all the predictors in the model were found to be statistically 

significant at the 0.05 level (PrChiSq<0.0144, PrChiSq<0.0418, and PrChiSq<0.0031, for 
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AgeV1, WeatherCode and ccV1, respectively). An increase of the vehicle engine size and 

vehicle age, as well as good weather conditions are associated with a higher risk of a severe 

crash, FatalSIk”1”. On the other hand, as the vehicle wheelbase increases there is a 

decrease in the probability of a FatalSIK”1”.  

 

Table VI– Fit statistics for FatalSIK model for single-vehicle crashes 
Fit Statistics 
Test for Global Null 
Hypothesis 

Analysis of Maximum Likelihood Estimates 
ASE MISC 

DF Pr>ChSq Parameter DF Estimate Pr>ChSq 
4 0.0004 Intercept 1 5.1730 0.3023 0.187 0.237 
  AgeV1 1 0.1519 0.0144   
  WBV1 1 -0.0045 0.0593   
  WeatherCode (0) 1 0.6879 0.0418   
  ccV1 1 0.0030 0.0031   
Odds Ratio Estimates 
 Effect Point Estimate 
 AgeV1 1.164 
 WBV1 0.996 
 WeatherCode 0 vs 1 3.958 
 ccV1 1.003 
Accuracy Performance 

Accuracy Rate with Training Sample (N=76) Accuracy Rate with Original Population (N=500) 

Accuracy 
Performance with 

10 Stratified 
Random Samples 

FN1 TN2 FP3 TP4 % AR5 TPs6 FPs7 TNs8 FNs9 %AR10 %A.D11 S.D.12 
10 30 8 28 76.3 17 97 365 21 76.4 14.4 2.4 
1 False Negative; 2 True Negative; 3 False Positive ; 4 True Positive; 5 Percentage of Accuracy Rate; 6 True Positives; 7 False Positives; 8 True 
Negavtives1; 9 False Negatives; 10 Percentage of Accuracy Rate; 11 Average Differential of the Accuracy Rate for the 10 stratified with the Model 
Accuracy Rate for the score original crash population.; 12 Standard Deviation.  

 

The equation developed for FatalSIK model for single-vehicle crashes is presented next. 
 

�	�)#�#�*+, = 1� = 	 exp	�5.1730 + 0.1519 ∗ ��&11 − 0.0045 ∗3411 + 0.6879 ∗3&#�ℎ&"8�9&�= 0� + 0.0031 ∗   11�
1 + exp	�5.1730 + 0.1519 ∗ ��&11 − 0.0045 ∗3411+ 0.6879 ∗3&#�ℎ&"8�9&�= 0� + 0.0031 ∗   11� 

(4) 
Where: AgeV1 is the age of the vehicle, WBV1 is the wheelbase of the vehicle, 
WeatherCode(=0) denotes good weather conditions, and ccV1 is the vehicle’s engine size. 
In Table VI the odds of a FatalSIK crash in good weather conditions is almost 4 times the 
odds under poor weather conditions (wet road). As far as the model performance with the 
training sample, the above model performed very well with a 76.3% AR. In addition, from the 
38 severe crashes in the training dataset the model correctly predicted 28 cases. In addition, 
model FatalSIK shows a very good AR, 76.4%, when predicting new cases in the full 
population of crashes. Graphical assessment for the FatalSIK model is illustrated in Figures 
4 to 6.  

In Figure 4, the FatalSIK probability is illustrated a function of the age of the vehicle, while 

vehicle wheelbase and the engine size were fixed (at 2551mm and 1602 cm3, mean 

wheelbase and engine size, respectively). A similar approach was used for the plots in 

Figures 5 and Figure 6. 
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Figure 4 – Probability of a Serious Injury and/or fatality as function of the age of the vehicle, in single-vehicle 

crashes, using the FatalSIK model. 

 
Figure 5 – Probability of a Serious Injury and/or Fatality based in vehicles’ engine size, in single-vehicle crashes, 

using FatalSIK model. 

 
Figure 6 – Probability of a Serious Injury and/or fatality based in vehicles’ wheelbase, in single-vehicle crashes, 

using FatalSIK model. 

Figure 4 shows that as the age of the vehicle increases, the probability of a FatalSIK also 
increases. This trend was expected since newer vehicles have improvements in 
crashworthiness due to the incorporation of new safety features, such as air bags and 
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electronic stability control. Also, the logistic curve for the good weather conditions show a 
higher probability of a FatalSIK than for poor weather conditions, as previously indicated. 

Figure 5 shows that as the engine size of the vehicle increases, the probability of a FatalSIK 
also increases. The effect of the engine size may be interacting with travel speed. It is 
possible that drivers in cars with a larger engine size (higher power) tend to accelerate more 
and travel higher speed. Hence, when the crash occurs, the changes in the vehicle velocity 
associated with the crash event (delta-V), which has been reported as the most significant 
predictor of a serious injury, (Kononen et al., 2011). 

Figure 6 shows that as the wheelbase size of the vehicle decreases, the probability of a 
FatalSIK also increases. The size of vehicle’s wheelbase in the decreasing risk of a serious 
and or fatal crash may be interpreted by the fact that one of the vehicles attribute most 
related to the injury severity level is vehicle size, (Evans, 2004, Bedard, et al., 2002). A larger 
vehicle size, offers a higher area for the energy dissipation following the crash impact force, 
hence reducing the energy change that the body of the vehicles occupants may be exposed, 
thus reducing the risk. This finding is consistent with previous work, (Bedard et al., 2002). 
 

5. CONCLUSION 

The presented CART and logistic regression results have identified the most important 
variables contributing to crash severity, expressed by the binary target FatalSIK. The 
following conclusions can be drawn: 

- CART results showed that in two-vehicle collisions the weight of the vehicles involved 
is the most important factor associated with overall crash severity. A collision of one 
vehicle heavier than 1000kg involving a second vehicle heavier than 1392kg, had the 
highest expected crash severity (33.3%). This finding is consistent with previous work 
(Wood and Simms, 1997, and Tolouei and Titheridge, 2009). CART results for single-
vehicle crashes shows that the engine size and the age of the vehicle are associated 
with a higher risk of a severe crash.  

- The developed logit model for crash severity prediction in single-vehicle crashes 
shows that the engine size, vehicle age and wheelbase, along with good weather 
conditions; impact the crash severity outcomes for the target FatalSIK. As engine size 
and vehicle age increase, the risk of a severe crash also increases. Also, the 
probability of a severe crash decreases as the wheelbase of the vehicle increases, 
and the risk is lower in poor weather conditions. 

It should be noted from the above findings that both CART and logistics regression 
methodologies have identically identified the explanatory variables that are key predicting 
a crash severity outcome namely vehicle engine size and vehicle age. This gives more 
confidence in the robustness of both methods.  

In the next research phase, the authors will develop a logit model to predict crash severity in 
two-vehicle collisions. In terms of future work, the approach developed in this study to predict 
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crash severity in imbalanced dataset would be useful to apply with other types of motor 
vehicle crashes.  
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